
PHYSICAL REVIEW B 104, 174307 (2021)

Higgs-mode signature in ultrafast electron dynamics in superconducting graphene
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We theoretically investigate the effect of superconductivity on the ultrafast electron dynamics in graphene
interacting with an ultrashort linearly polarized optical pulse. The optical pulse, with frequency greater than 1
THz, quadratically couples to the Higgs (amplitude) mode and therefore can excite the Higgs-mode oscillations
in superconductors, leading to quenching superconducting excitation energy, even in s-wave pairing symmetry.
Since the duration of the used pulse is less than the electron scattering time in graphene (10–100 fs), the electron
dynamics driven by the electric field of pulse remains coherent and is described within the tight-binding model
of graphene. We show that the electron-electron and hole-hole transitions from valence to conduction bands
are substantially irreversible, with a large residual population of the conduction band, which implies quantum
electron dynamics being highly nonadiabatic. Such a feature of the system allows us to clearly project the
effect of Higgs oscillations on the electric dipole moment created by the electric field of the pulse between
the conduction and valence bands. In particular, we study the impact of the superconducting pair potential on the
conduction band population, where the strong pulse causes electronlike and holelike quasiparticles transitions
between the conduction and valence bands. The conduction band electron redistribution in honeycomb Dirac
points results in almost asymmetric hot spots in two different K and K ′ valleys after the pulse ends, which may
be interpreted as the valley polarization effect due to the presence of superconductivity. The redistribution of hot
spots around Dirac points is in good agreement with the Higgs-mode oscillations (corresponding to the electric
dipole moment pattern), and the number of spots weakly depends on the superconducting gap, whereas it has a
strong dependence on the ultrashort-pulse intensity.
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I. INTRODUCTION

Despite the very long history of Higgs (amplitude) modes
in superconductors, the scalar (and hence chargeless) nature
of these modes prevents their linear coupling via minimal
substitution to the external electromagnetic fields, and there-
fore, the experimental detection of the dynamics of the Higgs
mode remained elusive and had to await technological de-
velopments of nonlinear and ultrafast laser technology [1].
Recent developments in ultrafast laser technology have cre-
ated unique platforms to explore the coherent control of
electron dynamics in solids at ultrafast timescales with high
temporal resolution [1–10]. The electric field of such optical
pulses is strong (≈1 V/Å) and comparable to the internal
fields in solids [11–13]. Such strong electric field can lead to
emerging specific dynamical behaviors in materials and can
be used in optical probing of electron dynamics in solids at
femtosecond timescales [2,13,14]. In particular, among solids,
two-dimensional (2D) crystalline materials, such as graphene
[15,16], represent unique and peculiar physical properties due
to the restriction of electron dynamics to a plane, actually
leading to linear energy dispersion in the first Brillouin zone
[17]. Specifically, the Dirac-like behavior of electrons in the
honeycomb lattice of graphene causes the appearance of irre-
versible electron dynamics through interaction with a strong

ultrafast optical pulse. In the last few years, several experi-
mental and theoretical investigations have been carried out to
study ultrafast nonlinear electron dynamics in 2D materials
under ultrashort pulse irradiation [18–32]. The presence of
two nondegenerate Dirac points, K and K ′, at the corners
of the Brillouin zone potentially makes graphene a suitable
platform to investigate novel (valley-dependent) ultrafast dy-
namics of zero effective mass electrons interacting with a
ultrashort pulse [17,33]. In graphene, linearly polarized pulse
induction causes the manifestation of interference fringes in
the reciprocal space owing to band electron transitions around
the Dirac points.

On the other hand, over the last few years, electronlike and
holelike quasiparticle excitations in 2D materials in the pres-
ence of a proximity-induced superconducting order have been
the subject of extensive theoretical and experimental research
related to the spin-valley coupling resolved transport of charge
carriers [34–37]. It was experimentally shown that the super-
conductivity may be induced by means of the proximity effect
by placing a superconducting electrode near a graphene layer
[38–42]. Therefore, here, significant attention is being devoted
to ultrafast electron dynamics in an electron-hole pair (as well
as the formation of the superconducting gap in the Fermi
surface) caused by the electric field of a femtosecond optical
pulse. However, it has been noticed that the superconducting
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gap magnitude is very small compared to the ultrashort pulse.
But importantly, the ultrashort pulse may really result in the
appearance of an impulsive excitation of Higgs oscillations
via a nonlinear process by quenching the electron-hole energy
excitations in superconductors [43–46]. Higgs oscillations can
be understood as massive (gapped) excitations along the radial
direction around the Fermi point in the superconducting state.
Such a quantum quench was first demonstrated in the s-wave
symmetry superconducting order [43–46], despite the lack
of dependence of the superconducting gap on the pair mo-
mentum. Also, recently, Higgs oscillations were characterized
in unconventional superconductors with explicit dependency
of the superconducting gap on the pair momentum [47].
Therefore, this effect can straightforwardly affect the ultra-
fast electron dynamics in the quantum transition between the
valence and conduction bands in materials with a supercon-
ducting proximity effect under irradiation of an ultrashort
laser pulse.

However, recently, valuable studies have begun in this field
(see Refs. [47,48]). The authors of [48] reported universal
control of the order parameter and handedness of chiral su-
perconductors by optical pumping. The important properties
of their predictions are that the mechanism extends to ultrafast
timescales and the ensuing engineered state persists after the
pump is switched off. They predicted that these phenomena
can appear in graphene [49–51]. Moreover, they showed that
the chiral superconductor can be achieved in time-resolved
pump-probe measurements. Accordingly, we proceed in this
paper to study the electron dynamics in the presence of the
superconducting gap in graphene under irradiation of an ultra-
short laser pulse. The superconducting gap is assumed to be
a proximity-induced s-wave symmetry, which has no depen-
dence on the pair momentum. We show that in the presence
of the superconductivity effect, the quantum electron dynam-
ics in graphene is still highly nonadiabatic and effectively
irreversible. Moreover, the resulting irreversible electron dy-
namics leads to considerable electron transition from the
valence band (VB) to the conduction band (CB), which results
in a high electron population in the conduction band. The
unique properties of ultrafast electron dynamics in graphene
are given by specific features of the electric dipole moment,
which lead to the associated singularities at the Dirac nodes
in the Brillouin zone. Such singularities arise from the band
touching, which result in the formation of highly localized hot
spots for electron redistribution in the reciprocal honeycomb
space, which actually is weakly dependent on the magnitude
of the superconducting gap. Remarkably, the superconducting
order parameter, which occupies off-diagonal elements of the
Dirac–Bogoliubov–de Gennes (DBdG) graphene Hamiltonian
for two different valleys, gives rise to a significant change
in the resulting time-dependent conduction band population
(CBP) owing to the formation of the Higgs mode.

However, the recent advances in ultrafast laser pulses
and nonlinear techniques provide tools to access the real-
time dynamics of low-energy excitations in superconductors.
For example, time-resolved terahertz (THz) spectroscopy and
time- and angular-resolved photoemission spectroscopy (tr-
ARPES) have enabled us to detect the real-time dynamics
of the superconducting gap amplitude. Here, photoexcitation
with light whose frequency is larger than 2�s (�s is the

superconducting gap energy) breaks a small portion of the
Cooper pairs and gives rise to excess quasiparticle density.
The relaxation proceeds via quasiparticle recombination, in
which quasiparticle pairs recombine to form Cooper pairs
by the emission of phonons with energy h̄ω > 2�s. Below
the critical temperature of the superconductor, ultrafast ex-
citations can trigger a synchronous decrease in the electron
self-energy and superconducting gap. In our work, this sce-
nario will be important when the superconducting order is
taken to have p- or d-wave symmetry, for which the time
dependence of the pair momentum (originating from the cou-
pling with the electric field of the pulse) will play a crucial role
in the CB transition rate. Note that as far as the response of the
Dirac part of the spectrum of graphene is concerned, the Dirac
theory is scale invariant. Specifically, for a realistic graphene
material, scaling the energy from approximately eV down to
approximately meV and below corresponds to dealing with
momentum scales closer and closer to the Dirac node (and
hence larger lattice sizes). This scale invariance means that
moderate lattice sizes in the numerical solution of the coupled
differential equations giving the dynamics of the electron-hole
will be able to clearly capture the Higgs excitations. The
outline of the present paper is as follows: Sec. II is devoted to
the analytical solution of the DBdG equation with the s-wave
order parameter to obtain the exact expressions for the energy
dispersion and corresponding wave functions. Then, we intro-
duce the related formalism to obtain the form of the dipole
matrix elements and the exact relation of the time-dependent
CBP that takes into account the Gaussian femtosecond optical
pulse contribution to the momentum of electron. The results
and discussion of the total transition rate for Dirac points in
reciprocal space and the effect of superconductivity on CBP
are presented in Sec. III. Finally, a brief conclusion is given.

II. THEORETICAL FORMALISM

A. Superconducting graphene lattice

Monolayer graphene has a hexagonal crystal structure
made of two sublattices, A sites and B sites, which is shown in
Fig. 1(a) [15,16]. These lattices are determined by two lattice
vectors, a1 ≡ a/2(3,

√
3) and a2 ≡ a/2(3,−√

3), where a =
1.42 Å is the lattice constant. The first Brillouin zone of the re-
ciprocal lattice of graphene is shown in Fig. 1(b). The electron
band structure in graphene’s reciprocal space is determined
by its spatial and time-reversal symmetries. The points K ≡
(2π

√
3a/3)(

√
3, 1) and K ′ ≡ (2π

√
3a/3)(

√
3,−1), which

are the corners of graphene’s first Brillouin zone, are the
Dirac points. We consider a linearly polarized irradiated fem-
tosecond pulse to the plane of monolayer graphene with a
superconductor electrode on top of it, as shown in Fig. 2.
The pulse is polarized along the x axis and has the following
Gaussian wave shape:

F (t ) = F0(1 − 2u2)e−u2
. (1)

Here, F0 is the amplitude of the pulse oscillation, and u = t/τ ,
where τ is the pulse’s duration, which we set as τ = 1 fs in
calculations. The experimentally realized wave form of the
ultrafast pulse can be found in Ref. [13]. For the shape of
the pulse given by Eq. (1), which is shown in Fig. 3, the area
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FIG. 1. (a) The honeycomb lattice of graphene is made of two
triangular sublattices, A (black circles) and B (white circles). (b) The
first Brillouin zone of the reciprocal lattice of graphene has two
valleys, K and K ′, located at its boundaries.

under the pulse is always zero,
∫ +∞
−∞ F (t )dt = 0. It should be

mentioned that the y axis is the axis of symmetry of graphene.
The time-dependent Hamiltonian of an electron subjected

to a pulse electric field while taking into account the super-

FIG. 2. Hexagonal lattice structure of monolayer graphene,
which is illuminated by an ultrafast optical pulse associated with a
strong electric field making an angle θ with the normal direction on
the graphene plane. The graphene lattice consists of two inequiv-
alent sublattices, labeled A (red circles) and B (blue circles). The
vectors a1 ≡ a/2(3,

√
3) and a2 ≡ a/2(3, −√

3) are the direct lattice
vectors of graphene. The vectors δi (i = 1, 2, 3) are the lattice band
parameters of graphene. The graphene superconductor is provided
by a proximity effect of a superconductor electrode on top of the
graphene.

-3 -2 -1 0 1 2 3
-1

0

1

2

FIG. 3. Plot of different Gaussian wave forms of the electric
field of the zero-area optical pulse as a function of time for various
amplitude of F0. Note that the pulse always has zero area, which
satisfies the requirement of the pulse to propagate in the far-field
zone.

conductivity effect has the form

H(t ) = HDBdG
0 + eF(t ) · r, (2)

where HDBdG
0 is the DBdG Hamiltonian for superconducting

graphene, which determines the electron dynamics in the pe-
riodic lattice potential of graphene. r ≡ (x, y) is a 2D vector
in the plane of graphene, e is the electron charge, and F(t ) ≡
F(t )(cos θ, sin θ ) is the external electric field of the pulse. We
assume that the pulse is polarized along the x axis; that is, we
consider the case of θ = 0. Clearly, the presence of an electric
field along the x axis breaks the x → −x mirror symmetry of
the Dirac equation. Such symmetry breaking will be important
beyond the linear response which is the case in our problem,
as highly nonlinear excitations become possible. We will see
that this feature will be directly observed in the response of
different valleys.

Now, we proceed to consider the tight-binding Hamiltonian
for graphene in the presence of a superconducting order. The
full Hamiltonian for an arbitrary electron, labeled by the two
valley integer indices η and κ , which include nearest-neighbor
hopping terms, takes the form

Ĥ =
∑
ηi j

[−μa
i ja

†
ηiaη j − μb

i jb
†
ηibη j

]

+
∑

〈ηκ〉,i j

tηκ,i j (a
†
ηibκ j + b†

κ jaηi ). (3)

Here, a and b indicate the fermionic annihilation operator on
the carbon atoms. The indices η and κ show the site labels
in sublattices A and B, respectively, and i and j indicate the
atomic orbital. The matrix elements μa, μb, and tηκ,i j are re-
sponsible for the on-site energies of carbon atoms and hopping
between different neighboring sites, respectively. The final
result for the effective tight-binding Hamiltonian governing
the conduction and valence bands is given by

h(k) = −γ

(
0 f (k)

f ∗(k) 0

)
. (4)
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The hopping integral γ ∼= 2.85 eV is defined as the coupling
between sublattices A and B, and

f (k) = exp(−ikxa)

[
1 + 2 exp

(
3ikxa

2

)
cos

(√
3kya

2

)]

≡ | f (k)|eiφk , (5)

with

φk = arctan{Im[ f (k)]/Re[ f (k)]},

which represents the structure factor of the honeycomb lattice
with lattice parameter a and the wave vector of the electron k.
In the proximity-induced superconducting graphene case, the
superconducting generalization of the tight-binding Hamil-
tonian can be written on monolayer graphene, including the
pairing potential. In the relativistic case, Cooper pairing takes
place between single-particle states, which are constructed
by application of discrete symmetries (parity, charge conju-
gation, and time reversal). The possible pairing states can be
characterized as singlet or triplet order parameters. The order
parameter of the superconductor is defined as a function of
spin (s, s′) and momentum (k, k′) for electrons and holes.
In this paper, we consider the superconducting pair potential
to be spin singlet s-wave symmetry. In the band-structure
picture, the term of the interaction of the superconducting gap
with the honeycomb lattice is written as follows:

HS =
∑

〈ηκ〉,i j

∑
k

∑
s

V s
k a†

ηi(b
†
κ j + b′†

κ j ) + H.c., (6)

where V s
k parametrizes the pairing interaction strength of elec-

trons, which can be determined according to the point group
symmetry of graphene [52]. The related order parameter can
be written as �(r) = �seiϕ , where �s denotes the absolute
value of the superconducting gap and ϕ is the superconducting
phase. Furthermore, the s-wave superconducting gap matrix
includes diagonal singlet components with respect to the in-
dex i, j.

The superconducting electron-hole quasiparticle caused
by the proximity of a superconductor electrode on top of
monolayer graphene can be realized by the generalization of
the DBdG Hamiltonian. Finally, the resulting 4 × 4 DBdG
Hamiltonian for the singlet components is given by

HDBdG
0 =

(
h(k) − EF + U (x) �seiϕI2

�∗
s e−iϕI2 −h(k) + EF − U (x)

)
,

(7)
where the electrostatic potential U (x) gives the relative shift of
the Fermi energy EF as μs = EF − U (x), which denotes the
chemical potential. The pair potential �(r) = �seiϕ couples
electron and hole states, and I2 is the 2 × 2 unit matrix that
corresponds to scalar (singlet) pairing. The globally broken
U (1) symmetry in the superconductor is characterized by the
phase ϕ. Diagonalizing Eq. (7) gives the following energy
quartic equation:

ε4 − 2ε2
[
μ2

s + γ 2| f (k)|2 + |�s|2
] + [

μ2
s − γ 2| f (k)|2]2

+|�s|2
[
2μ2

s + 2γ 2| f (k)|2 + |�s|2
] = 0.

FIG. 4. (a) The energy spectrum is shown for a graphene su-
perconductor as a function of kx and ky in the extended zone.
(b) Illustration of electronlike and holelike quantum quench in the
Fermi surface on the graphene superconductor. The superconducting
effective gap is formed in the Fermi wave vector kF of the Mexican
hat.

The energy spectrum of DBdG for electron-hole excitations
becomes

εc,v = ±
√

[−μs + ξγ | f (k)|]2 + |�s|2, (8)

where indices c and v stand for the CB and VB, respectively.
The parameter ξ = ± distinguishes between the conduction
and valence bands. The energy spectrum is shown in Fig. 4(a),
where the inverted band around the Dirac points denotes
superconducting electron-hole excitations in honeycomb re-
ciprocal space. The superconducting effective gap is formed in
the Fermi wave vector kF of the Mexican hat, as demonstrated
in Fig. 4(b). The ultrafast optical pulse causes an impulsive
excitation of Higgs oscillations via a nonlinear process by
quenching the Mexican hat pair potential in superconductors
[1] [see Fig. 4(b)]. In order to have Higgs oscillations in the
above energy pattern, the optical pulse must fulfill the nonadi-
abaticity, which implies a one- to two-cycle short pulse with a
frequency range in the approximately femtosecond regime.

Using the Hamiltonian (7), the four-component elec-
tronlike wave functions corresponding to the valence and
conduction bands are given by

ψ
(c,e)
k = eik·r

√
α1

⎛
⎜⎜⎝

β1eiφk

−β1

λ1eiφk

ρ1

⎞
⎟⎟⎠, ψ

(v,e)
k = eik·r

√
α1

⎛
⎜⎜⎝

β1eiφk

β1

−ρ1eiφk

λ1

⎞
⎟⎟⎠,
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and the holelike ones are given by

ψ
(c,h)
k = eik·r

√
α2

⎛
⎜⎜⎝

−β2eiφk

β2

λ2eiφk

ρ2

⎞
⎟⎟⎠, ψ

(v,h)
k = eik·r

√
α2

⎛
⎜⎜⎝

−β2eiφk

−β2

−ρ2eiφk

λ2

⎞
⎟⎟⎠,

(9)
where we have defined

α1(2) = 2β2
1(2) + λ2

1(2) + ρ2
1(2),

β1(2) = �s

(√
ε2

c − |�s|2 + (−)μs

εc − (+)
√

ε2
c − |�s|2

)
,

and

λ1(2) = |�s|2
εc − (+)

√
ε2

c − |�s|2
− εc + μs,

ρ1(2) = −μs − (+)
√

ε2
c − |�s|2.

These single-particle wave functions will play a substantial
role in conduction-valence band coupling via the electric
dipole moment.

B. Transition probability

The electron dynamics in the external electric field of the
pulse is coherent, and the electron collision effect is negligi-
ble since the electron scattering time in graphene is longer
than 10 fs, which is longer than the duration of the pulse
(∼5 fs) [53–58]. Coherent electron dynamics in supercon-
ducting graphene can be described by the time-dependent
Schrödinger equation:

ih̄
d�(t )

dt
= H(t )�(t ). (10)

The coherent electron dynamics in graphene has two major
components: intraband and interband dynamics. In the recip-
rocal space, the intraband dynamics is described by the Bloch
acceleration theorem [59], which has the following form:

h̄
dk(t )

dt
= eF(t ). (11)

For an electron with initial wave vector q, the electron dy-
namics is described by time-dependent wave vector kT (q, t ),
which can be found by the solution of Eq. (11),

kT (q, t ) = q + e

h̄

∫ t

−∞
F(t1)dt1. (12)

After the pulse ends, the electron momentum deterministically
returns to its original value, kT (q, t ) → q, and consequently,
there can be no interference of an electron wave with itself.
The corresponding wave functions, which are the solution
of the Schrödinger equation (10) within a single band, i.e.,
without interband coupling, are the Houston functions [60]

φH
σq(r, t ) = ψσ

kT (q,t )(r) exp

[
−i

∫ t

−∞
dt1εσ [kT (q, t1)]

]
, (13)

where the index σ ≡ (c, v) stands for CB and VB, respec-
tively. We express the general solution of the Schrödinger

equation by expanding in the basis of the Houston function,

ψq(r, t ) =
∑

σ=c,v

�σq(t )φH
σq(r, t ), (14)

where �σq(t ) is the corresponding time-dependent expansion
coefficient, which satisfies the following coupled differential
equations:

d�cq(t )

dt
= −i

F(t )Qq(t )

h̄
�vq(t ),

d�vq(t )

dt
= −i

F(t )Q∗
q(t )

h̄
�cq(t ), (15)

where vector functions Qq(t ) are related to the interband
dipole matrix elements D(k):

Qq(t ) = D[kT (q, t )] exp

×
[
− i

h̄

∫ t

−∞
dt1{εc[kT (q, t1)] − εv[kT (q, t1)]}

]
,

(16)

with the electron-electron and hole-hole dipole contributions

D(v,e→c,e)(k) = 〈
ψ

(c,e)
k

∣∣er
∣∣ψ (v,e)

k

〉
,

D(v,h→c,h)(k) = 〈
ψ

(c,h)
k

∣∣er
∣∣ψ (v,h)

k

〉
. (17)

Substituting the wave functions of the conduction and va-
lence bands [Eqs. (9)] into Eqs. (17), we obtain the following
expressions for the x and y components of the electric dipole
matrix elements, which couple conduction and valence bands
in Dirac points:

D[v,e(h)→c,e(h)]
j (k)

= �1(2)

[
Z j − ie

α1(2)

(
ρ1(2)

∂λ1(2)

∂k j
− λ1(2)

∂ρ1(2)

∂k j

)]
( j ≡ x, y), (18)

where we have

�1(2) = 1

2α1(2)

∂α1(2)

∂k j
,

Zx = ea

2�

{
1 + cos

(√
3aky

2

)

×
[

cos

(
3akx

2

)
− 2 cos

(√
3aky

2

)]}
,

Zy = ea
√

3

2�
sin

(√
3aky

2

)
sin

(
3akx

2

)
,

and

� = 1 + 4 cos

(√
3aky

2

)[
cos

(
3akx

2

)
+ cos

(√
3aky

2

)]
.

Finally, we proceed to solve numerically the set of two
coupled differential equations (15) simultaneously by assum-
ing the initial condition (for t → −∞) (�vq,�cq) = (1, 0),
which means that before applying the pulse, the VB is ini-
tially occupied and the CB is empty. We characterize the
corresponding electron dynamics in terms of the CBP. For an
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FIG. 5. Interband dipole matrix element Dx as a function of wave
vectors kx and ky. The dipole matrix element is singular around the
Dirac points (K and K ′ points). Also, we observe that the height and
form of peaks in all Dirac points are asymmetric.

electron, which is initially in the VB, the mixing of the states
of different bands is characterized by the time-dependent
expansion coefficient probability |�cq(t )|2. Finally, the time-
dependent CBP can be defined as

NCB(t ) =
∑

q

|�cq(t )|2, (19)

where the sum is over all momenta in the first Brillouin
zone and the solution �cq(t ) satisfies the initial condition
(�vq,�cq) = (1, 0). This distribution is nonzero during the
pulse passing, and its residual value N (res)

CB (t ) determines the
irreversibility character of the electron dynamics. In addition
to the irreversibility, the residual CBP distribution N (res)

CB (t )
will determine the valley polarization after a linearly polarized
pulse.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we proceed to investigate in detail Dirac-
fermion dynamics in superconducting graphene interacting
with a femtosecond pulse. In particular, the specific feature of
our proposed system is characterized by the interplay between
electron-hole excitations and the optical pulse in graphene via
ultrafast electron dynamics. This is possible by numerically
solving the set of coupled differential equations (15) simulta-
neously, with the initial condition (�vq,�cq) = (1, 0). This
may exactly determine the evolution of the electron states
and, correspondingly, the charge transition rate of the system
associated with the CBP. Furthermore, the interband electron
dynamics is characterized by electron redistribution between
the valence and conduction bands after the pulse ends. The
results obtained are presented and discussed below. First, we
expect that the valence and conduction bands are coupled by
the electric field of the pulse via an electric dipole moment
given by Eqs. (17). By analytical solution, we arrive at a
complex expression for the dipole moment [Eq. (18)]. The
imaginary part can originate from the presence of the super-
conductor gap in the system. Thus, we need to calculate the
absolute value of the dipole moment. The result is demon-
strated in Fig. 5, where we see sharp peaks as singularities
around Dirac points in the honeycomb lattice. There is no
coupling at the center of the Brillouin zone. Importantly, there

are several peaks in each Dirac point, which actually result
from the exciting Higgs oscillations of the superconducting
order following the pulse. The dipole moment peaks occur
not exactly in Dirac points but in Fermi points, where the
superconducting gap forms in graphene, as shown in Fig. 4(b).
Also, we see that the height and form of peaks in all Dirac
points have no symmetric pattern. In fact, this can be un-
derstood to be a result of the reduction of the point group
symmetry of the honeycomb lattice, that is, C6v , upon irradia-
tion with an electric field along the x direction. As pointed out,
the mirror symmetry x → −x is broken, but the mirror sym-
metry y → −y still survives as a residual mirror symmetry.
This residual symmetry is clearly seen in the dipole excitation
profile. Consequently, such a feature can lead to a significant
valley polarization effect in these systems (which was also
clearly reported for 2D materials without the presence of a
superconducting gap [21,61]). Therefore, our understanding
of valley polarization in our proposed system can arise from
the breaking of the mirror symmetry x → −x.

Now, our investigation is focused on exploring the effect
of the superconducting gap magnitude �s and optical pulse
intensity F0 on the CBP. It is important to note that in the
nonadiabatic regime, the superconducting order parameter
magnitude oscillates with pulse time. The amplitude of os-
cillations is, nevertheless, a very small fraction of the order
parameter itself [47,62]. There is yet another a posteriori
justification to ignore the oscillations of the order parameter:
As will be seen shortly, the CBP is not very sensitive even
for huge changes in the superconducting order parameter.
So the incremental variations in the order parameter can be
ignored altogether. The probability of CBP is presented as a
function of time for a pulse duration with one to two cycles
in Figs. 6 and 7. The effect of pulse intensity on the CBP
for the two dipole moments D(v,e→c,e)(k) and D(v,h→c,h)(k)
(which give the major contribution to the electron-electron or
hole-hole transitions) is demonstrated in Figs. 6(a) and 7(a),
respectively. In the following, Figs. 6(b) and 7(b) show the
CBP as a function of time for various magnitudes of pair
potentials for two types transitions. First, as a key feature of
coherent electron dynamics in 2D materials, the irreversible
electron dynamics is achieved for the CBP. The irreversibility
of the electron dynamics in superconducting graphene is due
to strong interband nonlinear coupling in Dirac points. We can
see that the residual CB transition has a finite value after the
pulse ends. Second, we observe almost a balance in electron-
electron and hole-hole transitions. Here, we deduce from
Figs. 6(a) and 7(a) that the maximum and minimum residual
CBPs for F0 = 1.5 V/Å and F0 = 0.5 V/Å are obtained,
respectively. The residual CBP is very sensitive to the strength
of the pulse. Moreover, as the pair potential can oscillate with
THz pulse irradiation (due to the Higgs mode), we proceed to
investigate its effect on the CBP. To clarify, we theoretically
vary the pair potential magnitude in electronlike or holelike
CB transitions, as shown in Figs. 6(b) and 7(b). We see that
the residual CBP is weakly sensitive to the magnitude of �s.
This result seems to be obvious as the varying pair potential
actually adjusts the amount of the effective superconducting
gap at the Fermi surface of the Mexican hat. To see the role
of the superconducting gap more clearly, we plot in Fig. 8
the ratio of the dipole moment excitations resulting from the
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FIG. 6. Plot of CBP probability as a function of time for
(a) different amplitudes of F0 and (b) different amounts of �s for
D(v,e→c,e)(k). For all states we take pulse incident angle θ = 0.

nonlinear conduction-valence band coupling. One can see that
upon changing �s from 0.01 to 0.05 eV, the ratio of the
dipole moment is strongly enhanced for some peaks around
Dirac points. This can be viewed as an indirect fingerprint
of the highly nonlinearly excited Higgs mode in the dipole
pattern near the Dirac hot spots (see Fig. 9). Furthermore, the
formation of such hot spots around the Dirac nodes signifies
the importance of Dirac-type band touching in enhancing the
highly nonlinear Higgs excitations by ultrashort pulses. In
other words, the band touching at the Dirac node facilitates
the excitations of Higgs modes of a few meV by eV pulses
and leaves a clear signature in the interband dipole pattern.

Accordingly, the redistribution of electrons around two
types of Dirac valleys (K and K ′) when the pulse ends can
more clearly unveil the effective coherent electron dynamics
in the presence of a superconductor, giving rise to the prac-
tically important total charge transfer rate. To this end, we
proceed to evaluate the residual CBP distribution, for which
we take the summation of the CBP probability over all time-
dependent electron momenta in the first Brillouin zone. The
signature of the superconducting gap magnitude and pulse
intensity in the CB redistribution of electrons around the Dirac
points are shown. The residual CB distribution N (res)

CB (t ) of
electrons in the reciprocal space is represented in Figs. 9(a)–
9(c) for dipole moment D(v,e→c,e)(k). In Figs. 9(a) and 9(b),
the distribution of the residual CBP is given for two differ-
ent pulse amplitudes, F0 = 0.5 and 1 V/Å, respectively. We
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FIG. 7. The same as in Fig. 6, but for D(v,h→c,h)(k).

deduce that the hot spots related to the electron distribution
in the corners of the first Brillouin zone are enhanced by
the increase in the pulse intensity. An asymmetric electron
distribution with respect to the K and K ′ valleys is more or
less observed with a mirror symmetry pattern. This result can
be compared with the same system without a superconductor
(see Ref. [18]). Importantly, this can lead to the valley po-
larization effect, which may originate from the effect of the

FIG. 8. Plot of the ratio of dipole moment excitations result-
ing from the nonlinear coupling of radiation with superconducting
graphene upon changing �s from 0.01 to 0.05 eV. Some peaks asso-
ciated with the Higgs oscillations around Dirac points are enhanced.
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FIG. 9. CB electron distribution in the proximity of Dirac points
after the pulse ends as a function of wave vectors kx and ky for
different values of F0 and �s for (a) F0 = 0.5 V/Å, �s = 0.05 eV,
(b) F0 = 1 V/Å, �s = 0.05 eV, and (c) F0 = 0.5 V/Å, �s = 0.2 eV
for D(v,e→c,e)(k). Only the first Brillouin zone is shown.

superconducting order in the inequivalent valleys in graphene.
The effect of varying the pair potential on the CB electron
redistribution at the Dirac points is presented in Fig. 9(c).
Here, we see that the hot spots are slightly enhanced near
the Dirac points by the increase in �s in a high range up to
0.2 eV. Very recently, experimental and numerical demonstra-
tions of the interband electron transition and also the effect of
superconductivity on coherent electron dynamics in a strong
field (≈1 V/Å) were realized (see Refs. [4,6,31,32,47]). Our
exact numerical results can be compared with the experimen-
tal reports and can open up ways to extend the optoelectronic
applications and ultrafast information processing in the THz
domain.

These hot spots can be directly observed by time-resolved
angle-resolved photoemission spectroscopy (tr-ARPES)

experiments. The observed patterns of tr-ARPES are in good
agreement with calculations [63].

IV. CONCLUSION AND OUTLOOK

In summary, we have analytically investigated electron
dynamics in proximity to superconducting graphene under
ultrashort pulse irradiation by taking the s-wave pairing sym-
metry into account. The electron-hole dynamics of the system
was considered to be coherent and nonadiabatic because the
duration of a few femtosecond pulse with an amplitude of the
order of 0.1–1 V/Å is less than the electron scattering time in
graphene. The electric dipole matrix moment of the system,
which couples electron-electron or hole-hole from the VB to
the CB, was found to be a complex function owing to the exis-
tence of superconductivity. An impulsive excitation of Higgs
oscillations via a nonlinear process by quenching the Mex-
ican hat of superconducting excitations was found to affect
valence-conduction band coupling by the pulse. The singular-
ity arising from the band touching at the Dirac point gives a
dominant role to the interband dipole excitations around the
Dirac nodes. Due to the scale invariance of the Dirac theory,
this feature will persist even with THz pulses. However, in that
regime the dynamics of electrons and holes cannot be assumed
to be coherent, as they experience many collisions during a
pulse period. By varying the size of the superconducting gap,
we find that the ratio of interband dipoles is enhanced by a fac-
tor of 2–6. This signifies the indirect role of Higgs excitations
in the resulting dipole moments. We have demonstrated in
detail the effect of the superconducting gap and pulse intensity
on the CBP during the time the pulse is applied and also after it
ends. Particularly, the irreversible electron and hole dynamics
was achieved as a noticeable phenomenon in 2D Dirac mate-
rials, and the maximum CBP almost occurs in its residue. Re-
markably, we have found an asymmetric electron redistribu-
tion for two different Dirac points as degenerate K and K ′ val-
leys, controlled by the superconducting gap and pulse inten-
sity. We ascribe the resulting valley asymmetry to the breaking
of the x → −x mirror symmetry of the parent graphene ma-
terial that results from the strong coupling of the radiation
and graphene electrons. Therefore, our findings clearly reveal
the valley polarization effect associated with the nonlinear
excitations of the Higgs mode in graphene. Finally, our re-
sults have shown that the interaction of graphene subjected
to a superconductivity order with ultrashort optical pulse can
exhibit behaviors distinct from the other solids, which can be
attributed to the band touching at the Dirac nodes.

Since the duration of the pulses is assumed to be less
than the electron scattering time, the electron dynamics on
this timescale remains coherent, and photoexcited electrons
do not have time to get scattered off each other and impuri-
ties, and therefore, the heating and dissipation in this regime
can be ignored. One must also note that since the ultrashort
pulses are tantamount to a broad frequency spectrum, the
whole electronic band structure is engaged in the nonlinear
excitation process. Among so many degrees of freedom, those
lying close to Fermi level are described in the superconduct-
ing state by the Bogoliubov–de Gennes theory. As such, the
present study serves to illustrate how the pairing at low energy
around the Fermi level affects the ultrafast electron dynamics
in graphene.
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