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We establish the theoretical foundation of the Floquet graphene antidot lattice, whereby massless Dirac
fermions are driven periodically by a circularly polarized electromagnetic field while having their motion
excluded from an array of nanoholes. The properties of interest are encoded in the quasienergy spectra, which are
computed nonperturbatively within the Floquet formalism. We find that a rich Floquet phase diagram emerges
as the amplitude of the drive field is varied. Notably, the Dirac dispersion can be restored in real time relative
to the gapped equilibrium state, which may enable the creation of an optoelectronic switch or a dynamically
tunable electronic waveguide. As the amplitude is increased, the ability to shift the quasienergy gap between
high-symmetry points can change which crystal momenta dominate in the scattering processes relevant to
electronic transport and optical emission. Furthermore, the bands can be flattened near the � point, which is
indicative of selective dynamical localization. Lastly, quadratic and linear dispersions emerge in orthogonal
directions at the M point, signaling a Floquet semi-Dirac material. Importantly, all our predictions are valid for
experimentally accessible near-IR radiation, which corresponds to the above bandwidth limit for the graphene
antidot lattice. Cycling between engineered Floquet electronic phases may play a key role in the development of
next-generation on-chip devices for optoelectronic applications.
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I. INTRODUCTION

Ever since graphene was fully isolated and characterized
in 2004, it has remained the platform of choice for investi-
gating massless Dirac fermions in two space dimensions (2D)
[1]. Graphene is a strong 2D material that can be easily and
stably shaped into, for example, nanoribbons. The interplay
between confinement and quantum effects (in the following,
quantum confinement for short) opens an electronic band gap
that increases with decreasing width [2]. Other experimentally
accessible graphene nanostructures, and the focus of this pa-
per, are the antidot lattices of Ref. [3]. These structures are
fabricated by patterning a periodic array of nanoholes into
a graphene monolayer. Comparable to varying the width of
a nanoribbon, varying the size of the supercell and/or the
diameter of the holes of the graphene antidot lattice amounts
to controlling quantum confinement and the electronic band
gap. Subsequent work has showed that the shape of the holes,
edge termination, and edge magnetism can have a profound
effect on the way that the energy gap scales with the geometric
parameters of the antidots [4–23]. These structures can be
fabricated by lithographic methods [24,25].

In addition to geometric control, the electronic proper-
ties of a material can be modified by time-periodic driving
via an electromagnetic field. As coherent-control capabil-
ities have continued to advance in different experimental
platforms, the physics of periodically driven Floquet quan-
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tum matter has attracted growing attention across quantum
science. While the subject has been reviewed extensively
elsewhere [26–32], here we only highlight a few results for
graphene. One can open and control gaps in the quasienergy
spectrum by adjusting the polarization, photon energy, and
electric field amplitude [33–41]. It is also possible to in-
duce nontrivial topology in bulk graphene with time-reversal
symmetry-breaking circularly polarized light. As a conse-
quence, chiral edge states appear for the corresponding system
with open boundaries [42–48], which are predicted to be de-
tectable spectroscopically [49–51]. The dynamical generation
of nontrivial gapped topology explains the observation of the
Floquet anomalous quantum Hall effect in graphene [52,53].

In this paper, we investigate the interplay between the spa-
tial complexity of the graphene antidot lattice and a periodic
driving force, and show that it leads to Floquet electronic
phases beyond what is possible with standard graphene. A
main motivation for our analysis stems from the fact that,
for standard graphene, the above bandwidth limit can only
be reached with extreme UV radiation, which is ionizing
and not practical to produce at high intensities. By contrast,
for the graphene antidot lattice we find that the same limit
corresponds to experimentally realizable infrared (IR) photon
energies. Moreover, while nanoribbons and quantum dots are
also viable platforms for generating geometrically complex
electronic states, the antidot lattice is the only one that is
spatially extended in 2D.

We follow a well-established approach for modeling the
electronic structure of the graphene antidot lattices. Our start-
ing point is the 2D massless Dirac Hamiltonian (Sec. II) to
which we add a circularly polarized electromagnetic field
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within the minimal coupling scheme. The properties of the
periodically driven system are characterized by quasienergy
spectra, computed from the extended space formulation of
the Floquet formalism (Sec. III). By varying the electric field
amplitude on a fine grid for a fixed photon energy, we identify
several parameter regimes where the quasienergy bands take
on interesting characteristics (Sec. IV). Building on these
characteristics, we identify three potential quantum engi-
neering applications: A low-wavelength-pass electronic filter
(Sec. IV), an optoelectronic switch, and a dynamically tunable
electronic waveguide (Sec. V). We conclude in Sec. VI with a
summary and outlook.

II. BACKGROUND: GRAPHENE ANTIDOT LATTICES

A graphene antidot lattice is the system that results from
etching a periodic array of holes (antidots) into a sheet of
monolayer graphene. The holes should not be so large or
packed so close together that they compromise the integrity
of the freestanding sheet. In this paper we will rely on the
effective model of the graphene antidot lattices introduced and
investigated in Refs. [3,8,20]. The starting line is the effective
2D massless Dirac fermion Hamiltonian for graphene:

HDirac = vF p · σ. (1)

Here vF is the Fermi velocity, p is the momentum operator,
and σ = [σx, σy] is the vector of x and y Pauli spin matri-
ces. The internal degree of freedom is due to pseudospin,
not the physical spin angular momentum degree of freedom,
which is not included in this description. The Fermi velocity
is calculated to be vF = 3τd/(2h̄), where τ = 2.7 eV is the
nearest-neighbor hopping parameter and d = 0.142 nm is the
carbon-carbon bond length. We note that our starting point for
the analysis, Eq. (1), only describes the K point of graphene.
To capture intervalley scattering, one should also simultane-
ously include the K ′ point [54], which is accomplished by
making the substitution σ → σ∗ in Eq. (1) [1]. This can be
considered as a next step in future work.

To model the confinement of massless Dirac fermions in a
nanostructure, a mass term �(r) is added to Eq. (1):

H0 = vF p · σ + �(r)σz, (2)

where the function �(r) is defined at each point r in space
and takes the value zero inside and �0 outside of the material.
The goal is to simulate a hard wall barrier in the limit where
�0 → ∞. In practice, setting �0 = 170 eV suffices [20].

A previous study [20] compared the simple, continuum
Dirac Hamiltonian approach outlined here to a more refined
description based on a tight-binding model which, in particu-
lar, can account for the distinct edge terminations (armchair,
zigzag, etc.) of the graphene lattice. The authors found that
minimizing the lengths of the zigzag edges around the holes
reduces the presence of localized edge states, improving quan-
titative agreement between the two models. From a different
perspective, one expects that edge effects will play a minor
role in the overall properties of the system, provided that
dangling bonds are hydrogen passivated and edge spins are
scrambled at ambient temperature. These points justify using
a continuum Dirac Hamiltonian approach.

In this paper, we focus on a representative triangular
antidot lattice with circular [Fig. 1(a)] or triangular holes
[Fig. 2(a)]. The time-independent Schrödinger equation is

H0ϕnk(r) = Enkϕnk(r), (3)

where n is the band index and h̄k is the crystal momentum. Its
solutions can be written in the Bloch form:

ϕnk(r) = eik·runk(r). (4)

Thanks to its periodicity in space, unk(r) can be written as a
Fourier series,

unk(r) =
∑

G

u(G)
nk eiG·r, (5)

where G = aG1 + bG2, G1 and G2 are the supercell reciprocal
lattice vectors, and a and b are integers. The equation to solve
is then ∑

G′
H(G,G′ )

k u(G′ )
nk = Enku(G)

nk , (6)

where

H(G,G′ )
k =

[
�G−G′ TkGδG,G′

T ∗
kGδG,G′ −�G−G′

]
, (7)

with

�G−G′ ≡ 1

ASC

∫
d2r �(r)e−i(G−G′ )·r, (8)

and

TkG ≡ h̄vF [(kx + Gx ) − i(ky + Gy)]. (9)

The integration in Eq. (8) is over the supercell of area ASC. In
principle, Eq. (6) is an infinite-dimensional matrix equation
for each fixed k and n. In practice, by forming a block matrix
Hk using all combinations of G and G′ such that a, b, a′, b′ ∈
[−Nrec, Nrec] in Eq. (7), Eq. (6) can be rewritten as a finite
matrix diagonalization problem:

Hkunk = Enkunk, (10)

where the components of unk contain all of the u(G)
nk in the

allowed range. They are then used to construct approximate
unk(r) [Eq. (5)] and, finally, the ϕnk(r) [Eq. (4)]. For numerical
evaluation in the model system under study, truncation at
Nrec = 16 spatial Fourier modes converges the electronic band
structures Enk.

III. FLOQUET GRAPHENE ANTIDOT LATTICES

To investigate the effect of the applied control field, we
rely on the standard prescription for minimally coupling the
electromagnetic field to the Dirac Hamiltonian of Eq. (2). The
result is the time-dependent Hamiltonian

H (t ) = H0(p → p + |e|A(t )) = H0 + |e|vF A(t ) · σ, (11)

where the vector potential A corresponds to a homogeneous,
in-plane electric field E = −∂t A with circular polarization,
that is,

A(t ) = E0

	
[cos(	t ), sin(	t ), 0]. (12)
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FIG. 1. Triangular graphene antidot lattices with circular holes. (a) Geometric schematic with the superlattice vectors shown in red. The
carbon lattice is not shown since we work within a continuum approach. Electronic band structure for L = 3.0 nm with (b) D = 1.6 nm and
(c) D = 3.7 nm. The Fermi energy is located at 0 eV.

Thus, the control parameters are the electric field amplitude E0

and the angular frequency 	. The vector potential of Eq. (12)
misrepresents the magnetic flux density (B = ∇×A = 0).
Nonetheless, it is the typical starting point for many other
investigations of radiation-driven graphene and we will follow
this practice [33–51,55–61]. One can roughly assess the im-
pact of ignoring the magnetic field by noting that the ratio of
the magnitude of the magnetic to the electric force is at worst
vF /c ≈ 0.003. In addition, the 	t − K · r that would normally
appear as the argument of the cosine and sine functions in
Eq. (12) reduces to 	t since the relevant wave vector can
be chosen to be K = [0, 0, Kz] and the graphene layer can be
placed in the z = 0 plane.

The next step is to move to the matrix representation of
the time-dependent Hamiltonian H (t ) [Eq. (11)], in the basis
obtained from solving the time-independent problem, recall
Eq. (3). The matrix elements are

Hnn′;k(t ) = Enkδnn′ + |e|vF A(t ) ·
∫

d2rϕ†
nk(r)σϕn′k(r). (13)

The driving renormalizes the individual bands and also gen-
erates interband coupling. For simplicity, we focus on the two
band model that emerges from keeping only the first band
below and first band above the Fermi energy (0 eV). From
here forward, Hk(t ) refers to the time-dependent Hamiltonian
in its matrix representation.

Since Hk(t ) is periodic in time with period T = 2π/	, the
solution of the time-dependent Schrödinger equation,

ih̄∂tψnk(t ) = Hk(t )ψnk(t ), (14)

can be constructed using the extended space formulation of
the Floquet formalism. Then the above time-dependent prob-
lem is formally mapped to a time-independent problem of
diagonalizing an associated Hermitian operator defined on an
enlarged space (compared to the original, physical Hilbert
space) [62]. The solutions take the form

ψnk(t ) = e−iεnkt/h̄
nk(t ), 
nk(t + T ) = 
nk(t ). (15)

FIG. 2. Triangular graphene antidot lattices with triangular holes. (a) Geometric schematic with the superlattice vectors shown in red. The
carbon lattice is not shown since we work within a continuum approach. Electronic band structure for L = 3.0 nm with (b) s = 1.4 nm and
(c) s = 3.2 nm. The Fermi energy is located at 0 eV.
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The periodicity of Hk(t ) and 
nk(t ) allows for the Fourier
decompositions in terms of time harmonics,

Hk(t ) =
∑

m

H (m)
k e−im	t , (16)


nk(t ) =
∑

m

φ
(m)
nk e−im	t , (17)

where m ∈ Z is the temporal Fourier index. Equation (14) can
then be rewritten as

∑
m′

H̃ (m,m′ )
k φ

(m′ )
nk = εnkφ

(m)
nk (18)

in terms of

H̃ (m,m′ )
k = 1

T

∫ T

0
dtHk(t )ei(m−m′ )	t − δmm′mh̄	1

= H (m−m′ )
k − δmm′mh̄	1. (19)

Due to the simple form of the vector potential of Eq. (12),
only matrix blocks with |m − m′| � 1 can be nonzero. By
forming a block matrix H (Floquet)

k using all values of m, m′
between −NFloquet and NFloquet in Eq. (19), Eq. (18) can then
be rewritten as a matrix diagonalization problem:

H (Floquet)
k φnk = εnkφnk. (20)

For all cases to be considered below, truncation at NFloquet = 5
ensures converged quasienergy spectra εnk.

IV. FLOQUET BAND ENGINEERING IN GRAPHENE
ANTIDOT LATTICES

A. Static system

As a point of reference, we first calculate the electronic
band structures Enk [recall Eq. (3)], prior to irradiation, of
several graphene antidot lattices. We find that, regardless
of the shape of the hole, increasing the hole size while keeping
the size of the supercell fixed changes the band structure from
the characteristic gapless Dirac dispersion of the empty lattice
(no holes) into flat bands for holes that are close to touching.
Specifically, we choose the geometric parameters L and D,
see Fig. 1(a), or L and s, see Fig. 2(a), so they are consistent
with the physical characteristics of graphene. The parameter L
should only be on the order of a few nanometers for quantum
confinement effects to play a role. In particular, we investigate
circular holes of diameter D = 1.6 nm and D = 3.7 nm, and
equilateral triangular holes of side lengths s = 1.4 nm and
s = 3.2 nm. In all cases, L = 3.0 nm. The corresponding band
structures are plotted in Figs. 1(b), 1(c), 2(b), and 2(c). Quan-
tum confinement opens a large band gap and adds curvature
to the bands at the � point of the Brillouin zone. We note
that the continuum model remains valid on these length scales
[20] and that atomically precise graphene antidot lattices are
within the reach of current fabrication capabilities [63].

B. Floquet-driven system

With the geometric parameters specified and the time-
independent problem solved, we are now well positioned to

describe the periodically driven system. We choose the value
of the photon energy h̄	 based on two criteria:

(i) The two static energy bands should automatically fall
in the first Floquet Brillouin zone, that is, between ±h̄	/2.
Under such a condition, there is a direct mapping between the
zero electric field amplitude limit of the quasienergy spectrum
εnk and the electronic band structure Enk, as confirmed by our
numerical simulations.

(ii) To justify the restriction to a two-band model, the
photon energy should not be high enough to trigger transitions
from the first valence band to the second conduction band (not
shown in our figures). For the structures described in Figs. 1
and 2, the appropriate photon energy ranges are

(1) 0.72–0.81 eV [Fig. 1(b)],
(2) 1.13–1.15 eV [Fig. 1(c)],
(3) 0.71–0.77 eV [Fig. 2(b)],
(4) 0.78–0.85 eV [Fig. 2(c)].
To ensure that our results are stable against small variations

of the parameters, we calculate the quasienergy spectra for
two values of h̄	 in these ranges of validity. The specific
values of the photon energy are

(1) 0.75, 0.80 eV [Fig. 1(b)],
(2) 1.13, 1.15 eV [Fig. 1(c)],
(3) 0.71, 0.77 eV [Fig. 2(b)],
(4) 0.78, 0.85 eV [Fig. 2(c)].
In addition to the frequency of the radiation, one can also

control the intensity. We scanned the electric field amplitude
E0 from 0 to 6 a.u. (1 a.u. = 1.291 (GeV/nm)/nC) in incre-
ments of 0.05 a.u., expanding and interpolating further when
necessary. The units of E0 are taken from a previous paper
on Floquet Dirac materials [64]. The values of E0 that we
investigate are all well below the pulsed damage threshold for
graphene, which is 23 a.u. [65]. This said, we find that the
qualitative features of the quasienergy bands are the same for
all cases after a rescaling of the electric field amplitude. As
a quantitative illustration of this fact, we show in Fig. 3 the
dependence of the quasienergy gap upon the electric field am-
plitude for our four Floquet graphene antidot lattices. Based
on these results, for succinctness we only explicitly show and
discuss the results for circular holes with D = 1.6 nm and
h̄	 = 0.8 eV in what follows.

The insensitivity of the quasienergy spectra to the shape of
the holes was an unexpected outcome of our simulations. A
possible explanation is that the effective Dirac Hamiltonian
only captures quantum confinement effects while softening
or removing altogether the effect of particular edge config-
urations. The antidot lattice imposes complicated boundary
conditions on the wave functions, see Eq. (3). This added
layer of richness emerges in the quasienergy spectra via the
matrix elements in Eq. (13). The particle-hole symmetry of
the starting Dirac Hamiltonian [Eq. (1)] is preserved in all
cases.

The quasienergy bands depicted in Fig. 4 summarize our
main findings about the Floquet phases that the system can
access as the electric field amplitude is varied in the param-
eter regime under exploration. Recall that, in the absence of
driving, the Dirac point of pristine graphene is replaced by
parabolic bands separated by a gap at the � point for the
graphene antidot lattice [see Fig. 4(a)]. Upon adding driving,
a number of distinctive physical features emerge:
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FIG. 3. Continuous tuning of the Floquet quasienergy gap (at �)
with the electric field amplitude. Each curve starts at the equilibrium
state (0 a.u.) and ends at the Floquet Dirac phase (horizontal axis
intersection). Circle 1, circle 2, triangle 1, and triangle 2 correspond
to the structures defined in Figs. 1(b), 1(c), 2(b), and 2(c).

(1) The Dirac point can be restored dynamically for a
suitable value of the electric field amplitude that we call E0c1 .
The quasienergy gap closes at the � point of the Brillouin
zone.

(2) For E0 > E0c1 , the quasienergy gap reopens and moves
to the M point of the Brillouin zone; the bands flatten substan-
tially close to the � point.

(3) There is a second value of the intensity E0c2 > E0c1

for which the quasienergy gap closes again but now at the
M point. Moreover, the bands touch in a most peculiar way:
They feature linear dispersion in one direction and quadratic
in another.

(4) The quasienergy gap reopens for E0 > E0c2 .
Thinking of the dynamical restoration of the Dirac point

in the Floquet graphene antidot lattice as a phase transi-
tion, we shall call the phase with 0 � E0 < E0c1 the Floquet
quasi-equilibrium phase and the phase with E0c1 < E0 < E0c2 ,
which ends with the closing of the quasienergy gap at M, the
first Floquet phase, or Floquet Dirac phase. There is a second
Floquet phase, or Floquet semi-Dirac phase, for E0 > E0c2 . It
is worth further expanding on these remarkable features and
speculate on how they physically come about.

(1) The ability to restore the Dirac point [Fig. 4(c)] seems
only possible because the mass term in the Hamiltonian of
Eq. (2) hides the Dirac dispersion of standard graphene, and
is then dynamically canceled by the radiation field. While
pristine graphene already features a Dirac point, having the
nondriven gapped bands and the Floquet Dirac point enables
at least two applications, as we argue in Sec. V. Furthermore,
varying the geometric parameters of static graphene antidot
lattices only results in discrete tunability of the electronic band
gap. By contrast, the electric field amplitude can be varied
continuously, which leads to an adiabatic connection between
the static state and the Floquet Dirac regime. In Fig. 3, we

explicitly see how the quasienergy gap, which remains at �,
can be tuned continuously and monotonically.

(2) Nonballistic transport, the phonon-assisted decays that
relax excited carriers, and the lifetimes of the states in-
volved in optical transitions all depend on the nature of
the electron-phonon coupling. This, in turn, depends on the
high-symmetry point where the band extrema occur [66].
Therefore, the ability to shift the quasienergy gap from the
� point in the equilibrium phase to the M point in the Floquet
phase [Fig. 4(d)] can affect these three fundamental processes
significantly via the difference in electron-phonon coupling
between high-symmetry points. These phenomena could be
investigated in quantitative detail with an adapted Floquet-
Boltzmann approach [67].

A next notable feature is localization, which manifests as
band flattening. On the one hand, in the absence of driving, the
bands are flattened if the holes of an antidot lattice are forced
to nearly touch. This flattening is nonselective, in the sense
that it occurs over the entire high-symmetry lines. On the
other hand, our periodically driven system with E0 = 4.2 a.u.
[Fig. 4(e)] features bands which are selectively flattened near
� in reciprocal space. On the basis of the Hellmann-Feynman
theorem, the group velocity of the quasienergy bands is given
by vnk = h̄−1∇kεnk [68]. Therefore, near the � point, the
charge carriers have zero group velocity, which is indicative
of selective dynamical localization. This behavior persists as
the electric field amplitude continues to increase, at least in the
range of values considered here. Furthermore, since the band
flattening occurs near � and not another high-symmetry point,
the system acts as a low-wavelength-pass electronic filter. For
comparison, let us briefly mention here previous work [69],
showing that periodic kicking of standard graphene can result
in complete dynamical localization along one entire axis in
reciprocal space or over the whole Brillouin zone.

(3) In Fig. 4(f), quadratic and linear dispersions emerge
from the M point in orthogonal directions, which correspond
to non-relativistic like and relativistic like carriers, respec-
tively. This behavior is the signature of a Floquet semi-Dirac
material, which has already been observed for standard Flo-
quet graphene [60,61,69]. Even so, the physical mechanism
of this striking anisotropy is not the same for all cases. In
previous work, it was linearly polarized radiation [60,61] or
uniaxial periodic kicking [69] which generated the inequiv-
alence between different directions in reciprocal space. In
our setup, since we apply circularly polarized radiation, the
anisotropy is a truly emergent phenomenon. In fact, in a differ-
ent context, this is reminiscent of the anisotropic quasiparticle
gap closing that has been found to emerge from competing
interactions in both static and Floquet-driven gapless s-wave
superconductors on 2D square lattices [70,71].

As a platform for realizing a Floquet semi-Dirac material,
Floquet graphene antidot lattices offer some distinct advan-
tages over existing approaches. First, the semi-Dirac property
can be realized at much lower photon energies (h̄	 = 0.72–
0.81 eV), whereas previously values of around at least 4 eV
were required [60,61]. Second, while the work on periodic
kicking is of fundamental physical interest, the proposals to
realize it experimentally are not practical at the time of writing
[69]. Third, in the case of pristine graphene, the static Dirac
and the Floquet semi-Dirac points are both gapless. On the
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FIG. 4. Representative quasienergy spectra for the graphene antidot lattice defined in Fig. 1(b), irradiated with circularly polarized light
at a photon energy of 0.8 eV. E0 is the electric field amplitude, where 1 a.u. = 1.291 (GeV/nm)/nC [64]. (a) E0 = 0 a.u. Zero electric field
amplitude limit for reference. (b) E0 = 1.7 a.u. (c) E0 = E0c1 = 2.15 a.u. The Dirac dispersion of standard graphene is effectively restored.
(d) E0 = 3.4 a.u. The quasienergy gap is shifted to the M point. (e) E0 = 4.2 a.u. The quasienergy bands are selectively flattened in reciprocal
space near the � point. (f) E0 = E0c2 = 4.62 a.u. In moving from K to M, the bands are quadratic, whereas in moving from � to M they are
linear, indicative of a Floquet semi-Dirac material. (g) E0 = 5 a.u. (h) E0 = 5.4 a.u.

other hand, for the graphene antidot lattice, the static system is
gapped and the Floquet semi-Dirac point is gapless. Having a
different quasienergy gap between the static and Floquet states
may enable different applications.

(4) The first Floquet phase ends with the closing of the
quasienergy gap at the M point. The gap reopens immediately
for E0 > E0c2 , landing one in a second Floquet phase. We
show a couple of quasienergy band structures for this phase
in Figs. 4(g) and 4(h). There are several other Floquet phases
beyond this second one and below the damage threshold of
E0 = 23 a.u. We leave them as a topic for future research.

V. APPLICATIONS

As we showed in the previous section, the irradiated
graphene antidot lattice can cycle between gapped, quadratic
bands for vanishing intensity and a dynamically induced Dirac
point for a suitable value of the intensity. We recognize at
least two possible applications of this behavior. In this paper,
we will give only a qualitative description of them, leaving a
more quantitative study for the future. At this level of analysis,
we envision that the operation timescale of any such Floquet
device should be much slower than the drive period, so the
initial state does not change appreciably within a period and
a description in terms of the Floquet stroboscopic dynamics
will suffice [62]. In addition, and this point is specific to our
setup, we do not know exactly what to expect for the mobility

of the charge carriers at the dynamically induced Dirac point.
We judge that a more quantitative description of our devices
will have to be grounded in simulations within the Floquet
Landauer-Büttiker formalism [72,73].

A. An optoelectronic switch

The first application we envision is an optoelectronic
switch, which could function as an optical computing ele-
ment. For this device, a steady voltage drop is held across
the graphene antidot lattice during operation. Hence, without
driving, the gapped system should support a small current
which corresponds to the off state of the switch. By contrast,
with suitable driving, the gapless Floquet phase with the Dirac
dispersion should allow for a much larger current correspond-
ing to the on state. Notice that the operating principle of
this optoelectronic switch goes beyond the photoconductivity
level (meaning that photons promote additional carriers into
the conduction band). Rather, the operation mechanism is the
renormalization of the band structure by the driving. Future
numerical simulations should characterize the device more
precisely through the on/off current ratio.

B. A dynamically tunable electronic waveguide

The second application we envision is a device that could
be described as a dynamically tunable electronic waveguide.
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If the antidot lattice is only irradiated in a particular re-
gion of space, then one expects that the charge carriers will
preferentially follow the path where the Dirac dispersion is
restored. This idea presupposes that the properties we discov-
ered still hold when translational symmetry is broken on the
length scales of the waveguide. Our waveguide proposal is
inspired by previous work where a graphene antidot lattice
waveguide was formed by selectively leaving the graphene
unpatterned, thus locally restoring the Dirac dispersion of
standard graphene and creating a current channel [74]. How-
ever, in that case the waveguide path was fixed, whereas in
our proposal we conjecture that spatially selective irradiation
should permit dynamical control of the current channels.

VI. CONCLUSIONS AND OUTLOOK

We introduce the Floquet graphene antidot lattice as a plat-
form for investigating the properties of quantum confined and
periodically driven massless Dirac fermions in 2D. The actual
system is a sheet of graphene decorated by a periodic array
of holes (the antidots) and subjected to steady irradiation. To
focus on the physics of massless Dirac fermions, we model the
graphene antidot lattice in terms of a Dirac Hamiltonian with
a spatially varying mass term. Time-periodic driving is intro-
duced by including an electromagnetic field at the minimal
coupling level. We use the extended space formulation of the
Floquet formalism to compute (numerically) the quasienergy
band structures.

A number of notable properties emerge for various elec-
tric field amplitudes. First, the Dirac point, which had been
removed by the antidot lattice, can be dynamically restored
by irradiation. Second, the quasienergy gap can be shifted
from one high-symmetry point of the Brillouin zone, the �

point, to another, the M point, and that shift could dramati-
cally affect the electron-phonon coupling in the system. Third,
after the gap has shifted, the bands can be flattened near
the � point, indicative of selective dynamical localization.
Finally, the quasienergy gap can again close at the M point ac-
companied by exotic semi-Dirac behavior, where orthogonal
directions emanating from the M point feature quadratic and
linear dispersions. Every one of these features is of intrinsic
physical interest, but we have also pointed out potential device

applications: An optoelectronic switch, a dynamically tunable
electronic waveguide, and a low-wavelength-pass electronic
filter. In general, the ability to cycle between different elec-
tronic phases with lasers may play an important role in the
development of optoelectronic devices.

Some qualitative features of our quasienergy spectra can
also be observed for systems different from ours, but we have
made a careful case that the Floquet graphene antidot lattice
may offer distinct practical advantages. From an experimental
perspective, all our predictions are valid for accessible near-IR
radiation, in contrast to standard graphene, where the same
nonresonant above bandwidth limit corresponds to ionizing
extreme UV photon energies. Moreover, while we focused on
graphene antidot lattices, everything was based on effective
Dirac Hamiltonians, where a rescaling of parameters can be
used to translate our results to other 2D Dirac materials.

We conclude with some ideas for future research. One
immediate question that we have not answered is whether
the Floquet graphene antidot lattice features nontrivial topol-
ogy [75–77]. More precisely, this system combines two
gapping mechanisms, the time-reversal-symmetry-breaking
circularly polarized light and the chiral-symmetry-breaking
antidot lattice, both of which retain the particle-hole (charge-
conjugation) symmetry. We have not determined whether
the resulting quasienergy gap is topologically nontrivial or
if such properties vary based on the defined phase regimes
(quasiequilibrium, Floquet Dirac, Floquet semi-Dirac). An-
other interesting question is how irregularities in the place-
ment and shapes of the holes (disorder) affect the emergent
properties [78–81]. And, finally, there is the critical question
that we have asked before: What is the mobility of charge
carriers at the emergent Dirac point?
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