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Renormalization group analysis of Dirac fermions with a random mass
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Two-dimensional (2D) disordered superconductor (SC) in class D exhibits a disorder-induced quantum multi-
critical phenomenon among diffusive thermal metal (DTM), topological superconductor (TS), and conventional
localized (AI) phases. To characterize the quantum tricritical point where these three phases meet, we carry
out a two-loop renormalization group (RG) analysis for 2D Dirac fermion with random mass in terms of the
ε-expansion in the spatial dimension d = 2 − ε. In two dimensions (ε = 0), the random mass is marginally
irrelevant around a clean-limit fixed point of the gapless Dirac fermion, while there exists an IR unstable
fixed point at finite disorder strength that corresponds to the tricritical point. The critical exponent, dynamical
exponent, and scaling dimension of the (uniform) mass term are evaluated around the tricritical point by the
two-loop RG analysis. Using a mapping between an effective theory for the 2D random-mass Dirac fermion and
the (1+1)-dimensional Gross-Neveu model, we further deduce the four-loop evaluation of the critical exponent,
and the scaling dimension of the uniform mass around the tricritical point. Both the two-loop and four-loop
results suggest that criticalities of a AI-DTM transition line as well as TS-DTM transition line are controlled by
other saddle-point fixed point(s) at finite uniform mass.
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I. INTRODUCTION

Low-energy fermionic excitation in p-wave superconduc-
tors with broken time-reversal and spin-rotational symmetries
[1] has a “real-valued” character of its creation being identical
to its annihilation (Majorana fermion). Such exotic excitations
appear also as low-energy fractionalized magnetic excitations
in certain quantum spin models [2], which could be realized
in Mott insulators with heavy magnetic ions [3]. Experimental
realizations of the Majorana particles acquire a lot of recent
interests in condensed matter experiments, while it was sug-
gested that quenched disorders may play crucial role in these
experiments [4–9]. Two-dimensional (2D) class-D disordered
superconductor (SC) models [10] are canonical models of Ma-
jorana quasiparticles in the presence of the disorder potentials.
The class-D disordered SC models have three fundamental
phases: topological superconductor (TS) phases with quan-
tized thermal Hall conductance κxy in the unit of π2k2

BT/6h
(T is the temperature, kB is the Boltzmann constant and h is
the Plank constant) [11–13], a conventional superconductor
or Anderson localized (AI) phase with κxy = 0, and a diffusive
thermal metal (DTM) phase. Natures of quantum phase transi-
tions among these three fundamental phases have been under
active debate for decades, while a number of the numerical
studies have been carried out on network models and lattice
models [1,8,11,14–24].

A phase diagram of the class-D disordered SC models has
a close connection with a phase diagram of a 2D ±J ran-
dom bond Ising model (RBIM) [25–28]. In an exact mapping
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between the RBIM and disordered fermion models, the dif-
fusive thermal metal phase is absent [1,14,16,29]. Cho and
Fisher (CF) [11] found a mapping from the RBIM into
a Chalker-Coddington network model (disordered fermion
models) [30]. In the phase diagram of the CF network model,
all the three fundamental phases appear and a TS-DTM tran-
sition line, AI-DTM transition line, and AI-TS transition line
meet at a quantum tricritical point [16,18,19,21,24,31,32].
Critical exponents around the tricritical point have been eval-
uated numerically [21,24,31,32]. Previous numerical studies
of the CF model also suggest a possibility of an additional
fixed-point structure along the AI-TS transition line, which
is seemingly related to a Nishimori point in the RBIM
[16,18,19].

Theoretically, a low-energy effective theory of the class-D
disordered SC models is described by a 2D Dirac fermion with
random mass. Previous one-loop renormalization group (RG)
analyses of the Dirac fermion with the random mass showed
that the random mass is marginally irrelevant around a clean-
limit fixed point (2D gapless Dirac fermion) [33,34]. Since
the tricritical point is an infrared (IR) unstable fixed point at
a finite disorder strength, a field-theoretical characterization
of the tricritical point in the 2D class-D models needs a RG
analysis of higher than one-loop level.

In this paper, we give a field-theoretical estimate of scaling
properties of the tricritical point (TCP) and the three phase
transition lines on the basis of the higher-loop RG analysis of
the 2D Dirac fermion with the random Dirac mass. The 2D
Dirac fermion is an effective theory for a topological phase
transition between two topologically distinct gapped phases
in a clean limit, where a change of a uniform Dirac mass
term m induces the topological transition. The low-energy
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FIG. 1. Schematic phase diagram for one-component Dirac
fermion with random Dirac mass. DTM is a diffusive thermal metal
phase, TS and AI stand for a gapped phase with the nonzero
topological integer (C = −1) and a gapped phase with zero topo-
logical integer (C = 0), respectively. The topological integers in the
gapped phases characterize the thermal Hall conductivity as κxy =
Cπ 2k2

BT/6h. The vertical axis g represents the disorder strength of
the Dirac-mass type and the horizontal axis represents the uniform
Dirac mass m; ρm is a dimensionless renormalized mass. A critical
point (g = gc) at ρm = 0 is a tricritical point. The arrow stands for
the renormalization group (RG) flow determined by the two-loop and
four-loop RG analyses.

theory of the transition point in the clean limit is given by
the 2D gapless Dirac fermion. Any onsite disorder potentials
in the 2D gapless Dirac fermion are marginal around the
clean-limit fixed point. Particle-hole symmetry in the class-
D symmetry restricts a form of the disorders to be of the
Dirac-mass type (random Dirac mass). The Dirac-mass type
disorder is marginally irrelevant around the clean-limit fixed
point [33,34]. In this paper, we demonstrate that an infrared
(IR) unstable fixed point appears at a finite critical disorder
strength, g = gc (Fig. 1), using the two-loop RG analyses
and its extension up to the four-loop level. The IR unstable
fixed point corresponds to the TCP, where the three phases
in the class-D systems meet in their phase diagrams. From
the clean-limit fixed point to the fixed point at g = gc runs
a topological phase transition line, that intervenes between
the two gapped phases; AI with κxy = 0 and TS with κxy �= 0
(Fig. 1). We evaluate a scaling dimension of the uniform Dirac
mass and dynamical exponent around the fixed point at g = gc

at the two-loop level, and find that the uniform Dirac mass m
as well as a deviation of the disorder strength from the critical
disorder strength, δg ≡ g − gc, are relevant scaling variables;
Fig. 1. This determines the renormalization group (RG) flow
around the TCP as well as the scaling properties of the three
transition lines. Namely, the criticality of the TS-AI transition
line is controlled by the clean-limit fixed point, while the
criticalities of the DTM-TS phase transition and the DTM-AI
phase transition are controlled by other theories with finite
uniform mass m. Using a mapping between an effective model
for the random-mass Dirac fermions and Gross-Neveu (GN)
model together with preceding four-loop RG calculation of
the GN model, we further discuss the scaling dimensions of
the uniform mass m and the disorder strength δg around the
TCP [35–37]. Both two-loop and four-loop results suggest

that the tricritical point (TCP) is unstable in the IR limit
(Fig. 1).

Disorder-driven quantum tricritical points appear also in
phase diagrams of other ‘Dirac’ matters [38–40], such as
three-dimensional (3D) Weyl/Dirac systems [38,39,41–50].
In the 3D disordered Weyl/Dirac systems, short-ranged disor-
ders are irrelevant around a clean-limit fixed point (3D gapless
Weyl/Dirac point) at the tree level, and the tricritical point at
a finite disorder strength arises from a competition between
the tree level term (“attractive” to the clean-limit fixed point)
and one-loop level term (“repulsive”) in a β function of the
disorder strength. The key difference between the tricritical
point in the 2D class-D Dirac matters and those in the 3D
Weyl/Dirac matters stems from the particle-hole symmetry in
the class-D symmetry that constrains the type of short-ranged
disorders to be the Dirac mass type (random mass). Thereby,
the random mass is marginally irrelevant at the one-loop level
and a repulsive nature of RG flow appears only from the
two-loop (and higher than the two-loop) level. A competition
between the one-loop terms (attractive) and higher than one-
loop terms (repulsive) in the β function of the random mass
leads to the tricritical point in the 2D class-D Dirac systems.

The organization of this paper is as follows. In Sec. II, we
introduce two-dimensional random-mass Dirac fermions as a
low-energy theory for Bogoliubov excitations in a disordered
px + ipy superconductor on a lattice. The theory has two
controlled parameters; a disorder strength of the random-mass
type, and the uniform mass that induces the topological phase
transition between two gapped phases with distinct topologi-
cal numbers. In Sec. III, we introduce an effective low-energy
theory for the 2D random-mass Dirac fermions, generalize it
in general spatial dimension d , and discuss the renormaliz-
ability of the effective theory in d � 2. In Sec. IV, we use
minimal subtraction method in d = 2 − ε and derive two-
loop renormalization group (RG) equations for the disorder
strength. We obtain an anomalous dimension of the uniform
mass as well as the dynamical exponent up to the two-loop
level in Sec. IV. In Sec. V, we analyze the RG equation and
obtain the critical disorder strength for the TCP, the scal-
ing dimensions of the random mass and dynamical exponent
around the TCP. In Sec. VI, we discuss a relation between
the effective theory for the 2D random-mass Dirac fermions
and (1+1)D SU(N) Gross-Neveu model. The relation gives
the four-loop evaluations of the critical disorder strength gc

as well as scaling dimensions of the uniform mass m and
disorder strength δg around the TCP. Section VII is devoted
to summary and discussion.

II. TIGHT-BINDING MODEL OF SPINLESS px + ipy

SUPERCONDUCTOR

A square-lattice model of spinless fermions with px + ipy

Cooper pairing and the random chemical-potential type disor-
der is considered [51,52],

H/2 =
∑

j

(ε j + μ)ĉ†
j ĉ j + t

∑
j,μ=x,y

[ĉ†
j+eμ

ĉ j + H.c.]

+ 	
∑

j

[iĉ†
j+ex

ĉ†
j + ĉ†

j+ey
ĉ†

j + H.c.], (1)
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with uniform chemical potential μ, nearest-neighbor hopping
amplitude t and superconducting pairing amplitude 	 ∈ R.
Here j ≡ ( jx, jy) denotes the lattice vectors, and ex and ey are
primitive unit vectors in x and y direction, respectively. ε j ∈
[−W/2,W/2] is a short-ranged onsite chemical-potential-type
random potential,

〈εi〉dis = 0, 〈εiε j〉dis = δi, jW
2/12, (2)

where 〈· · · 〉dis stands for Gaussian disorder average. W rep-
resents the disorder strength of the random potential. With a
two-components Nambu vector,


 j =
(

ĉ j

ĉ†
j

)
, 


†
j = (ĉ†

j ĉ j ), (3)

the Hamiltonian in Eq. (1) is written as a Bogoliubov-de
Gennes (BdG) form,

H =
∑

j



†
j [H] j,m
m =

∑
j



†
j [(ε j + μ)σ3]
 j

+ t
∑

j

∑
μ=x,y

[
†
j+eμ

(σ3)
 j + H.c.]

+ i	
∑

j

[
†
j+ex

(σ1)
 j + 

†
j+ey

(σ2)
 j + H.c.] (4)

with the three Pauli matrices σi (i = 1, 2, 3). The BdG Hamil-
tonian in Eq. (4) satisfies a particle-hole symmetry,

CHTC−1 = −H, (5)

with [C] j,m = δ j,mσ1. The Hamiltonian also breaks the time-
reversal symmetry. The Hamiltonian belongs to the class D in
the tenfold AZ symmetry class classification [10].

The quasiparticle (Bogoliubov) excitation is a gapped exci-
tation, except for μ = 0,±4t . At μ = 0,±4t , the Bogoliubov
excitation forms point nodes at high symmetric momentum
points. Especially, when μ = −4t , the particle and the hole
bands form a gapless Dirac-cone dispersion around (kx, ky) =
(0, 0),

H(k) �
(

m − t
(
k2

x + k2
y

)
2	(kx − iky)

2	(kx + iky) −m + t
(
k2

x + k2
y

)). (6)

A finite m ≡ μ + 4t endows the gapless Dirac fermion
with a finite gap. In the gapped phase, the bulk state is
characterized by a quantized thermal Hall conductivity κxy =
Cπ2k2

BT/6h with C a quantized integer number [12]. The
gapless point m = 0 separates the two gapped phases with the
quantized number C = 0 (m < 0) and C = −1 (m > 0). The
low-energy effective theory around m � 0 and around the �

point (k � 0) is described by a Dirac fermion Hamiltonian for
a slowly-varying component of the Nambu field ψ (r),

Ĥ0 =
∫

d2x ψ†(x)(vσ · p̂ + mσ3)ψ (x), (7)

with p̂ ≡ −i∂ ≡ (−i∂x,−i∂y), σ ≡ (σ1, σ2), a uniform mass
term m and a Dirac fermion’s velocity v ≡ 2	. The Dirac
fermion Hamiltonian generally describes a phase transition
between two gapped phases with their topological numbers
being different from each other by one.

The gapped phase with C = 0 stands for a topologically
trivial superconductor (SC) phase. On increasing the disorder

strength W in the trivial SC phase, the band gap gets narrower,
which eventually leads to localized zero-energy quasiparticle
Majorana states in the trivial SC phase [32]. The focus of the
paper is whether the zero-energy quasiparticle Majorana states
are either ballistic, diffusive or localized in space. Thus, we
call such trivial SC phase with localized zero-energy states
as a conventional Anderson insulator (AI) phase. In fact, a
recent numerical study on a 2D class-D lattice model demon-
strates that the trivial SC phase with weak disorder can be
continuously connected to a phase of the highly localized
zero-energy Majorana states by very strong disorders [32].
Here, “continuously connected” means that the two phases are
not separated by either quantum critical point (line or surface)
or delocalized phase in a generic phase diagram of the class-D
symmetry.

The gapped phase with C = ±1 represents a topological
superconductor (TS) phase. Whether the positive m corre-
sponds to TS or AI phase depends on a global topology of
the BdG Hamiltonian in the clean limit; the Dirac fermion
Hamiltonian can only tell that when the positive m corre-
sponds to TS with C = −1 (AI) phase, then the negative m
corresponds to AI (TS with C = +1) phase. For simplicity,
we call the positive (negative) m side to be in the TS (AI)
phase throughout this paper.

The chemical-potential type disorder in the tight-binding
Hamiltonian Eq. (4) results in a Dirac-mass-type disorder
potential in the Dirac Hamiltonian,

Ĥ [{V3(r)}] = Ĥ0 +
∫

d2xV3(x)ψ†(x)σ3ψ (x). (8)

V3(x) is the Dirac-mass-type disorder potential, which
is short-ranged and obeys the Gaussian distribution
under a quenched average 〈· · · 〉dis, i.e., 〈V3(r)〉dis = 0,
〈V3(x)V3(x′)〉dis = 	3δ

2(x − x′). The disordered Dirac
Hamiltonian keeps the particle-hole symmetry.

III. FIELD THEORY FOR THE RANDOM-MASS
DIRAC FERMION

Disorder-averaged Green functions for the disordered
single-particle Dirac Hamiltonian can be systematically
treated by a replica method [53,54]. In the replica method,
R-numbers of the identical free Dirac fermion Hamiltonians
of Ĥ0 are replicated together with an elastic-scattering inter-
action among the replicated Dirac fermions,

Seff =
∫

dτ

∫
d2x ψ†

α (x, τ )(∂τ + vσ · p̂ + mσ3)ψα (r, τ )

− 	3

2

∫
dτdτ ′

∫
d2x(ψ†

ασ3ψα )x,τ (ψ†
βσ3ψβ )x,τ ′ , (9)

with replica indices α, β = 1, · · · R. Here the summation over
the replica indices are omitted in Eq. (9), and will be omitted
in the following unless mentioned otherwise. The disorder-
averaged connected Green functions for the disordered single-
particle Hamiltonian are equivalent to Green functions for the
replicated effective action Seff in a zero-replica limit (R → 0);
e.g., see Appendix A.

Based on the equivalence, we will argue renormalizability
of Seff around the gapless point (m = 0) and the clean limit
(	3 = 0) in the replica limit (R → 0). To put it generally, we
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consider the replica action Seff in general spatial dimensions.
The d-dimensional action at the gapless point takes a form of

Seff = S0 + SI ,

S0 =
∫

dd xdτ ψ†
α (x, τ ) (∂τ − ivγ · ∇)ψα (x, τ ), (10)

SI = −	3

2

∫
dd xdτdτ ′(ψ†

αγ̂ ψα )x,τ (ψ†
β γ̂ ψβ )x,τ ′ , (11)

with ∇ ≡ (∂1, ∂2, · · · , ∂d ), where γ ≡ (γi ) (i = 1, · · · , d)
is a d-components vector of matrices that generate a d-
dimensional Clifford algebra satisfying the anticommutation
relations {γi, γ j} = 2δi j (i, j = 1, · · · , d) and γ0 = I . γ̂ is
a generalization of the 2D Pauli matrix σ3 into the d-
dimensions, with the anticommunication relation {γi, γ̂ } = 0.

A. Renormalizability

The d-dimensional effective field theory around the clean-
limit fixed point has the two spatial dimensions (d = 2) as its
upper critical dimension [33]. In a unit of an inverse length
(scaling of momentum), dimensions of coordinate and deriva-
tives are given by dim[x] = dim[τ ] = −1 and dim[∂τ ] =
dim[∂x] = 1. To evaluate a tree-level scaling dimension of the
disorder strength, we take the action Seff to be dimension-
less, dim[Seff] = 0. In a perturbative renormalization group
analysis around the clean-limit fixed point, the velocity and
the coefficient in front of ∂τ in S0 are chosen to be marginal
at the tree-level: dim[v] = 0. Then, a dimension of the field
operator is given by dim[ψ] = d/2. The disorder strength has
a dimension dim[	3] = 2 − d from SI in Eq. (11). Thus, the

disorder strength is marginal, irrelevant and relevant at the tree
level in d = 2, d > 2 and d < 2, respectively [55].

The Green functions of the action Seff may have ultraviolet
(UV) divergences. The UV divergences can be renormaliz-
able, nonrenormalizable and super-renormalizable in d = 2,
d > 2, and d < 2, respectively. To explain the UV diver-
gences in the Green functions and their renormalizability in
general d dimensions, let us put the action Seff = S0 + SI in
the momentum-frequency space,

S0 =
∫

k
ψ†

α (k, ω) (−iω + vγ · k)ψα (k, ω), (12)

SI = −	3

2

∫
ω1,ω2

∫
k1,k2,k3

ψ†
α (k1, ω1)γ̂ ψα (k3, ω1)

× ψ
†
β (k2, ω2)γ̂ ψβ (k1 + k2 − k3, ω2), (13)

with momentum and frequency integrals,∫
k

≡
∫

k

∫
ω

,

∫
ω

=
∫ +∞

−∞

dω

2π
,

∫
k

=
∫

|k|<�

dd k
(2π )d

. (14)

Here � is a UV momentum cutoff. The interaction in Eq. (13)
does not exchange energy (frequency) or replica index.

Disorder-averaged 2n-point connected Green functions in
the disordered single-particle Hamiltonian are identical to 2n-
point Green functions for the replica action Seff in the zero
replica limit; see Eqs. (A5) and (A7) in Appendix A. We thus
consider the renormalization of the 2n-point Green functions
of Seff in the limit of R → 0. In the momentum-frequency
space, they are defined as follows:

(2π )d+1δ(d )(k − k′)δ(ω − ω′)G(2)
α (k, ω) ≡ 1

Zeff

∫
Dψ†

γ Dψγ ψα (k, ω)ψ†
α (k′, ω′) e−Seff , (15)

(2π )d+2δ(d )(k1 + k2 − k3 − k4)δ(ω1 − ω4)δ(ω2 − ω3)G(4)
αβ (k1, k2, k3; ω1, ω2)

≡ 1

Zeff

∫
Dψ†

γ Dψγ e−Seffψα (k1, ω1)ψβ (k2, ω2)ψ†
β (k3, ω3)ψ†

α (k4, ω4), (16)

with

Zeff ≡
∫

Dψ†
αDψαe−Seff . (17)

According to the standard Dyson-Feynman perturbation theory, the Green functions are given by amputated one-particle
irreducible (1PI) parts of the connected Green’s functions (vertex functions) [53,55,56]. The two-point and four-point vertex
functions, �(2)

α and �
(4)
αβ , are related to the respective Green functions,

G(2)
α (k, ω)�(2)

α (k, ω) = 1, (18)

G(4)
αβ (k1, k2, k3; ω1, ω2) = Gα (k1, ω1)Gβ (k2, ω2)Gβ (k3, ω2)Gα (k1 + k2 − k3, ω1)�(4)

αβ (k1, k2, k3; ω1, ω2)

+ G(2)
α (k1, ω1)G(2)

β (k2, ω2)(2π )dδ(d )(k2 − k3). (19)

Similarly, higher-order 2n-point vertex functions can be de-
fined from the 2n-point connected Green functions [53,55,56].
Note that those 1PI parts with closed internal fermion loops
vanish in the limit of the zero replica, as every loop gives
a factor R. Thus, frequencies and replica indices of all the
internal fermion lines in the 1PI parts are fixed by those
of external fermion lines. The 1PI parts are given only by

integrals over the internal momenta that depend on the UV
momentum cutoff �.

The 2n-point vertex functions �(2n)
α1···αn

could diverge when
the UV momentum cutoff � is taken infinitely large. To eval-
uate how �(2n) with n ≡ NF /2 number of external fermion
lines diverges in the limit of the large �, let us suppose that
an amputated Feynman diagram with the NF external fermion
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points has integrals over L-number of internal d-dimensional
momenta. The integrand is a product among VF number of
internal fermion lines and V number of the fermion’s quar-
tic couplings (vertices). From dimensional power counting
[55,56], superficial degree of the UV divergence M of the am-
putated diagram is given by M = dL − VF . Each vertex of the
quartic coupling connects four fermion lines and each fermion
line attaches to two vertices or external points. Thus, the total
number of internal and external fermion lines of an unampu-
tated Feynman diagrams is given by VF + NF = 2V + NF /2.
Each vertex with four fermion lines imposes a momentum
conservation onto four momenta of the four fermion lines.
Besides, the total sum of the external momenta is zero. Thus,
L = VF − (V − 1). Combing them together, we obtain M in
terms of NF and V as follows:

M = d − d − 1

2
NF + (d − 2)V. (20)

This shows that the system is renormalizable, nonrenormal-
izable, and super-renormalizable at d = 2, d > 2, and d < 2,
respectively [55,56].

At d = 2, the superficial degree of the UV divergence of
the amputated 1PI parts only depends on the number of the ex-
ternal fermion points, i.e., M = 2 − NF /2. Two-point (NF =
2) and four-point (NF = 4) vertex functions in Eqs. (18) and
(19) have potentially UV divergences in the large � limit,
while �(NF ) (NF � 6) has no UV divergence. The dimensional
counting shows that in the two-point vertex function �(2), the
coefficient of σ3 has a linear divergence in �, while those
coefficients of ω and k have the logarithmic divergence in �.
Note that because of the particle-hole symmetry, �(2) has no
σ0 term that is linear in �. Thus, the most general form of the
divergences in the two-point vertex is given by

�(2)
α (k, ω) = (· · · ) · �σ3 + (· · · ) · ln � · (−iω)

+ (· · · ) · ln � · (vσ · k). (21)

The linear divergence in Eq. (21) can be absorbed into a shift
of the uniform mass, so that the theory remains massless. In
practice, the � linear term does not appear in the following
perturbative renormalization calculation (see Sec. IV). The
logarithmic UV divergences in the coefficients of ω and k can
be absorbed into renormalizations of field operator amplitude
and the single-particle energy (frequency) ω. The four-point
vertex function is dimensionless and shows the logarithmic
divergence in �,

�
(4)
αβ (· · · ) = (· · · ) · ln � · σ3 ⊗ σ3

+ (· · · ) · ln � · (other ‘ ⊗ tensor products’)

+ O(ω, k). (22)

Under the particle-hole symmetry, the logarithmic UV diver-
gence is allowed to take a tensor form of σ3 ⊗ σ3 as well as
other tensor forms, e.g., σ0 ⊗ σ0, σ j ⊗ σ j with j = 1, 2. The
logarithmic divergence with σ3 ⊗ σ3 can be absorbed into a
renormalization of the disorder strength 	3. When the loga-
rithmic divergence appears in coefficients of the other tensor
forms, one should also include such tensor forms of bare
interactions into the original action Seff to make the theory
to be renormalizable. In the following two-loop calculation,

we will see that only the coefficient of σ3 ⊗ σ3 has the UV
divergence, while the coefficients of the other forms have no
UV divergence. When all the UV divergences in the vertex
functions are absorbed into the renormalizations of field oper-
ator amplitude, the single-particle energy ω, disorder strength
	3 and the uniform mass m, the effective field theory is
renormalizable.

IV. RENORMALIZATION

In the previous section, we introduced three kinds of the
logarithmic UV divergences in vertex functions �(NF ) (NF =
2, 4), Eqs. (21) and (22). In this section, we include them
into the renormalization of the field operator strength Z2 with
ψ ≡ √

Z2φ, the renormalization of single-particle energy (fre-
quency) ω and renormalization of the effective interaction 	3.
In practice, we use the dimensional regularization by putting
spatial dimensions into d = 2 − ε, where ln � in d = 2 be-
comes 1/ε in small ε [34,55,57–59]. In the following, we will
see that �(2) and �(4) in d = 2 − ε have 1/ε divergent terms
and we shall include them into the renormalizations of the
field strength, the single-particle energy and the interaction
strength.

To this end, we use a minimal subtraction method [55,59]
and separate the action in Eqs. (11) and (12) into an effective
action SE and counterterm part SC ,

Seff = SE + SC,

SE =
∫

k,ω

φ†
α (k, ω) (−i� + vγ · k)φα (k, ω)

− �εκ

2

∫
dτdτ ′

∫
dd x(φ†

αγ̂ φα )x,τ (φ†
β γ̂ φβ )x,τ ′ , (23)

SC =
∫

k,ω

φ†
α (k, ω) (−iδ� + δ2vγ · k)φα (k, ω)

− �εδκ

2

∫
dτdτ ′

∫
dd x(φ†

αγ̂ φα )x,τ (φ†
β γ̂ φβ )x,τ ′ .

(24)

Here φ is a renormalized field and it is related with the bare
field ψ by a field renormalization

√
Z2,

ψ ≡ √
Z2φ, Z2 ≡ 1 + δ2, (25)

with a field counterterm δ2. � and δ� are the renormalized
single-particle energy and its counterterm,

� + δ� = Z2ω. (26)

κ and δκ are renormalized dimensionless interaction strength
and its counterterm. Since 	3 has a scaling dimension of
2 − d: dim[	3] = ε, we normalize 	3 by �ε to have dimen-
sionless κ ,

�ε (κ + δκ ) = Z2
2 	3. (27)

In this renormalization scheme, the renormalized single-
particle energy � plays a role of a renormalization group (RG)
scale, where all the physical quantities are normalized by a
proper power of �. Taking � to be finite, we can also control
infrared divergences that could appear in momentum integrals
for self-energy and the vertex function. The renormalization
of the single-particle energy results in an anisotropy in space
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and time [54], leading to a nontrivial dynamical exponent
around a nontrivial fixed point [see Eq. (39)].

The primary objective of the renormalization is to make the
two-point and four-point vertex functions of the renormalized
field to be free from the UV divergences as functions of the
renormalized quantities, κ and �. The vertex functions and
Green functions of the renormalized field (let us call them
renormalized vertex and Green functions, respectively) are
defined through the same equations as Eqs. (15), (16), (18),
and (19) with the same action and partition function as Seff

and Zeff and with the bare fields ψ being replaced by the
renormalized field φ, e.g.,

Gα (k,�)�α (k,�) = 1, (28)

(2π )d+1δ(d )(k − k′)δ(ω − ω′)G(2)
α (k,�)

≡ 1

Zeff

∫
Dψ†

γ Dψγ φα (k, ω)φ†
α (k′, ω′) e−Seff . (29)

Here the renormalized frequency � in the left-hand sides
and bare frequency ω in the right-hand side of Eq. (29) are
related to each other by Eq. (26). The UV divergent terms in
the vertex functions of the bare field can be then absorbed
into the counterterms, δ2, δκ , and δ�, in such a way that
the renormalized vertex functions have no UV divergence as
functions of renormalized quantities κ and �.

To this end, κ in Eq. (23) and SC in Eq. (24) are treated per-
turbatively, and two-point and four-point renormalized vertex
functions are calculated in terms of the standard perturbation
theory. The 1/ε divergent terms and the counterterms are set
to cancel each other in the renormalized vertex functions at
every order in the perturbation. In the perturbative expansion,
the zeroth-order renormalized Green function is given by the
first term in Eq. (23):

G0(p,�) = 1

−i� + vγ · p
= i� + vγ · p

�2 + v2 p2
. (30)

The velocity v is free from the renormalization in this RG
scheme. We henceforth set v = 1 for simplicity.

To cancel 1/ε divergent terms by the counterterms in the
two-point renormalized vertex function, we require the two-
point renormalized vertex function as a function of κ and � to
be on the order of O(ε0) in the small ε limit,

�
(2)
α (k,�) ≡ −i(� + δ�) + (1 + δ2)γ · k − �(k,�)

= −i� + γ · k + O(1). (31)

To cancel 1/ε divergent terms by the counterterm in the four-
point renormalized vertex function, we require the four-point
renormalized vertex function at �1 = �2 = � and at k1 =
k2 = k3 = 0 to be finite as a function of κ and � in the small
ε limit,

�
(4)
αβ (k1, k2, k3; �1,�2)|ki=0,�1=�2=�

≡ �ε (κ + δκ ) γ̂ ⊗ γ̂ + �
(4),′
αβ (0, 0, 0; �,�)

= �εκ γ̂ ⊗ γ̂ + O(1). (32)

Note that an external single-particle energy � is kept finite,
so that the integrals in the right-hand sides are free from any
infrared divergence associated with the momentum integrals.

Based on Eqs. (31) and (32), the counterterms, δ2, δκ , and
δ� in Eqs. (31) and (32), are set to cancel the divergent
contribution (in power of 1/ε) in the self energy � and

four-point vertex function �
(4),′
αβ order by order in κ . Being

dimensionless, δ2, δκ and δ�/� thus obtained are given as
functions only of the dimensionless disorder strength κ [see,
for example, Eqs. (33), (34), (35), (36), and (37)]. The bare
coupling constant 	3 and the bare single-particle energy ω

are given by κ and � through Eqs. (25), (27), and (26).
For simplicity of the following notation, we rescale the

dimensionless disorder strength κ by the spherical integral
of d-dimensional momentum [59,60], to have another dimen-
sionless disorder strength g,

g = 2Cdκ, Cd ≡
∫

dSd

(2π )d
= 21−dπ−d/2

�(d/2)
. (33)

We use g instead of κ throughout the remaining part of the
paper.

The vertex functions of Seff are renormalized at a finite
single-particle energy � through Eqs. (31) and (32), where
high-energy (short-ranged) degrees of freedom in the bare
vertex functions are renormalized into the counterterms. The
bare disorder strength 	3 and bare single-particle energy ω

are given as functions of renormalized disorder strength g and
renormalized single-particle energy (RG scale) �,

	3 = �εZ−2
2 (κ + δκ ) ≡ �ε

2Cd
Zgg, (34)

ω = Z−1
2 (� + δ�) ≡ Zω�, (35)

Z2 = 1 + δ2. (36)

The divergent contributions in the bare vertex functions in
the small ε limit are included in the three renormalization
constants, Zμ = Z2, Zω, Zg (μ = 2, ω, g). Being dimension-
less, these constants must be polynomials in the dimensionless
disorder strength g. Namely, they generally take the following
forms,

Zμ(ε, g) ≡ 1 + δμ = 1 +
m∑

n=1

an,μ(g)

εn
, (37)

with μ = 2, ω, g. Here an,μ(g) is an mth order polynomial of
g in the m-loop perturbative RG calculation.

The renormalized vertex functions in the small � limit
determine ground-state nature of the action Seff [55,59]. When
� goes to the zero with a fixed 	3, g changes according
to Eq. (34). Thereby, a limiting value of the renormalized
disorder strength g in the small � limit determines the ground
state phase diagram of the action Seff . To determine how g
changes in the small � limit, let us take an � derivative of
Eq. (34) with a fixed 	3,

0 ≡ �
∂	3

∂�
= �εgZg

(
ε + �

g

∂g

∂�
+ �

Zg

∂Zg

∂�

)

= �εgZg

[
ε + ∂ ln g

∂ ln �

(
1 + d ln Zg

d ln g

)]
.
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(S1)

γ̂γ̂

(V1A)

γ̂ γ̂

γ̂

(V1B)

γ̂ γ̂

γ̂ γ̂

(V1C)
γ̂ γ̂

γ̂ γ̂

FIG. 2. One-loop diagrams: (S1) self-energy; (V 1) four-point
vertex function. Solid line stands for the zeroth order renormalized
Green function given in Eq. (30). Dotted line stands for the effective
interaction with κ in SE .

The derivative gives out a β function of the coupling constant
g, βg, that tells how g changes in the small � limit,

∂g

∂l
= −βg = εg

(
1 + g

d ln Zg

dg

)−1
, (38)

with an RG parameter l ≡ − ln �. The small � limit corre-
sponds to the large l limit. Zg is a polynomial function of g
[Eq. (37)] and so is the β function. In the next section, we will
calculate the β function up to the two-loop level (the third
order in g). In Sec. VI, we deduce the β function up to the
four-loop level (the fifth order in g) using a correspondence
between the random Dirac fermion Hamiltonian model and
an SU(N) Gross-Neveu model.

The renormalized single-particle energy � plays a role of
the scale parameter in this RG scheme [54,55,59]. According
to the renormalization condition Eq. (31), � has the same
scaling as the momentum or inverse of the length scale in
the long wavelength limit. When � goes to zero with a fixed
	3, the bare single-particle energy ω changes according to
Eqs. (34) and (35), e.g., ω also goes to zero. According to the
definitions of the renormalized Green functions, e.g., Eq. (29),
the bare frequency ω thus changed is dual to temporal vari-
ables in the renormalized Green functions. Thus, a scaling of
the bare frequency with respect to the RG scale � under a
fixed 	3 determines how a characteristic time is scaled by a
characteristic length in the infrared (IR) regime. To be more
specific, we can define the dynamical exponent z [59] as a
derivative of ln ω with respect to ln � with a fixed 	3,

z ≡ ∂ ln ω

∂ ln �
= 1 + ∂ ln Zω

∂ ln �
= 1 + βg

d ln Zω

dg
, (39)

where Eq. (35) was used from the second equality in the right-
hand side. Note that Zω is a polynomial function of g [Eq. (37)]
and so is the dynamical exponent. In the next section, we will
calculate the dynamical exponent up to the two-loop level (the
second order in g).

A. One-loop renormalization

We first calculate the one-loop renormalization. One-loop
diagrams to the right-hand sides of Eqs. (31) and (32) are
shown in Fig. 2. A diagram [S1] gives the one-loop contri-
bution to the self-energy part �(k,�) in Eq. (31),

[S1] = κ�εγ̂

∫
p

G0(p)γ̂ = (
i�

) g

2ε
, (40)

with the zeroth order renormalized Green function G0(p) de-
fined in Eq. (30). Since the single-particle energies in any

internal fermion lines in Feynman diagrams are always fixed
to be � in the RG conditions, Eqs. (31) and (32), we omit the
argument � in G0(p,�) and simplify it by G0(p). Equation
(40) has no linear term in γ · p. Thus, δ2 = 0 at the one-
loop level. The one-loop contributions to the four-point vertex
function are shown in the three diagrams, [V 1A], [V 1B], and
[V 1C]. The diagram [V 1A] takes a tensor form of γ̂ ⊗ γ̂ ,

[V 1A] = κ2�2ε

∫
p

G0(−p)G0(p)γ̂ ⊗ γ̂

= −κ2�2ε

∫
p

1

�2 + p2
γ̂ ⊗ γ̂ = − �ε

2Cd

g2

2ε
γ̂ ⊗ γ̂ .

(41)

The diagram [V 1B] and [V 1C] take tensor forms of γi ⊗ γ j

(i, j = 0, 1, · · · , d), respectively:

[V 1B] = κ2�2ε

∫
p

i� − γ · p
�2 + p2

⊗ i� + γ · p
�2 + p2

,

[V 1C] = κ2�2ε

∫
p

i� − γ · p
�2 + p2

⊗ i� − γ · p
�2 + p2

.

However, a sum of these two diagrams is on the order of one
in the limit of ε → 0:

[V 1B] + [V 1C] = κ2�2ε

∫
p

i� − γ · p
�2 + p2

⊗ 2i�

�2 + p2
,

= κ2�2ε

∫
p

−2�2

�2 + p2

1

�2+ p2
γ0 ⊗ γ0 =O(1).

(42)

Thus, at the one-loop level, no new vertex form other than
γ̂ ⊗ γ̂ is generated with the divergence.

The one-loop counterterms in Eqs. (31) and (32) should
cancel the 1/ε divergent terms in the self-energy Eq. (40) and
the vertex function Eqs. (41) and (42),

−iδ(1)� − [S1] = O(1),

�εδ(1)κγ̂ ⊗ γ̂ + 2[V IA] + [V 1B] + [V 1C] = O(1),

with a proper symmetry factor for [V 1A]. We obtain the one-
loop counterterms:

δ(1)� = −�
g

2ε
, �εδ(1)κ = �ε

2Cd

g2

ε
. (43)

Here δ(m)κ , δ(m)�, and δ
(m)
2 stand for the m-loop contributions

to the counterterms, δκ , δ�, and δ2, respectively:

δ� ≡
∞∑

m=1

δ(m)�, δκ ≡
∞∑

m=1

δ(m)κ, δ2 ≡
∞∑

m=1

δ
(m)
2 . (44)

B. Two-loop renormalization

We now proceed to the two-loop renormalization. The
two-loop self-energy diagrams are shown in Fig. 3. Diagrams
[S2A], [S2a], and [S2b] are linear in i� and they do not have
linear terms in γ · k. Diagram [S2B] has both linear term in i�
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(1)

(1)

(S2A) (S2B) (S2a) (S2b)

p pq p qp + q − k

FIG. 3. Two-loop self-energy diagrams. Black circle on the solid
line with (1) stands for −iδ(1)� + δ

(1)
2 vγ · k in SC where δ(1) is given

by Eq. (43) and δ
(1)
2 = 0. Black circle on the dotted line with (1)

stands for δ(1)κ in SC . δ(1)κ is given by Eq. (43).

and linear term in γ · k. Diagrams [S2A] and [S2B] at k = 0
are given by

[S2A] = κ2�2ε

∫
p,q

G0(−p)G0(q)G0(−p)

= (
i�

) g2

4ε2

(
1 − ε

) + O(1), (45)

[S2B](k = 0) = κ2�2ε

∫
p,q

G0(−p)G(p + q)G0(−q)

= − (i�)
3g2

8ε2
+ O(1). (46)

The two-loop contributions with the one-loop counterterms
are shown in [S2a] and [S2b],

[S2a] = κ�ε iδ(1)�γ̂

∫
p

( 1

−i� + γ · p

)2
γ̂

= −(
i�

) g2

4ε2

(
1 − ε

) + O(1), (47)

[S2b] = δ(1)κ�εγ̂

∫
p

( 1

−i� + γ · p

)
γ̂

= (
i�

) g2

2ε2
+ O(1). (48)

Two-loop contribution to the counterterm of the single-
particle energy should cancel these 1/ε poles in Eq. (31),

−iδ(2)�− ([S2A] + [S2B](k = 0) + [S2a] + [S2b]) = O(1).

(49)

This gives the two-loop contribution to the counterterm for the
single-particle energy,

δ(2)� = −�
g2

8ε2
. (50)

The two-loop contribution to the field counterterm δ2

comes from the γ · k-linear term in the diagram [S2B]. The
diagram [S2B] for finite k is given by

[S2B] = κ2�2ε

∫
p,q

G0(−p)G0(p + q − k)G0(−q).

The zeroth order in the small k was already calculated and
included in Eqs. (46) and (49), respectively. The γ · k-linear
term can be obtained by an expansion in k of one of the
propagators:

G0(p + q − k)

= 1

G
−1
0 (p + q) − γ · k

= G0(p + q) + G0(p + q)(γ · k)G0(p + q) + O(k2).

The linear-in-k part of [S2B] is

[S2B](γ · k)

= κ2�2ε

∫
p,q

G0(−p)G0(p + q)(γ · k)G0(p + q)G0(−q)

= κ2�2ε 1

4ε
(C2−ε�

−ε )2γ · k + O(1)

= g2

16ε
γ · k + O(1). (51)

The field counterterm δ2 should cancel the 1/ε-pole from
[S2B](γ · k) in Eq. (31), δ2γ · k − [S2B](γ · k) = O(1). This
gives out the two-loop contribution to the field counterterm δ2

and the field renormalization factor Z2 as

δ
(2)
2 = g2

16ε
, Z2 = 1 + δ

(2)
2 = 1 + g2

16ε
. (52)

The two-loop contributions to the counterterm of the four-
point vertex function are calculated in Appendix B. After the
lengthy calculation in Appendix B, we obtain the two-loop
vertex counterterm as follows:

�εδ(2)κ = �ε

2Cd
g
(

− g2

8ε
+ g2

ε2

)
. (53)

C. Two-loop RG equations

At the two-loop level, the bare single-particle energy ω is
given by a sum of the one-loop counterterm in Eq. (43) and
the two-loop counterterm in Eqs. (50) together with the field
renormalization factor in Eq. (52),

ω = Z−1
2 (� + δ(1)� + δ(2)�)

=
(

1 − g

2ε
− g2

8ε2
− g2

16ε

)
�.

The bare interaction is given by a sum of the one-loop coun-
terterm in Eq. (43) and the two-loop counterterm in Eq. (53)
together with the field renormalization factor in Eq. (52),

	3 = Z−2
2 (κ�ε + δ(1)κ�ε + δ(2)κ�ε )

= �ε

2Cd
g
(

1 + g

ε
− g2

4ε
+ g2

ε2

)
.

Equating these two with the renormalization constants defined
in Eqs. (34) and (35), we obtain the renormalization constants
as

Zω = 1 − g

2ε
− g2

8ε2
− g2

16ε
, (54)

Zg = 1 + g

ε
− g2

4ε
+ g2

ε2
. (55)

Substituting Eq. (55) into Eq. (38) and keeping only up to
the two-loop order (third order in g), we finally obtain the β

function for the renormalized dimensionless disorder strength
g as

∂g

∂l
= −βg = εg − g2 + 1

2
g3. (56)

Substituting Eq. (54) into Eq. (39) and keeping only up to the
two-loop order (second order in g), we obtain the dynamical
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FIG. 4. Possible RG-flow phase diagram for 2D Dirac fermion
with random mass. (a) uniform mass is a relevant scaling variable
around the fixed point at g = gc; (b) uniform mass is an irrelevant
scaling variable around the fixed point at g = gc.

exponent z as

z = 1 + βg
d ln Zω

dg
= 1 + g

2
+ g2

8
. (57)

D. Scaling dimension of the uniform mass

In the previous subsection, we derived the β function of
the Dirac-mass type disorder strength in the absence of the
uniform mass. The β function thus obtained is a function only
of the renormalized disorder strength g, which has an infrared
(IR) unstable fixed point at finite disorder strength (g = gc)
in two dimensions (ε = 0). An important question remains; Is
the uniform mass operator relevant or irrelevant around the
fixed point at g = gc? If the uniform mass m is an irrelevant
scaling variable around the fixed point with the finite critical
disorder strength, then the quantum criticality of DTM-AI
transition as well as DTM-TS transition are controlled by the
fixed point at g = gc; see Fig. 4(b). If the uniform mass m is
another relevant scaling variable around the fixed point with
the finite critical disorder strength [Fig. 4(a)], then the quan-
tum criticalities of these two transition lines are controlled
by another saddle-point fixed point(s) at finite uniform mass,
which may not be captured by Seff studied in this paper.

To clarify the scaling property of the uniform mass, we
use the same perturbative renormalization theory as in the
previous section and calculate the scaling dimension of the
uniform mass operator up to the two-loop order (second order
in g). To this end, we treat the uniform mass operator as an
external perturbation and expand the vertex functions in terms
of the uniform mass m [54–56,61]. Since the uniform mass has
a dimension of 1 at the clean-limit fixed point, dim[m] = 1,
the m-linear term of the two-point vertex function has the
UV logarithmic divergence in d = 2. Namely, following the
same line of the argument in Sec. III A, we expand the vertex
functions at finite m in terms of k, ω, and m in d = 2,

�(2)
α (k, ω, m) = �(2)

α (k, ω, m = 0)

+ (· · · ) · ln �σ3 · m + O(m2). (58)

Here an m-linear term in the four-point vertex function as
well as the higher-order terms in m in all the vertex functions
have no UV divergence in the two dimensions. Thus, the
bare theory in the presence of finite uniform mass have one
additional logarithmic divergent term compared to the bare
massless theory. The new UV divergent term can be absorbed

into a renormalization of the mass m. We do this mass renor-
malization by using the same ε-expansion as in the previous
section, where ln � in the two dimensions is replaced by 1/ε

in the d = 2 − ε dimensions.
The replicated action with the uniform mass is given by

an addition of the uniform mass term into Seff and Zeff in
Eqs. (12), (11), and (17),

Seff = · · · +
∫

k,ω

ψ†
α (k, ω)mγ̂ ψα (k, ω).

Using the same minimal subtraction method as in the previous
section, we rewrite the bare field in the mass term by the
renormalized field,

Seff = · · · +
∫

k,ω

φ†
α (k, ω) (1 + δM )M γ̂ φα (k, ω), (59)

where the omitted parts in Seff are already given in Eqs. (23)
and (24). Namely, we put the added mass term as

mψ†
αγ̂ ψα = Z2Z−1

O Mφ†
αγ̂ φα. (60)

Here a renormalized mass M and its counterterm δM are re-
lated to the bare mass m as

m ≡ Z−1
O M, Z2Z−1

O ≡ 1 + δM, (61)

with Z2 the field renormalization defined in Eq. (25). The
renormalized vertex functions are given as functions of k,
� and the renormalized mass M. We determine the previous
counterterms (δ�, δκ , δ2) including δM in such a way that
the following RG conditions are satisfied by the renormalized
vertex functions:

�
(2)
α (k,�, M )

∣∣
M=0 = −i� + γ · k + O(1), (62)

∂M�
(2)
α (k,�, M )

∣∣
k=0,M=0 = γ̂ + O(1), (63)

�
(4)
αβ (k1, k2, k3 : �1,�2)

∣∣
ki=0,�i=�,M=0

= �εκγ̂ ⊗ γ̂ + O(1). (64)

Namely, such vertex functions are free from the UV
divergence as functions of renormalized single-particle en-
ergy, renormalized uniform mass and renormalized disorder
strength, e.g.,

�
(2)

(k,�, M ) = −i� + γ · k + Mγ̂ + O(1). (65)

The first and the third conditions, Eqs. (62) and (64), are
already satisfied by δ2, δκ and δ� determined in the previous
section. Thus, we have only to determine δM together with
these counterterms such that the second condition Eq. (63) is
satisfied.

∂M�
(2)
α (k,�, M ) evaluated at M = 0 is nothing but an

amputated one-particle irreducible (1PI) part of a composite
Green function at the massless point (Fig. 5) [54–56,61]. To
see this, let us take the derivative of Eq. (28) with respect to
the renormalized mass,

∂M�
(2)
α (k,�, M )

∣∣
k=0,M=0

= −G
−1
α · ∂MG

(2)
α (k,�, M )

∣∣
k=0,M=0 · G

−1
α . (66)
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k

p

p

(Ma) (Mb)(M1) (M2)

δM

k

FIG. 5. (M1) Feynman diagrams of the 1-particle irreducible

(1PI) part of (1 + δM )�
(2,1)
α (k, �). (M2) The zeroth order in g for

δM�
(2,1)
α (k,�). (Ma) The zeroth order in g for �

(2,1)
α (k, �). (Mb) The

first order in g for �
(2,1)
α (k, �).

From Eqs. (29) and (59), the derivative of the two-point Green
function in the right-hand side is given by the following com-
posite Green function,

(2π )d+1δd+1(k − k′)∂MG
(2)
α (k,�, M )

∣∣
M=0

= −(1 + δM )
∫

k′′
〈φα (k)φ†

ε (k′′)γ̂ φε (k′′)φ†
α (k′)〉eff,c,

≡ −(1 + δM )(2π )d+1δd+1(k − k′)

× Gα (k,�)�
(2,1)
α (k,�)Gα (k,�), (67)

with 〈· · · 〉eff,c ≡ 〈φαφ†
ε γ̂ φεφ

†
α〉eff − 〈φαφ†

α〉eff〈φ†
ε γ̂ φε〉eff , k ≡

(k, ω), k′ ≡ (k′, ω′), and k′′ ≡ (k′′, ω′′). Here 〈· · · 〉eff in the
right-hand side is taken over Seff with the zero uniform mass,
M = 0. The two inverse Green functions in Eq. (66) amputate
one-particle reducible parts of the composite Green function:

∂M�(2)
α (k,�, M )

∣∣
M=0 = (1 + δM )�

(2,1)
α (k,�). (68)

In the following, the 1PI part of the amputated composite

Green function �
(2,1)
α (k,�) will be calculated at k = 0 per-

turbatively in g in d = 2 − ε with the renormalized massless
theory Seff of Eqs. (23) and (24). The 1PI part thus obtained
contains 1/ε divergent terms. δM in the right-hand side of
Eq. (68) shall be chosen in such a way that all the 1/ε diver-

gent terms in �
(2,1)
α (k = 0,�) are canceled by δM , satisfying

Eq. (63).
The zeroth and the first-order contributions to the right-

hand side of Eq. (68) are shown in Fig. 5. [Ma] and [M2]
comprise the zeroth order contribution to the 1PI part of (1 +
δM )�

(2,1)
α (k,�):

[Ma] = γ̂ , [M2] = δ
(1)
M γ̂ .

As in Eq. (44), δ
(m)
M stands for the m-loop contribution to the

counterterm δM ; δM ≡ ∑
m δ

(m)
M . A one-loop diagram [Mb] is

the first-order contribution to �
(2,1)
α (k,�):

[Mb] = κ�ε

∫
p

1

−i� − γ · p
· 1

−i� + γ · p
γ̂

= κ�ε ·
(

− C2−ε

ε
�−ε

)
γ̂ + O(1) = − g

2ε
γ̂ + O(1).

(69)

(Mc1) (Mc2) (Md1) (Md2)

FIG. 6. Two-loop Feynman diagrams of the 1PI part of (1 +
δM )�

(2,1)
α (k, �).

The one-loop counterterm δ
(1)
M should cancel this 1/ε diver-

gence,

δ
(1)
M = g

2ε
. (70)

The two-loop contributions to the 1PI part of (1 +
δM )�

(2,1)
α (k,�) are shown in Figs. 6 and 7. All these diagrams

are evaluated at k = 0, and take a form of γ̂ (see below).
We will evaluate their coefficients of γ̂ in the following.
The coefficient of γ̂ in the diagram [Mc1] is calculated as
follows:

[Mc1] = κ2�2ε

∫
p,q

1

−i� + γ · q
· 1

−i� − γ · p

× 1

−i� + γ · p
· 1

−i� − (γ · p − γ · q)

= −κ2�2ε

∫
p,q

pq + q2 − �2

(�2 + q2)(�2 + p2)(�2 + (p + q)2)

= κ2�2ε
[1

2

(Cd

ε
�−ε

)2
−

(Cd

ε
�−ε

)2]
+ O(1)

= −1

2

g2

4ε2
+ O(1). (71)

The coefficients of γ̂ in the diagrams [Mc2], [Md1], and
[Md2] are calculated as follows:

[Mc2] = κ2�2ε

∫
p,q

1

−i� + γ · q
· 1

−i� − γ · p

× 1

−i� + γ · p
· 1

−i� − γ · q

= κ2�2ε
(C2−ε

ε
�−ε + O(ε)

)2
= g2

4ε2
+ O(1), (72)

(Me) (Mf1) (Mf2) (Mg)

FIG. 7. Two-loop contributions to the 1PI part that contains one-
loop counterterms, such as δ(1)κ , δ(1)�, and δ

(1)
M . Note that as shown

in the previous section, δ2 starts from the second order in g, so that it
does not contribute to these diagrams.
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[Md1] = κ2�2ε

∫
p,q

G0(q)G0(−q − p)G0(p)G0(−p)

= κ2�2ε 1

2

(Cd

ε
�−ε

)2
+ O(1) = g2

8ε2
+ O(1), (73)

[Md2] = κ2�2ε

∫
p,q

G0(p)G0(−q)G0(p)G0(−p)

= g2

8ε
+ O(1). (74)

The two-loop contributions to (1 + δM )�
(2,1)
α (k,�) that

contain one-loop counterterms are shown in Fig. 7. The di-
agram [Me] contains δκ’s one-loop counterterm,

[Me] = �εδ(1)κ

∫
p

1

−i� − γ · p
· 1

−i� + γ · p

= �ε

2Cd

g2

ε

(
− C2−ε

ε
�−ε + O(ε)

)
= − g2

2ε2
+ O(1).

(75)

The diagrams [M f 1] and [M f 2] are the κ’s first-order terms
that contain the δ�’s one-loop counterterm. A sum of these
two is calculated as follows:

[M f 1] + [M f 2] = 2κ�ε iδ(1)�

∫
p

G0(p)G0(p)G0(−p)

= 2κ�ε (−i�)2 g

2ε

[1

2
C2−ε�

−2−ε + O(ε)
]

= − g2

4ε
+ O(1). (76)

The diagram [Mg] is the κ’s first-order contribution to

δM�
(2,1)
α (k,�). Up to the second order in g, we use Eq. (70)

as δM ,

[Mg] = δ
(1)
M · κ�ε

∫
p

1

−i� − γ · p
· 1

−i� + γ · p

= g

2ε
· κ�ε

∫
p

−1

�2 + p2
= − g2

4ε2
+ O(1). (77)

By taking into account appropriate symmetry factors in each
diagram, we let the two-loop counterterm δ

(2)
M cancels the 1/ε

divergent terms in Eq. (68):

δ
(2)
M = −([Mc1] + [Mc2] + 2[Md1] + 2[Md2]

+ [Me] + [M f 1] + [M f 2] + [Mg]) = 3g2

8ε2
. (78)

Combining Eqs. (70) and (78), we finally obtain the mass
renormalization constant ZO up to the two-loop level as
follows:

Z−1
O = Z−1

2

(
1 + δ

(1)
M + δ

(2)
M

) = 1 + g

2ε
− g2

16ε
+ 3g2

8ε2
. (79)

The two-point vertex function has been renormalized up to
the linear order in the uniform mass, Eq. (65). The UV diver-
gent terms of the bare two-point vertex function are included
in the renormalization constants at the finite RG scale �. The
renormalized vertex functions in the small � limit determine
ground-state property of Seff with a finite uniform mass. When

the RG scale � goes to zero with fixed bare uniform mass m
and a fixed bare disorder strength 	3, the renormalized mass
M changes its value according to Eq. (61). The renormalized
M thus changed determines the ground-state property of Seff

with a finite (but small) uniform mass (see below). To deter-
mine how M changes in the small � limit, let us take an �

derivative of Eq. (61) with a fixed m and 	3,

0 ≡ ∂ ln m

∂ ln �

∣∣∣
	3,m

= ∂ ln M

∂ ln �

∣∣∣
	3,m

− ∂ ln ZO
∂ ln �

∣∣∣
	3,m

. (80)

This gives an anomalous dimension of the uniform mass, γO,

∂ ln M

∂ ln �

∣∣∣
	3,m

= ∂g

∂ ln �

∣∣∣
	3,m

d ln ZO
dg

= βg
d ln ZO

dg
≡ γO. (81)

From Eqs. (79) and (56), we obtain the two-loop evaluation of
the anomalous dimension of the uniform mass:

γO ≡ βg
∂ ln ZO

∂g
= g

2
− g2

8
. (82)

In the clean limit (g = 0), γO = 0, while γO can be nonzero
around a fixed point with finite g. With an introduction of a
renormalized dimensionless uniform mass ρm as M ≡ �ρm, a
scaling property of ρm around the massless theory is obtained
as follows:

∂ρm

∂l
= (1 − γO )ρm ≡ dmρm, (83)

with l ≡ − ln �. The two-loop scaling dimension of the
renormalized dimensionless uniform mass is finally obtained
around a massless fixed point (ρm = 0) as

dm = 1 − g

2
+ g2

8
. (84)

V. RG PHASE DIAGRAM OF TWO-DIMENSIONAL DIRAC
FERMION WITH RANDOM MASS

In the previous section, the two-loop RG equations for the
disorder strength and uniform mass as well as the dynamical
exponent are evaluated perturbatively in the disorder strength
around the clean-limit fixed point in d = 2 − ε, Eqs. (56),
(84), and (57). In this section, we set ε = 0, and study a
structure of a RG phase diagram for the random-mass Dirac
fermions in the two dimensions,

∂g

∂l
= −βg = −g2 + g3

2
,

∂ρm

∂l
= dmρm =

(
1 − g

2
+ g2

8

)
ρm, (85)

z = 1 + g

2
+ g2

8
. (86)

Here g, ρm, and z stand for the dimensionless random-mass-
type disorder strength, the dimensionless uniform mass, and
the dynamical exponent, respectively.

In the low-energy limit (l → +∞), the two coupling con-
stants flow in the g-ρm parameter space, forming a phase
diagram as shown in Fig. 1. The RG phase diagram comprises
of three phases, a diffusive thermal metal (DTM) with larger
g, a topological superconductor (TS) with g = 0 and ρm > 0,
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and a conventional Anderson insulator (AI) with g = 0 and
ρm < 0. The three phases meet at an IR unstable fixed point
at (g, ρm) = (gc, 0), that can be regarded as the multicritical
(tricritical) point in the preceding numerical phase diagram of
the CF model [11,14].

In the massless case (ρm = 0), the fixed point at g = gc

corresponds to a semimetal-metal (SM-M) quantum phase
transition point. For g < gc and ρm = 0, the finite disorder
strength is renormalized to zero in the low-energy limit, where
the ground state is characterized by the clean-limit massless
Dirac-fermion fixed point at (g, ρm) = (0, 0) (semimetal
phase). For g > gc, the disorder strength grows up into a
larger value. The ground state for g > gc is in a diffusive
metal phase, which is presumably described by another
stable fixed point at larger g. The criticality of the SM-M
quantum phase transition point at ρm = 0 is controlled by
the fixed point at g = gc. Since the weak disorder strength
(g < gc) is renormalized to zero, universality class of a phase
transition between AI and TS phases is determined by the
clean-limit massless Dirac-fermion fixed point. According to
the mapping between the random-mass Dirac fermion model
and the random-bond Ising model (RBIM), the massless
Dirac-fermion fixed point corresponds to the clean-limit Ising
fixed point in the RBIM [11].

The renormalized uniform mass is a relevant operator
not only around the clean-limit massless Dirac-fermion fixed
point but also around the fixed point at g = gc. Accordingly,
universality classes of the phase transition(s) between AI
and DTM as well as that between TS and DTM must be
determined by other saddle-point fixed point(s) at finite ρm.
Exploring these fixed points at finite ρm goes beyond the
scope of this paper and we leave it for future study. Two-
loop evaluations of the critical disorder strength, the scaling
dimensions of the disorder strength and the uniform mass, and
the dynamical exponent around the unstable fixed point are
gc = 2, dim[g − gc] = 2, dim[ρm] = 1/2, and z(gc) = 5/2,
respectively.

A correlation-length critical exponent for the SM-M quan-
tum phase transition at the massless case is obtained from the
following relation:

∂ ln(g − gc)

∂l
= ν−1, (87)

with ν(gc) = 1/2 at the two-loop level. This critical exponent
violates the Chayes inequality, that dictates νd � 2 with the
spatial dimension d [62]. To see whether the inequality holds
or not at the higher order in g, we evaluate in the next section
the correlation-length critical exponent up to the four-loop
level, using a relation between the effective theory Seff and
SU(N) Gross-Neveu (GN) model.

VI. HIGHER-LOOP RESULTS DEDUCED FROM
MAPPINGS TO OTHER MODELS

A. Transformation between random-mass and
random-chemical-potential in Dirac fermions in two dimensions

The two-loop RG equation [Eq. (85)] is consistent with
the previous studies of random Dirac fermion with chemical-
potential-type disorder, under a transformation between ran-
dom mass and random chemical potential [33,34]. To explain

this transformation, we start from the 2D replicated action for
the random-mass Dirac fermion Eq. (9),

S0 =
∫

dτd2x ψ†
α{∂τ − iv(∂1σ1 + ∂2σ2) + mσ3}ψα,

S1 = −	3

2

∫
dτdτ ′d2x(ψ†

ασ3ψα )x,τ (ψ†
βσ3ψβ )x,τ ′ . (88)

In the path integral formulation, ψ† and ψ can be considered
as independent integral variables. Thus, we can define a new
set of integral variables {ψ̄, ψ} as [63]

ψ† → ψ̄ = −iψ†σ3, ψ† = iψ̄σ3, (89)

while keeping ψ unchanged. The action of Eq. (88) with
{ψ̄, ψ} is given by

S0 =
∫

dτd2x ψ̄α{(iσ3)∂τ + iv(σ2∂1 − σ1∂2) + im}ψα,

S1 = +	3

2

∫
dτdτ ′d2x (ψ̄αψα )x,τ (ψ̄βψβ )x,τ ′ . (90)

Under an SU(2) rotation by the 90 degree,

ψ → ei π
4 σ3ψ, ψ̄ → ψ̄e−i π

4 σ3 ,

the action with {ψ̄, ψ} can be put into the following form:

S0 =
∫

dτd2x ψ̄α{(iσ3)∂τ − iv(σ1∂1 + σ2∂2) + im}ψα,

S1 = +	3

2

∫
dτdτ ′d2x (ψ̄αψα )x,τ (ψ̄βψβ )x,τ ′ . (91)

This action is related to a replicated effective theory for the
random Dirac fermion with the chemical-potential-type disor-
der potential [33,34,63],

S′
0 =

∫
dτd2x ψ̄α{∂τ − iv(σ1∂1 + σ2∂2) + m̃σ3}ψα,

S′
1 = −	0

2

∫
dτdτ ′d2x (ψ̄αψα )x,τ (ψ̄βψβ )x,τ ′ . (92)

Here m̃ and 	0 stand for bare uniform mass and chemical-
potential-type disorder strength. The two theories are mapped
to each other, where i∂τ , im, and 	3 in Eq. (91) correspond
to m̃ and ∂τ and −	0 in Eq. (92), respectively. In the lat-
ter theory, the preceding work employed the renormalized
single-particle energy as the RG scale and derive two-loop
RG equation for the disorder strength 	0 [34,58,59,64]. One
could also use the renormalized uniform mass as the RG
scale, to derive the same two-loop RG equation. Thanks to the
correspondence between Eqs. (91) and (92), such two-loop
RG equation must be identical to Eq. (56) under the sign
change of the disorder strength, 	0 ↔ −	3. In fact, this is
the case up to the two-loop level [34,58,59,64].

B. Relation to (1+1)-dimensional SU(N) Gross-Neveu model

The replicated 2D Dirac fermion theory with mass-type
disorder Eq. (88) as well as that with chemical-potential-type
disorder Eq. (92) are related to (d+1)D SU(N) Gross-Neveu
(GN) model [64–66],

SGN =
∫

dτdd x
{
ψ̄ai(∂μγ μ − m)ψa + ḡ

2
(ψ̄aψa)2

}
, (93)
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2 1 1 2

4

2

2

4

g

βg−

FIG. 8. The m-loop β function for coupling constant g with m =
1, 2, 3, 4. The two-loop and four-loop β function show a zero point
at positive values of g.

with a = 1, 2, · · · , N . The Dirac matrices {γ μ = γμ}
(μ = 0, 1, · · · , d) satisfy the relation {γμ, γν} = 2δμν in
(d + 1) Euclidean space time. The conjugate of the Dirac
field is defined as ψ̄ = iψ†γ 0. In the (1 + 1)-dimension, a
representation of γ μ matrices reduces to the two-by-two Pauli
matrices,

γ 0 = σ1, γ 1 = σ2, γ 0γ 1 = iσ3. (94)

Note that the quenched disorder in Eq. (91) does not change
the frequency of fermion lines, so that the fermion frequencies
can be regarded as an external parameter. Accordingly,
Eq. (91) in the two-spatial dimension in the zero replica limit
(R → 0) and Eq. (93) in the (1 + 1)-dimension in the limit of
N → 0 share the same renormalization group theory, where
∂1, ∂2, 	3, m, and v in Eq. (91) are replaced by ∂0, ∂1, ḡ,
m, and 1 in Eq. (93), respectively [66]. The β function for
the GN coupling constant βg and the anomalous dimension
γm of the uniform mass m have been calculated up to the
four-loop order [35,36]. In the limit of N → 0, they are

p p + q p

−q

p p + q p

q

(V2E) (V2F)

FIG. 10. Two-loop vertex diagrams.

given by

βḡ

∣∣
N=0 = (d − 2)ḡ + ḡ2

π
− ḡ3

2π2
+ 7ḡ4

16π3
− 17ζ3 + 4

8π4
ḡ5,

γm

∣∣
N=0 = ḡ

2π
− ḡ2

8π2
+ 3ḡ3

32π3
− [52ζ3 + 19]

128π4
ḡ4, (95)

where g corresponds to 	3 in Eq. (91). ζ3 is a value of
Riemann zeta function ζ3 = ζ (3) (Apéry’s constant). To
compare these equations with Eq. (85), we normalize g ≡ 	3

by π in the two dimensions from Eqs. (33) and (27):

g = 2C2	3 = g

π
. (96)

With this normalization, Eq. (95) is translated into the
following β functions for g and the uniform mass ρm for the
2D random-mass Dirac fermions,

∂g

∂l
= −g2 + g3

2
− 7

16
g4 + 17ζ3 + 4

8
g5,

∂ρm

∂l
=

(
1 − g

2
+ g2

8
− 3g3

32
+ 52ζ3 + 19

128
g4

)
ρm. (97)

At the two-loop level, Eq. (85) has the IR unstable fixed
point at gc = 2, which corresponds to the multicritical (tricriti-
cal) point. At the four-loop level, this critical disorder strength
moves to a smaller value, gc ≈ 0.655. Figure 8 shows the β

function of g for the one-, two-, three-, and four-loop order.
The four-loop evaluation of the scaling dimension of g − gc

and the uniform mass around the fixed point are dim[g −
gc] ≈ 1.66 and dim[ρm] ≈ 0.817, respectively. The critical
exponent associated with the SM-M quantum phase transi-
tion is evaluated as ν ≈ 0.60, which also violates the Chayes
inequality.

p q q p

γ̂ γ̂ γ̂ γ̂ γ̂

γ̂

p q p p

γ̂ γ̂ γ̂ γ̂ γ̂

γ̂

q p + q p p

γ̂ γ̂ γ̂ γ̂ γ̂

γ̂

p q

γ̂ γ̂ γ̂ γ̂ γ̂

γ̂

p + q p + q

(V2A) (V2B) (V2C) (V2D)

FIG. 9. Two-loop vertex diagrams.
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VII. SUMMARY AND DISCUSSION

In summary, we have performed renormalization group
analyses for the 2D Dirac fermion with the random-mass-
type disorder. We obtained the two-loop β function for the
disorder strength and observed an infrared unstable fixed
point at a finite disorder strength. The fixed point corresponds
to the quantum tricritical point that intervenes diffusive
metal phase, and two topologically distinct gapped phases in
two-dimensional class-D models. Two phase transition lines
between the diffusive metal and the two gapped phases and a
transition line between the two topologically distinct gapped
phases meet at the tricritical point. The dynamical exponent
and scaling dimension of the uniform mass are also evaluated
at the tricritical point up to the two-loop level.

The two-loop evaluations of the scaling dimensions of the
uniform mass and disorder strength shows that (i) the transi-
tion line between the two gapped phases is controlled by the
clean-limit massless-Dirac-fermion fixed point with the Ising
criticality, (ii) the transition lines between the diffusive metal
phase and gapped phases are controlled not by the tricriti-
cal point but by another saddle-point fixed point with finite
uniform Dirac mass. Using a mapping between the effective
theory for the 2D random-mass Dirac fermion and (1+1)D
SU(N) Gross-Neveu model in the limit of N → 0, we also
obtained the four-loop evaluations of the scaling dimensions
of the uniform mass and disorder strength around the tricritical
point. The four-loop result gives the same conclusion as the

two-loop result about the criticality of the three transition
lines. We found that the critical exponent ν for the semimetal-
metal(SM-M) quantum phase transition breaks the Chayes
inequality (νd � 2) both at the two-loop level and at the four-
loop level, indicating an unusual aspect of the disorder-driven
SM-M quantum phase transition in 2D class-D models.
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APPENDIX A: DISORDERED DIRAC HAMILTONIAN
AND REPLICATED DIRAC-FERMIONS ACTION

In the main text, the renormalization of the Green func-
tions of replicated Driac fermions is intensively studied.
The study leads to the renormalization group equation for
the 2D Dirac fermions with random mass. In this Ap-
pendix, we review an equivalence between averaged Green
functions for disordered Dirac Hamiltonian and Green func-
tions for the replicated Dirac fermions action Seff . A
partition function for the disordered Dirac Hamiltonian is
considered,

Z[{V3(r)}] ≡
∫

Dψ†Dψ e−S[{V3(r)}], S[{V3(r)}] ≡
∫ β/2

−β/2
dτ

( ∫
d2xψ†∂τψ + Ĥ [{V3(r)}]

)
, (A1)

where an integral over an imaginary time τ ranges from −β/2 to β/2 with an inverse temperature β ≡ 1/kBT . In the main text,
we always take β → +∞ (T = 0). A time-ordered 2n-point Green function is given by a trace over the action in Eq. (A1),

〈ψ (1) · · · ψ†(2n)〉 = 1

Z

∫
Dψ†Dψ ψ (1) · · · ψ†(2n)e−S, (A2)

with space-time coordinates i ≡ (τi, xi ) (i = 1, · · · , 2n). The Green function is averaged over different disorder realization
through the Gaussian distribution,

〈(· · · )〉dis ≡ 1

N

∫
DV3 (· · · ) exp

[
− 1

2	3

∫
d2xV3(x)2

]
. (A3)

where N is a normalization factor such that 〈1〉dis = 1. The averaged Green function is given by

〈〈ψ (1) · · · ψ†(2n)〉〉dis = 1

N

∫
DV3 〈ψ (1) · · · ψ†(2n)〉 exp

(
− 1

2	3

∫
V 2

3

)
. (A4)

To treat the disorder-averaged 2n-point Green functions systematically, we use a replica method throughout the paper
[53,54]. In the replica method, we introduce a replicated action that comprises of R-numbers of the identical free Dirac-fermion
Hamiltonians of Ĥ0 and an elastic-scattering interaction between the replicated Dirac fermions, Seff in Eq. (9). The averaged
2n-point connected Green functions are given by the replica-limit of 2n-point Green functions for the replicated Dirac-fermion
action (9) [54]. The averaged two-point Green function is given by

〈〈ψ (x, τ )ψ†(x′, τ ′)〉〉dis = lim
R→0

〈ψα (x, τ )ψ†
α (x′, τ ′)〉eff, (A5)

where the summation over the replica index is not assumed in the right-hand side. 〈· · · 〉eff in the right-hand side stands for a trace
over the replicated action with the elastic interaction,

〈· · · 〉eff ≡ 1

Zeff

∫
Dψ†

αDψα (· · · ) e−Seff , Zeff ≡
∫

Dψ†
αDψα e−Seff . (A6)
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FIG. 11. Two-loop vertex diagrams.

The averaged four-point connected Green function is given by the four-point Green function of the replicated action in the replica
limit,

〈〈ψ (1)ψ (2)ψ†(2′)ψ†(1′)〉c〉dis = lim
R→0

1

R

∑
α1,α2,β2,β1

∫
Dψ†

αDψα ψα1 (1)ψα2 (2)ψ†
β2

(2′)ψ†
β1

(1′) e−Seff ,

= lim
R→0

1

R

∑
α1,α2,β2,β1

〈ψα1 (1)ψα2 (2)ψ†
β2

(2′)ψ†
β1

(1′)〉eff . (A7)

Similarly, the equivalence between the disorder-averaged 2n-point connected Green function of the disordered single-particle
Hamiltonian and 2n-point Green function of the replicated action in the replica limit holds true for the higher order.

APPENDIX B: TWO-LOOP RENORMALIZATION TO THE FOUR-POINT VERTEX FUNCTION

In this Appendix, the two-loop contribution to the four-point vertex counterterm is calculated in details. The two-loop
contributions to the right-hand side of Eq. (32) are given by Feynman diagrams in Figs. 9–14. Note that each of them
could have divergent terms with tensor forms other than γ̂ ⊗ γ̂ . We will show in this Appendix that such divergent terms
cancel exactly in the summation: the sum only gives divergent terms with the tensor form of γ̂ ⊗ γ̂ . As in Eq. (32), the
vertex function is evaluated with zero external momenta and with the two external frequencies set to �. Accordingly, all the
internal fermion lines carry the same frequency � and we thus abbreviate G0(p,�) for internal fermion lines as G0(p) in the
following.

All the diagrams in Fig. 9 give the divergent terms with γ̂ ⊗ γ̂ :

[V 2A] = κ3�3ε

∫
p,q

γ̂ G0(p)γ̂ G0(q)γ̂ G0(q)γ̂ G0(p)γ̂ ⊗ γ̂ , (B1)

[V 2B] = κ3�3ε

∫
p,q

γ̂ G0(p)γ̂ G0(p + q)γ̂ G0(p + q)γ̂ G0(q)γ̂ ⊗ γ̂ , (B2)

[V 2C] = κ3�3ε

∫
p,q

γ̂ G0(q)γ̂ G0(p + q)γ̂ G0(p)γ̂ G0(p)γ̂ ⊗ γ̂ , (B3)

[V 2D] = κ3�3ε

∫
p,q

γ̂ G0(p)γ̂ G0(q)γ̂ G0(p)γ̂ G0(p)γ̂ ⊗ γ̂ . (B4)

p q p

−p

p q p

p

(V2I) (V2J)

p p

−p

γ̂ γ̂

γ̂ γ̂

p p

−p

γ̂ γ̂

γ̂ γ̂

(V2f) (V2g)

FIG. 12. Two-loop vertex diagrams.
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p p

q q

γ̂ γ̂ γ̂

γ̂ γ̂ γ̂

p q

−p −q

p q

−p q − p

p q

p − q p

p q

q p

(V2K) (V2L) (V2M) (V2N) (V2O)

FIG. 13. Two-loop vertex diagrams.

These integrals always take the tensor-form of γ̂ ⊗ γ̂ and their coefficients are calculated as follows:

[V 2A] = κ3�3ε

∫
p

G0(p)
−1

�2 + q2
G0(−p) = κ3�3ε

( ∫
p

−1

�2 + p2

)2

= κ3�3ε
(

− C2−ε

ε
�−ε

)2
+ O(1) = �ε

2Cd
g

g2

4ε2
+ O(1), (B5)

[V 2B] = κ3�3ε

∫
p,q

i� − (γ · p)

�2 + p2
· −1

�2 + (p + q)2
· i� + (γ · q)

�2 + q2
= κ3�3ε

∫
p,q

�2 + (γ · q)(γ · p)

(�2 + p2)[�2 + (p + q)2](�2 + q2)

= −κ3�3ε 1

2

(C2−ε

ε
�−ε

)2
+ O(1) = − �ε

2Cd
g

g2

8ε2
+ O(1), (B6)

and

[V 2C] = κ3�3ε

∫
p,q

i� + (γ · q)

�2 + q2
· i� − γ (p + q)

�2 + (p + q)2
· −1

�2 + p2

= κ3�3ε

∫
p,q

1

(�2 + p2)[�2 + (p + q)2]
+ κ3�3ε

∫
p,q

(γ · q)(γ · p)

(�2 + p2)[�2 + (p + q)2](�2 + q2)

= κ3�3ε
(C2−ε

ε
�−ε + O(ε)

)2
− κ3�3ε 1

2

(C2−ε

ε
�−ε

)2
+ O(1) = �ε

2Cd
g

g2

8ε2
+ O(1), (B7)

[V 2D] = κ3�3ε

∫
p,q

i� − (γ · p)

�2 + p2
· i� + (γ · q)

�2 + q2
· −1

�2 + p2
= κ3�3ε

∫
p,q

�2

(�2 + p2)2(�2 + q2)

= κ3�3ε
(1

2
C2−ε�

−ε + O(ε)
)(C2−ε

ε
�−ε + O(ε)

)
= �ε

2Cd
g

g2

8ε
+ O(1). (B8)

The second class of the two-loop contributions to the vertex function is shown in Figs. 10–12. These diagrams al-
ways take a form of γ0 ⊗ γ0; they do not contribute to the γ̂ ⊗ γ̂ -type vertex. We will see that a sum of them
is finite in the limit of ε → 0. A sum of diagram [V 2E ] and diagram [V 2F ] gives a finite order in small ε

(1)
(1)

(1)

(V2a) (V2b) (V2c)
FIG. 14. Two-loop diagrams within one-loop counterterms.
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limit,

[V 2E ] + [V 2F ] = κ3�3ε

∫
p,q

G0(−p)G0(p + q)G0(−p) ⊗ [G0(q) + G0(−q)]

= κ3�3ε

∫
p,q

i� − (γ · p)

�2 + p2
· i� + (γ · p + γ · q)

�2 + (p + q)2
· i� − (γ · p)

�2 + p2
⊗ 2i�

�2 + q2

= κ3�3ε

∫
p,q

2�4 + 2�2(p2 + 2pq)

(�2 + p2)2[�2 + (p + q)2](�2 + q2)
γ0 ⊗ γ0 = O(1) · γ0 ⊗ γ0. (B9)

A sum of diagrams [V 2G] and [V 2H] has a 1/ε singularity in the small ε limit,

[V 2G] + [V 2H] = κ3�3ε

∫
p,q

G0(−p)G0(p + q)G0(−q) ⊗ [G0(q) + G0(−q)]

= κ3�3ε

∫
p,q

i� − (γ · p)

�2 + p2
· i� + (γ · p + γ · q)

�2 + (p + q)2
· i� − (γ · q)

�2 + q2
⊗ 2i�

�2 + q2

= κ3�3ε

∫
p,q

2�4 + 2�2[p2 + q2 + (γ · p)(γ · q)]

(�2 + p2)(�2 + q2)2[�2 + (p + q)2]
γ0 ⊗ γ0

= κ3�3ε

∫
q

2�2

(�2 + q2)2

∫
p

1

�2 + p2
γ0 ⊗ γ0 + O(1) = κ3�ε C2−ε

ε
C2−εγ0 ⊗ γ0 + O(1). (B10)

The singularity is canceled by the two-loop contributions [V 2d] and [V 2e] with the one-loop counterterm δκ:

[V 2d] + [V 2e] = κ�εδ(1)κ · �ε

∫
p

G0(−p) ⊗ [G0(p) + G0(−p)]

= κ�ε · 2�εκ2 C2−ε

ε
·
∫

p

i� − γ · p
�2 + p2

⊗ 2i�

�2 + p2
= −2κ3�ε C2−ε

ε
C2−εγ0 ⊗ γ0. (B11)

Namely, with proper symmetry factors taken into account, the sum of these four diagrams gives a finite contribution in the small
ε limit,

4[V 2G] + 4[V 2H] + 2[V 2d] + 2[V 2e] = O(1) · γ0 ⊗ γ0. (B12)

Diagrams [V 2I] and [V 2J] cancel each other,

[V 2I] + [V 2J] = κ3�3ε

∫
p,q

G0(−p)G0(q)G0(−p) ⊗ [G0(p) + G0(−p)]

= κ3�3ε

∫
p,q

i� − (γ · p)

�2 + p2
· i� + (γ · q)

�2 + q2
· i� − (γ · p)

�2 + p2
⊗ 2i�

�2 + p2

= κ3�3ε

∫
p,q

�2 − p2

(�2 + p2)2(�2 + q2)
⊗ 2�2

�2 + p2

= κ3�3ε2�2
∫

p

�2 − p2

(�2 + p2)3

∫
q

1

�2 + q2
γ0 ⊗ γ0. (B13)

Here the momentum integral over p in the right-hand side reduces to zero,∫
p

2�2

(�2 + p2)3
−

∫
p

1

(�2 + p2)2
= 2�2 1

4
C2−ε�

−4−ε − 1

2
C2−ε�

−2−ε = 0.

Similarly, diagrams (V 2 f ) and (V 2g) cancel each other exactly:

[V 2 f ] + [V 2g] = iδ(1)�

∫
p
γ̂ G0(p)G0(p)γ̂ ⊗ [G0(p) + G0(−p)]

= iδ(1)�

∫
p

−�2 + p2

(�2 + p2)2
⊗ 2i�

�2 + p2
= −2δ(1)��

∫
p

−�2 + p2

(�2 + p2)3
γ0 ⊗ γ0 = 0. (B14)

We conclude that a sum of all the diagrams in Figs. 10–12 generate a γ0 ⊗ γ0-type term, while it has no divergence in the limit
of ε → 0. The third class of the two-loop diagrams for the vertex function is shown in Fig. 13. They give divergent terms with
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the γ̂ ⊗ γ̂ tensor form. Diagram [V 2K] is calculated as follows:

[V 2K] = κ3�3ε

∫
p,q

γ̂ G0(p)γ̂ G0(p)γ̂ ⊗ γ̂ G0(p)γ̂ G0(p)γ̂ = κ3�3ε

∫
p,q

−1

�2 + p2
· −1

�2 + q2
γ̂ ⊗ γ̂

= κ3�3ε
[C2−ε

ε
�−ε + O(ε)

]2
γ̂ ⊗ γ̂ =

(
κ�ε g2

4ε2
+ O(1)

)
γ̂ ⊗ γ̂ =

(
�ε

2Cd
g

g2

4ε2
+ O(1)

)
γ̂ ⊗ γ̂ . (B15)

It is convenient to calculate a sum of [V 2L] and [V 2M]:

[V 2L] + [V 2M] = κ3�3ε

∫
p,q

G0(−p)G0(q)γ̂ ⊗ [G0(p)G0(−q) + G0(−q)G0(p)]γ̂

= κ3�3ε

∫
p,q

i� − (γ · p)

�2 + p2
· i� + (γ · q)

�2 + q2
γ̂ ⊗

[ i� + (γ · p)

�2 + p2
· i� − (γ · q)

�2 + q2
+ i� − (γ · q)

�2 + q2
· i� + (γ · p)

�2 + p2

]
γ̂ .

In the right-hand side, odd terms in p or q vanish:

[V 2L] + [V 2M] = 2κ3�3ε

∫
p,q

−�2 − (γ · p)(γ · q)

(�2 + p2)(�2 + q2)
γ̂ ⊗ −�2 − pq

(�2 + p2)(�2 + q2)
γ̂ (B16)

+ 2κ3�3ε

∫
p,q

−i�(γ · p − γ · q)

(�2 + p2)(�2 + q2)
γ̂ ⊗ i�(γ · p − γ · q)

(�2 + p2)(�2 + q2)
γ̂ . (B17)

Under an exchange between p and q in the integrand, Eq. (B16) reduces to

(B16) = 2κ3�3ε

∫
p,q

(�2 + pq)2

(�2 + p2)2(�2 + q2)2
γ̂ ⊗ γ̂ = 2κ3�3ε

∑
i, j

∫
p,q

piqi p jq j

(�2 + p2)2(�2 + q2)2
γ̂ ⊗ γ̂ + O(1).

Those summands with i �= j vanish under the integral over p or q. Those summands with i = j give out

(B16) = 2κ3�3ε
∑

i

∫
p,q

p2
i

(�2 + p2)2

q2
i

(�2 + q2)2
γ̂ ⊗ γ̂ = 2κ3�3ε

∑
i

∫
p

p2
i

(�2 + p2)2

1

d

∫
q

q2

(�2 + q2)2
γ̂ ⊗ γ̂

= κ3�3ε 2

d

∫
p

p2(
�2 + p2

)2

∫
q

q2

(�2 + q2)2
γ̂ ⊗ γ̂ .

The integral in the right-hand side is calculated as follows:∫
p

p2

(�2 + p2)2
=

∫
p

1

�2 + p2
−

∫
p

�2

(�2 + p2)2
= C2−ε

ε
�−ε

(
1 − ε

2

)
+ O(ε).

Thus, we finally have Eq. (B16) as

(B16) = κ3�3ε 2

d

[C2−ε

ε
�−ε

(
1 − ε

2

)
+ O(ε)

]2
γ̂ ⊗ γ̂

=
[
κ3�ε

C2
2−ε

ε2
− κ3�ε

C2
2−ε

2ε
+ O(1)

]
γ̂ ⊗ γ̂ =

[
�ε

2Cd

g3

4ε2
− �ε

2Cd

g3

8ε
+ O(1)

]
γ̂ ⊗ γ̂ .

For Eq. (B17), those terms proportional to piq j (i = j or i �= j) or to pi p j (i �= j) vanish under the integral over p or q,

(B17) = 2κ3�3ε

∫
p,q

−i�(γ · p − γ · q)

(�2 + p2)(�2 + q2)
γ̂ ⊗ i�(γ · p − γ · q)

(�2 + p2)(�2 + q2)
γ̂ = 2κ3�3ε

∫
p,q

�2(pγ γ̂ ⊗ pγ γ̂ + qγ γ̂ ⊗ qγ γ̂ )

(�2 + p2)2(�2 + q2)2
,

= 2κ3�3ε
∑

i

∫
p,q

�2
(
p2

i + q2
i

)
(�2 + p2)2(�2 + q2)2

γiγ̂ ⊗ γiγ̂ = 2κ3�3ε
∑

i

1

d

∫
p,q

�2(p2 + q2)

(�2 + p2)2(�2 + q2)2
γiγ̂ ⊗ γiγ̂

= κ3�3ε
∑

i

1

d

∫
p

1

�2 + p2

∫
q

4�2

(�2 + q2)2
γiγ̂ ⊗ γiγ̂ + O(1)

= 2κ3�ε 1

d

C2−ε

ε
C2−ε

∑
i

γiγ̂ ⊗ γiγ̂ + O(1).

Thus, the sum of [V 2L] and [V 2M] generates a divergent term with a tensor-form of γiγ̂ ⊗ γiγ̂ . However, such
divergent term is canceled by a sum of [V 2N] and [V 2O]. The sum of [V 2N] and [V 2O] is calculated as

174205-18



RENORMALIZATION GROUP ANALYSIS OF DIRAC … PHYSICAL REVIEW B 104, 174205 (2021)

follows:

[V 2N] + [V 2O] = κ3�3ε

∫
p,q

G0(−p)G0(q)γ̂ ⊗ [G0(p)G0(q − p) + G0(q − p)G0(p)]γ̂

=
∫

p,q

i� − (γ · p)

�2 + p2
· i� + (γ · q)

�2 + q2
γ̂

⊗
[

i� + (γ · p)

�2 + p2
· i� + (γ · q − γ · p)

�2 + (q − p)2
+ i� + (γ · q − γ · p)

�2 + (q − p)2
· i� + (γ · p)

�2 + p2

]
γ̂ .

In the right-hand side, odd terms in p or q vanish under the momentum integrals:

[V 2N] + [V 2O] = 2κ3�3ε

∫
p,q

−�2 − (γ · p)(γ · q)

(�2 + p2)(�2 + q2)
γ̂ ⊗ −�2 + p(q − p)

(�2 + p2)[�2 + (q − p)2]
γ̂ (B18)

+ 2κ3�3ε

∫
p,q

−i�(γ · p − γ · q)

(�2 + p2)(�2 + q2)
γ̂ ⊗ i�(γ · q)

(�2 + p2)[�2 + (q − p)2]
γ̂ . (B19)

Eq. (B18) takes the tensor form of γ̂ ⊗ γ̂ , whose coefficient is calculated as follows:

(B18) = 2κ3�3ε

∫
p,q

�2 + (γ · p)(γ · q)

(�2 + p2)(�2 + q2)
· �2 − p(q − p)

(�2 + p2)[�2 + (q − p)2]
γ̂ ⊗ γ̂

= κ3�3ε

∫
p,q

�2 − (γ · p)(γ · q)

(�2 + p2)
· 2�2 + p2 − q2 + (q + p)2

(�2 + p2)(�2 + q2)[�2 + (q + p)2]
γ̂ ⊗ γ̂

= κ3�3ε

∫
p,q

{
−(γ · p)(γ · q)

(�2 + p2)(�2 + q2)[�2 + (q + p)2]
+ �2

(�2 + p2)2(�2 + q2)
− 1

(�2 + p2)(�2 + q2)

}
γ̂ ⊗ γ̂ + O(1).

After the momentum integrals, each of the three integrands in the right-hand side are diverging with respect to small ε,

(B18) = κ3�3ε

{
1

2

(C2−ε

ε
�−ε

)2
+

[C2−ε�
−ε

2
+ O(ε)

][C2−ε

ε
�−ε + O(ε)

]
−

[C2−ε

ε
�−ε + O(ε)

]2
+ O(1)

}
γ̂ ⊗ γ̂

= κ3�ε

{
1

2

C2
2−ε

ε
− 1

2

C2
2−ε

ε2
+ O(1)

}
γ̂ ⊗ γ̂ = �ε

2Cd

{
g3

8ε
− g3

8ε2
+ O(1)

}
γ̂ ⊗ γ̂ .

Eq. (B19) takes the tensor form of γiγ̂ ⊗ γiγ̂ , whose coefficient is calculated as follows,

(B19) = 2κ3�3ε

∫
p,q

−i�(γ · p − γ · q)

(�2 + p2)(�2 + q2)
γ̂ ⊗ i�(γ · q)

(�2 + p2)[�2 + (q − p)2]
γ̂

= 2κ3�3ε�2 1

d

∫
p,q

q · p − q2

(�2 + p2)2(�2 + q2)[�2 + (q − p)2]

∑
i

γiγ̂ ⊗ γiγ̂

= 2κ3�3ε�2 1

d

∫
p,q

−q2

(�2 + p2)2(�2 + q2)[�2 + (q − p)2]

∑
i

γiγ̂ ⊗ γiγ̂ + O(1).

The first term in the right-hand side diverges in the small ε limit, taking the similar form as Eq. (B17) with the opposite sign:

(B19) = 2κ3�3ε�2 1

d

∫
p,q

−1

(�2 + p2)2(�2 + (q − p)2)

∑
i

γiγ̂ ⊗ γiγ̂ + O(1)

= −κ3�3ε 1

d

∫
p

2�2

(�2 + p2)2

∫
q

1

�2 + q2

∑
i

γiγ̂ ⊗ γiγ̂ + O(1)

= −κ3�ε 1

d

C2−ε

ε
C2−ε

∑
i

γiγ̂ ⊗ γiγ̂ + O(1).

Accordingly, the divergent terms in Eqs. (B17) and (B19) cancel each other in the sum of all the diagrams in Fig. 13 with proper
symmetry factors. As a result, the sum of all the diagrams gives out only the divergent term with the tensor-form of γ̂ ⊗ γ̂ :

[V 2L] + [V 2M] + 2
(
[V 2N] + [V 2O]

) = (B16) + (B17) + 2(B18) + 2(B19) = �ε

2Cd

g3

8ε
γ̂ ⊗ γ̂ . (B20)
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The last class of the two-loop contributions to the vertex function is shown in Fig. 14. They take the tensor-form of γ̂ ⊗ γ̂ .
Their respective coefficients are calculated as follows:

[V 2a] = κ2�2ε iδ(1)�

∫
p

G0(−p)G0(+p)G0(+p)γ̂ ⊗ γ̂ = κ2�2ε i�
g

2ε

∫
p

i�

(�2 + p2)2
γ̂ ⊗ γ̂

= κ2�2ε
(
i�

)2 g

2ε

[1

2
C2−ε�

−2−ε + O(ε)
]
γ̂ ⊗ γ̂ = − �ε

2Cd
g

g2

8ε
γ̂ ⊗ γ̂ + O(1), (B21)

[V 2b] = [V 2c] = κ�ε �εδ(1)κ

∫
p

G0(+p)G0(−p)γ̂ ⊗ γ̂ = −κ�ε �ε

2Cd

g2

ε

∫
p

1

�2 + p2
γ̂ ⊗ γ̂

= −κ�ε �ε

2Cd

g2

ε

[C2−ε

ε
�−ε + O(ε)

]
γ̂ ⊗ γ̂ = − �ε

2Cd

g3

2ε2
γ̂ ⊗ γ̂ + O(1). (B22)

We have calculated all the two-loop vertex diagrams in Figs. 10–14 and shown that the divergent terms take the tensor form
of γ̂ ⊗ γ̂ . A sum of all these divergent terms, Eqs. (B5)–(B22), gives the following:

[V 2] = 2[V 2A] + 2[V 2B] + 4[V 2C] + 4[V 2D] + [V 2K] + [V 2L] + [V 2M] + 2([V 2N] + [V 2O]) + 4[V 2a] + 2[V 2b] + 2[V 2c]

= �ε

2Cd
g

(
g2

8ε
− g2

ε2

)
γ̂ ⊗ γ̂ + O(1). (B23)

The two-loop vertex counterterm should cancel the divergence in Eq. (B23):

�ε δ(2)κ γ̂ ⊗ γ̂ + [V 2] = O(1).

From this, we obtain the two-loop vertex counterterm as follows:

�εδ(2)κ = �ε

2Cd
g
(

− g2

8ε
+ g2

ε2

)
. (B24)
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