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Eleonora Guarini ,1,* Fabrizio Barocchi ,1 Alessio De Francesco,2 Ferdinando Formisano,2 Alessio Laloni ,3

Ubaldo Bafile ,4 Milva Celli ,4 Daniele Colognesi ,4 Renato Magli,5 Alessandro Cunsolo,6 and Martin Neumann 7

1Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
2CNR-IOM & INSIDE@ILL c/o Operative Group in Grenoble (OGG) F-38042 Grenoble, France

and Institut Laue Langevin (ILL) F-38042 Grenoble, France
3CNR-IOM & INSIDE@ILL c/o Operative Group in Grenoble (OGG) F-38042 Grenoble, France

and European Spallation Source ERIC, P.O. Box 176, SE-221 Lund, Sweden
4Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata “Nello Carrara”, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy

5Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università di Milano Statale, via Saldini 50, I-20133 Milano, Italy
6Department of Physics, University of Wisconsin at Madison, 1150 University Avenue, Madison, Wisconsin, USA

7Fakultät für Physik der Universität Wien, Kolingasse 14-16, A-1090 Wien, Austria

(Received 5 September 2021; revised 25 October 2021; accepted 28 October 2021; published 10 November 2021)

We present an experimental and simulation study of the collective dynamics of liquid D2 in the range of
exchanged wave vectors 3 � Q � 14 nm−1. Neutron Brillouin scattering results for the center-of-mass dynamic
structure factor of this moderately quantum fluid are compared, on an absolute scale, with those obtained by
three different quantum simulation methods such as ring polymer molecular dynamics and two versions of the
Feynman-Kleinert approach. The experimental data can be well described by dynamical models typically used
for liquids. Some discrepancies show up both among simulations, and between simulations and experimental
data. Such discrepancies are found to mainly concern the damping of the propagating sound modes.
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I. INTRODUCTION

Cryogenic fluids have always attracted much interest, ow-
ing to both fundamental and technical reasons. In particular,
the hydrogen liquids (mainly H2 and D2) display a weakly
quantum behavior (see e.g., Ref. [1] for a brief description)
still challenging simulation-based determinations of their dy-
namical properties and, at the same time, are the most used
moderating materials for the production of cold neutrons (i.e.,
with energies around 1 meV), which are quite important spec-
troscopic probes in condensed matter research. From such an
applicative point of view, a good knowledge of the neutron
double differential cross sections (DDCS) of H2, D2, and
other moderating materials has become an indispensable re-
quirement for a proper development and operation of neutron
sources.

The neutron DDCS depends in an essential way on both
the collective and the single-particle dynamics, embodied by
the total S(Q, ω), and self (single-particle) Ss(Q, ω) center-of-
mass dynamic structure factors, respectively. Unfortunately,
in these liquids, the former is far from being well known.
This fact constitutes a problem particularly for D2 where,
differently from H2, the distinct (interparticle) and the single-
particle dynamics [2,3] are almost equally relevant, being the
incoherent and coherent scattering nuclear cross sections of
comparable magnitudes for the deuteron [4].

*Corresponding author: guarini@fi.infn.it

An appropriate design of new-generation D2-based cold
neutron sources, therefore, crucially depends on researchers‘
ability in computing both the coherent and incoherent com-
ponents contributing to the DDCS of this molecular system
in its liquid phase. This implies that future progress in this
field is also intimately tied to the development of reliable sim-
ulation methods permitting to build up the extended S(Q, ω)
databases needed in such applications, and which of course
it is hard to try to collect by means of demanding and time-
consuming experiments.

However, the effects of particle quantum delocalization in
this low mass and low temperature liquid, which have for long
been neglected in nuclear data processing [5,6] and in the past
attempts to model its DDCS [7–9], make the (clearly conve-
nient) simulation route quite a demanding task, as well. As
mentioned, this is particularly true in the D2 case, since a good
prediction of the total S(Q, ω) is as important as that of its self
part alone, namely Ss(Q, ω). Concerning the latter, we showed
a few years ago [10,11] that present quantum simulation meth-
ods like Centroid Molecular Dynamics (CMD) [12–15] and
Ring Polymer Molecular Dynamics (RPMD) [16–18], used in
combination with the isotropic Silvera-Goldman pair potential
[19], provide good estimates of the velocity autocorrelation
function of the hydrogen liquids. Therefore, by means of the
Gaussian approximation [20,21], it is possible to obtain quite
reliable, quantum compliant, determinations of the center-of-
mass Ss(Q, ω) of both H2 and D2. In fact, through this method,
a quite good agreement with experimental total cross-section
data was found for both H2 and D2 in the respective incident
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energy ranges where the contribution of the distinct part of
S(Q, ω) turns out to be negligible (see e.g., Figs. 12 and 14 of
Ref. [22]).

The situation is instead far less defined as soon as one
considers the direct simulation of both S(Q, ω) and Ss(Q, ω)
by quantum techniques, since two problems exist. The first
depends on the fact that the autocorrelation of the Fourier
components of density fluctuations contains position opera-
tors in exponential form, and such a nonlinearity represents
an intrinsic limitation, difficult to deal with, of both the CMD
and RPMD schematizations [13,16,18]. The second is related
to the form in which both neutron [23–28] and x-ray [29]
inelastic scattering data on D2 have been published, which
strongly hinders reliable comparisons with simulation results
for the center-of-mass dynamics. In both experimental cases
the results are indeed only given in arbitrary units and within
the instrumental finite resolution of each specific measure-
ment. Moreover, in the specific case of neutron scattering,
only the DDCS spectra have been reported with no attempt to
extract the coherent component, i.e., the key quantity S(Q, ω),
from the total signal. In other words, the center-of-mass dy-
namic structure factor of liquid D2 in absolute units and free
from resolution effects has never been published, despite the
various neutron scattering experiments devoted to this sample
in the 1990s [23–27] and in more recent years [28].

This serious lack is partly the cause, in our view, of
the still confused picture we have about the performance of
quantum simulation algorithms for direct determinations of
the dynamic structure factors. The only, rather recent, ex-
ceptions in the literature regard (i) the performance of the
Feynman-Kleinert Linearized Path Integral (FK-LPI) method
[30], which was tested against a revised analysis [31] of the
quoted x-ray data [29], and (ii) a similar comparison [32]
carried out to evaluate the accuracy of the Feynman-Kleinert
Quasi Classical Wigner (FK-QCW) modification [33] of the
previous FK-LPI algorithm. Clearly, these last works [31,32]
have the great merit to finally explore the level of agreement
between quantum simulations and experimental results for
S(Q, ω). Regretfully, it is not easy to catch the details of
the comparisons from the published figures. Moreover, the
x-ray data there reported were not fully independent of the
simulations since, as explained by the authors, the latter were
used, either in the FK-LPI or in the FK-QCW form, to refine
the extraction of S(Q, ω) from the raw x-ray spectra. A further
limitation concerns the missing normalization of S(Q, ω) to
absolute units and its resolution broadening. Especially when
quantitative comparisons cannot be relaxed, as it is the case of
real applications, agreements regarding only an unnormalized
broadened spectral shape are obviously insufficient.

What we described above is the background motivating our
present work on the dynamics of liquid D2, with which we try
to achieve four goals: (i) to provide an absolute scale deter-
mination of its neutron DDCS that might serve as a reference
in tests of the computations for cold source design and total
cross-section calculations; (ii) to derive S(Q, ω) in absolute
units in a Q range, which is significant for studies of the
collective dynamics [i.e., from a few inverse nanometers up
to wave vectors larger than Qp/2, with Qp being the position
of the main maximum in the static structure factor S(Q)]; (iii)
to analyze the relaxation and excitation modes of the fluid;

and (iv) to compare the experimental S(Q, ω) with the one
obtained from RPMD, FK-LPI, FK-QCW simulations.

The lineshape analysis of the neutron data carried out by
using the Lorentzian modes decomposition introduced some
years ago [34–36] ensures that (at least) the lower-order spec-
tral moments predicted for a quantum system are satisfied
[21]. Therefore, we present an experimental study of the col-
lective dynamics conducted with the highest possible control
on the physical consistency of the results and on their com-
pliance with fundamental properties of the dynamic structure
factor of a quantum fluid. We will show that previous analyses,
performed without imposing physical constraints in the fit
procedure, led to quite different results whose reliability is
therefore rather uncertain.

Before describing the experiment and the analysis of the
neutron data, it is useful to review the formal apparatus pro-
viding an expression for the neutron DDCS of a homonuclear
diatomic low-temperature liquid, and of D2 in particular. In
the next section we summarize the basic formulas enabling
the treatment of the response to an unpolarized neutron beam
of such a molecular fluid, in its normal (67% ortho – 33%
para) composition, assuming that its molecules behave as
freely rotating harmonic oscillators, i.e., their interaction is
governed by an isotropic intermolecular potential, with trans-
lations completely decoupled from the intramolecular degrees
of freedom.

II. GENERAL FORMALISM FOR THE DDCS OF LIQUID D2

The property of a molecular system, which is probed by
neutron scattering [37,38] (denoted by the subscript “n”) is
the combination

Fn(Q, t ) = u(Q)F (Q, t ) + [v(Q, t ) − u(Q)]Fs(Q, t ), (1)

of the center-of-mass total and single-molecule (or self) inter-
mediate scattering functions, defined, respectively, as

F (Q, t ) = 1

N

N∑
i, j=1

〈e−iQ·ri (0)eiQ·r j (t )〉, (2)

Fs(Q, t ) = 1

N

N∑
i=1

〈e−iQ·ri (0)eiQ·ri (t )〉 (3)

with r j (t ) denoting the position vector of the center of mass
of the jth molecule at a generic time t , N being the to-
tal number of molecules in the system. The right-hand side
of Eqs. (2) and (3) are the autocorrelation functions of the
Fourier components, with wave vector Q, of the microscopic
density [2], which, except for purely classical systems, are in
general complex quantities. In Eq. (1), the functions u(Q) and
v(Q, t ) − u(Q) are the molecular equivalents, respectively, of
b2

coh and b2
inc in the monatomic case, where bcoh and binc are the

coherent and incoherent neutron scattering lengths of the nu-
clear species. Following the general treatment of homonuclear
diatomic molecules proposed by Young and Koppel in 1964
[39], it is possible to obtain expressions for u(Q) and v(Q, t )
that depend on the scattering lengths, the initial state proba-
bilities, the rotovibrational quantum numbers, and the nuclear
spin statistics [38]. In particular v(Q, t ), which also de-
pends on the ortho-para concentration, contains combinations
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of the coherent and incoherent scattering lengths, which have
different expressions (see Table II of Ref. [38]) according to
whether the nuclei of the molecule are bosons or fermions.
This implies that, when expressing v(Q, t ) in the general form
[38]

v(Q, t ) =
∑

J0J1v0v1

eiωJ0J1 t eiωv0v1 tF (Q; J0, J1, v0, v1), (4)

the function F (Q; J0, J1, v0, v1) changes when passing from
H2 to D2, in addition, of course, to its variations related to the
specific transition, sample composition, and thermodynamic
conditions. In Eq. (4), the rotational (ωJ0J1 ) and vibrational

(ωv0v1 ) transition frequencies, involving the initial (subscript
0) and final (subscript 1) quantum numbers, are seen to de-
termine the time dependence of v(Q, t ). In the special case
of a low-temperature sample, all molecules are assumed to lie
initially in the vibrational ground state (v0 = 0), therefore it
is possible to write ωv0v1 = v1ωv, with ωv indicating the fre-
quency of the harmonic oscillator of reduced mass μ = M/4
in the homonuclear diatomic case (M is the total molecu-
lar mass). It is important to underline that, differently from
v(Q, t ), which depends on both the coherent and incoherent
scattering lengths, u(Q) contains only the coherent one.

By performing the time Fourier transform of Eq. (1), one
can also write the neutron version of the dynamic structure
factor as

Sn(Q, ω) = 1

2π

{
u(Q)

∫ +∞

−∞
dt e−iωt F (Q, t ) +

∫ +∞

−∞
dt e−iωt [v(Q, t ) − u(Q)]Fs(Q, t )

}
= u(Q)S(Q, ω) + Js(Q, ω), (5)

where, using Eqs. (1) and (4) with v0 = 0, Js(Q, ω) is given by

Js(Q, ω) =
[

1

2π

∫ +∞

−∞
dt e−iωtv(Q, t )Fs(Q, t )

]
− u(Q)Ss(Q, ω)

= 1

2π

∑
J0J1v1

∫ +∞

−∞
dt e−i(ω−ωJ0J1 −v1ωv )tF (Q; J0, J1, 0, v1)Fs(Q, t ) − u(Q)Ss(Q, ω)

=
∑

J0J1v1

F (Q; J0, J1, 0, v1)Ss(Q, ω − ωJ0J1 − v1ωv) − u(Q)Ss(Q, ω). (6)

Details for the calculation of u(Q) and F (Q; J0, J1, v0, v1)
can be found in Ref. [38].

The first term in Eq. (5) is therefore related to the center-of-
mass total dynamic structure factor S(Q, ω) we are interested
in when studying the translational collective dynamics of the
system. The second term Js(Q, ω) is instead related, in the
way shown in Eq. (6), to the single-molecule translational
dynamics expressed by Ss(Q, ω), and plays the same role that
incoherent scattering plays in the monatomic case. Therefore,
such a contribution must be duly evaluated, and then sub-
tracted from the neutron signal. In particular, the first term
in the last row of Eq. (6) is seen to correspond to a comb
of lines centered at the frequencies of the possible rotovi-
brational transitions. These spectral components are therefore
either central or shifted replicas of the lineshape describing
the center-of-mass Ss(Q, ω), with amplitudes ruled, as men-
tioned, by the involved quantum numbers, the initial state
probabilities and the nuclear scattering lengths. Consequently,
the DDCS of a homonuclear diatomic liquid can be straight-
forwardly obtained from the previous equations according to
the general definition

∂2σ

∂�∂ω
= k1

k0
Sn(Q, ω), (7)

where k0 and k1 are the moduli of the incident and scattered
neutron wave vectors.

It is important to recall that the spectra S(Q, ω) and
Ss(Q, ω) of the complex-valued standard quantum intermedi-
ate scattering functions F (Q, t ) and Fs(Q, t ) obey the detailed
balance principle, that is

S(Q, ω) = eβ h̄ωS(Q,−ω), (8)

where h̄ = h/(2π ) is the reduced Planck constant and β =
(kBT )−1, with kB the Boltzmann constant and T the temper-
ature of the fluid. An analogous equality holds for Ss(Q, ω).
Therefore, they are asymmetric functions of ω with a nonzero
first spectral moment given by [21]

M (1) =
∫ +∞

−∞
dω ω S(Q, ω) = h̄Q2

2M
= ωr, (9)

and the same holds for Ss(Q, ω), i.e., both moments are given
by the recoil frequency ωr. Similarly, the second frequency
moment is different from the classical value Q2/(Mβ ) and,
for Ss(Q, ω), takes the form [21]

M (2)
s =

∫ +∞

−∞
dω ω2 Ss(Q, ω) = ω2

r + 2Q2

3M
〈EK〉, (10)

where 〈EK〉 is the mean translational kinetic energy, which
in these low-mass and low-temperature fluids differs consid-
erably [1] from the classical value 3/(2β ), as can be found,
for instance, by means of path-integral Monte Carlo (PIMC)
simulations [40]. The expression for the second frequency
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moment of S(Q, ω) is more complex, as can be verified from
Eq. (35) of Ref. [21] to which we direct the reader for details.

Scattering experiments actually provide the “true” quan-
tum spectra discussed above, although within the finite-energy
resolution of the used instrument. Conversely, as far as quan-
tum simulations are concerned, two of the quoted methods,
i.e., RPMD and CMD, do not directly give the quantum auto-
correlations, but the so-called canonical or Kubo-transformed
[41] ones, which in the case of the intermediate scattering
function is defined by

FK(Q, t ) = 1

N

N∑
i, j=1

1

β

∫ β

0
dλ 〈eλH e−iQ·ri (0)e−λH eiQ·r j (t )〉,

(11)

where H is the Hamiltonian operator of the system. A similar
expression can be written for the self function Fs,K(Q, t ).
Equation (11) represents an even and real-valued quantity,
whose t = 0 value, denoted as SK(Q), is not the “true” static
structure factor S(Q) measured by diffraction experiments. In
an analogous way, we will use the notation SK(Q, ω) for the
spectrum of Eq. (11), and a similar one for the corresponding
single-molecule function.

The important properties of Kubo spectra are that these
are (more manageable) symmetric functions of ω, which can
be shown, via the fluctuation-dissipation theorem [41], to be
related, in the frequency domain, to the genuine quantum
spectra through

S(Q, ω) = β h̄ω

1 − e−β h̄ω
SK(Q, ω), (12)

and again a similar expression holds for the self case. Con-
cerning the spectral moments of SK(Q, ω), of course the first
one M (1)

K is zero, while the second M (2)
K coincides, also for

the single-particle spectrum, with the classical value quoted
before. Note that a useful relation [3] links the even moments
of the Kubo spectrum M (2k)

K to the odd ones of the quantum
spectrum M (2k−1), with k = 1, 2, . . . . In particular, for k = 1,
one has

M (2)
K = Q2

Mβ
= 2

h̄β
ωr = 2

h̄β
M (1). (13)

Therefore, while fitting to experimental data the model
function described later in Sec. IV, which contains some
model of SK(Q, ω) and uses Eq. (12) to derive a model
S(Q, ω), the enforcement of the second moment sum rule for
SK(Q, ω) corresponds to doing the same at the level of the
first-frequency moment of the fitted S(Q, ω).

Since S(Q, ω) (and Ss(Q, ω)) can be split into symmetric
(subscript sym) and antisymmetric (subscript antisym) fre-
quency contributions, according to

S(Q, ω) = Ssym(Q, ω) + Santisym(Q, ω)

= 1

2π

∫ +∞

−∞
dt [ReF (Q, t ) cos(ωt )

+ ImF (Q, t ) sin(ωt )], (14)

it is also possible to verify that the Kubo spectrum is linked
to the quantum antisymmetric and symmetric components of

S(Q, ω) in the following way [21]:

SK(Q, ω)= tanh(β h̄ω/2)

β h̄ω/2
Ssym(Q, ω)= 1

β h̄ω/2
Santisym(Q, ω),

(15)

which also gives the relation between Ssym(Q, ω) and
Santisym(Q, ω) that can be used, together with Eq. (14), to
obtain S(Q, ω) from those simulation techniques, like FK-LPI
and FK-QCW, which provide ReF (Q, t ) as primary output.

Finally, it is useful to summarize how to model the single-
molecule lineshape Ss(Q, ω) in calculations of the quantity
Js(Q, ω) of Eq. (6). As mentioned in the introduction, the most
reliable method at present consists, as we did in other works
[10,11], in exploiting quantum RPMD or CMD simulations of
the Kubo velocity autocorrelation function, which is defined
as

uK(t ) = 1

N

N∑
i=1

1

β

∫ β

0
dλ 〈eλHvi(0) e−λH · vi(t )〉, (16)

where vi(t ) is the velocity of the center of mass of the ith
molecule at time t . Simulations of the above quantity and cal-
culation of the corresponding spectrum ZK(ω) can be used to
evaluate the center-of-mass self intermediate scattering func-
tion Fs(Q, t ) within the Gaussian approximation (GA) [20].
Such an approximation consists in extending the Gaussian Q
behavior of this function, which is exact in the hydrodynamic
(Q → 0, t → ∞) and free particle (Q → ∞, t → 0) regimes
[42], to all times and Q values, according to

F GA
s (Q, t ) = e−Q2γ1(t ), ∀ Q, t, (17)

where, according to Rahman et al. [21], γ1(t ) can be written
as

γ1(t ) = h̄

2M

∫ +∞

0
dω

f (ω)

ω
A(t, ω), (18)

with

A(t, ω) = [1 − cos(ωt )] coth

(
β h̄ω

2

)
− i sin(ωt ),

and

f (ω) = 2Mβ

3
ZK(ω).

More precisely, following Rahman and coworkers [21],
Fs(Q, t ) can be rigorously expressed in the form of an infinite
series

Fs(Q, t ) = exp

[ ∞∑
p=1

(iQ)2pγp(t )

]
,

the first term of which is exactly Eq. (17). Note that the symbol
β used in Ref. [21] has not the usual meaning of inverse
temperature but corresponds to β h̄/2 in the present notation.

The previous formalism was adopted to perform the calcu-
lation of the quantum SGA

s (Q, ω), by simple numerical Fourier
transformation of Eq. (17), starting from CMD simulations
of uK(t ). Note that this procedure ensures that the single-
molecule center-of-mass spectrum has the correct quantum
asymmetry. Moreover, the GA guarantees that the first four
spectral moments are correctly reproduced [21]. This allowed
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us to evaluate Eq. (6) and, by subtracting it from the measured
DDCS as described in Sec. IV, to access the center-of-mass
dynamic structure factor of the liquid.

III. THE NEUTRON SCATTERING EXPERIMENT

The measurements were performed using the time-of-flight
thermal neutron spectrometer BRISP at the Institut Laue
Langevin (ILL, Grenoble) [43]. This instrument [44–46] was
designed to perform neutron Brillouin scattering experiments,
i.e., aimed at probing the low-Q region of the dynamic
structure factor of (mainly) disordered systems. In the cho-
sen configuration of the spectrometer (incident energy E0 =
83.8 meV, i.e., wavelength λ0 = 0.988 Å, sample-detector
distance 4 m), it was possible to span the exchanged wave-
vector range 4 � Q � 14 nm−1.

The thermodynamic state we wanted to investigate was
one of those that some of us already studied by both neutron
diffraction and PIMC simulations [47]. We focused on the
T = 20.7 K and n = 25.40 nm−3 state in the liquid phase
of D2, with n denoting the molecular number density. In
this way a good knowledge of the static structure factor was
guaranteed, with a Qp value of 21.0 nm−1, so that the above
quoted Q range was extended beyond Qp/2. The desired ther-
modynamic conditions were obtained by using a gas-handling
system provided by the ILL and connecting it, by means of
a capillary tube, to the empty sample cell maintained in the
BRISP cryostat at the chosen temperature (within ≈0.1 K,
for the whole duration of the sample measurements). The
sample gas was thus condensed directly into the cell, verify-
ing its entire filling with liquid D2 by carefully monitoring
the sudden increase of pressure as soon as the liquid-vapor
coexistence region is clearly trespassed on the high-density
side. As soon as the chosen sample conditions were achieved,
the average of subsequent observations of the temperature
and pressure conditions of the sample during data acquisition
allows us to report a sample stability, in number density, of
the order of n = 25.5 ± 0.1 nm−3. The sample container was
an aluminium slab, with windows orthogonal to the beam each
1 mm thick, and allowing for a sample thickness of 5 mm. The
outer frame of the cell was completely shielded by means of a
properly tailored cadmium sheet, in order to avoid unwanted
scattering from the container. A boron nitride mask at the
entrance wall of the cell was also used to adjust the sample
area (45×25 mm2) illuminated by the beam.

The adiabatic speed of sound of the liquid in the mentioned
state, cs = 984 m/s [48], is relatively low with respect to
other liquids, e.g., molten metals, we studied on the BRISP
spectrometer [49,50], therefore a less energetic neutron beam
could have been used in favor of a better energy resolution.
However, we preferred to access the much wider energy trans-
fer ranges enabled by the use of the (004) reflection of the
pyrolitic-graphite monochromator of the instrument, in order
to properly probe also the tails of the spectra and have a better
control on the accuracy of the necessary correction procedures
typical of neutron scattering on liquid samples, which we will
summarize in the next section. Of course, the chosen E0 value
allowed us to cover a Q region more extended than the one
where simple hydrodynamic behavior [42] is expected.

The resolution in the chosen configuration of BRISP was
determined by measuring the signal from a vanadium slab
(3 mm thick). After correction of the raw V data for back-
ground, self-attenuation, and multiple scattering, the resulting
spectra were found to have the expected Gaussian shape, with
a full width at half maximum of 3.2 meV, almost independent
of Q. The so-determined resolution function will be indicated
as R(ω) in the next equations.

The intensities scattered from the various samples (empty
cell, vanadium, and liquid D2), which were collected as a
function of scattering angle and neutron time of flight, have all
been preprocessed by using the routines written specifically
for BRISP within the LAMP environment of the ILL [51,52].
Such routines implement the conversion of the measured in-
tensity into a function of the exchanged wave vector Q and
frequency ω. The codes are public and easily accessible by
downloading the runtime version of LAMP. The next section
describes the main steps of the subsequent analysis of the
so-collected raw neutron data. In what follows, we will always
consider the D2 sample in its normal ortho-para concentration
since, in the absence of appropriate catalysts, conversion to the
equilibrium concentration at 20.7 K could be excluded within
the effective duration (about one day) of the measurements
devoted to D2.

IV. ANALYSIS OF THE NEUTRON DATA

The spectra recorded with liquid D2 inside the cell were
first corrected by subtracting the background signal and the
scattering from the empty cell, the latter duly modified accord-
ing to the sample transmission in order to take into account
the difference in the signal (from the cell alone) between
an empty container measurement and a filled cell one. To
properly evaluate the attenuation due to the sample, one must
take care of the real scattering cross section of the molecule,
whose dependence on incident energy was given in Ref. [11],
and whose value, calculated at our incident energy, is σs,D2 �
8 b, which is clearly different from the one obtained by simply
doubling the scattering cross section of the D nucleus [4]
(σs,D = 7.64 b). After these preliminary subtractions, and
correction for the sample self-attenuation, the signal from the
sample can be written as

Iexpt (Q, ω) = I (1)(Q, ω) + I (m)(Q, ω), (19)

i.e., as the sum of the single scattering contribution I (1)(Q, ω)
and the multiple scattering one I (m)(Q, ω). We evaluated the
second (unwanted) component by means of multidimensional
Monte Carlo (MC) integration of appropriate functions we
described in detail in Ref. [53]. However, the (unknown)
scattering law of the molecule has to be taken into account
in the best possible way, and to do this we implemented in
the MC integration algorithm the calculation of the DDCS
according to Eqs. (5), (6), and (7), using the ideal gas law [38]
for Ss(Q, ω) and the Sköld approximation [54] for S(Q, ω). In
order to evaluate the latter, i.e.,

S(Q, ω) = S(Q)Ss

(
Q√
S(Q)

, ω

)
, (20)
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FIG. 1. Effect of the correction for multiple scattering. The raw
intensity before the correction (blue circles) is compared with the
corrected spectrum (red dots).

we exploited our experimental determination of the static
structure factor [47]. Use of the ideal gas law for the center-
of-mass self dynamics not only makes the presently rather
complex computation of multiple scattering feasible within
acceptable times, but also represents a quite reasonable ap-
proximation for this kind of correction, given the rather high Q
values typically involved in a Monte Carlo integration of mul-
tiple scattering events [53]. Figure 1 shows the effect of the
correction for multiple scattering at a representative Q value.
Differently from the case of very high density liquids, like
molten metals, multiple scattering is very small in the present
case, but such a correction is useful to bring the spectral tails
almost perfectly to zero, without any residual background.

The so-obtained single scattering intensity is the one re-
lated to the DDCS of liquid D2 we are interested in, according
to

I (1)(Q, ω) = C
d2σ

d�dω
⊗ R(ω)

= C

{
k1

k0
[u(Q)S(Q, ω) + Js(Q, ω)]

}
⊗ R(ω),

(21)

where we combined Eqs. (5) and (7). In the above equation,
C is an instrumental factor. The convolution with the experi-
mental resolution function R(ω) was also explicitly indicated
in order to recall that I (1)(Q, ω) is affected by resolution
broadening.

The determination of S(Q, ω) from Eq. (21) has been
carried out, at each Q, through the fitting to the experimen-
tal I (1)(Q, ω) of a convenient model function constructed as
follows. A quantum compliant model for S(Q, ω), described
below, is multiplied by the calculated u(Q) and added to
Js(Q, ω), also calculated as explained at the end of Sec. II.
The result is further multiplied by k1/k0, which in a direct
geometry (i.e., at fixed incident energy) spectrometer like
BRISP depends on ω according to k1/k0 = √

1 − ω/ω0, with
ω0 = E0/h̄. Finally, the fitted model function includes the

convolution with R(ω). The overall factor C is a free fit pa-
rameter.

As far as the S(Q, ω) modeling is concerned, we ap-
plied the Lorentzian multi-mode expansion [34–36] that we
detailed and used in several papers [50,55–57], taking into ac-
count that, for quantum systems, such an expansion holds for
the spectrum of the Kubo-transformed correlation function.
Therefore, we used Eq. (12) with SK(Q, ω) given by

SK(Q, ω) = SK(Q)
∞∑
j=1

Lj (ω) = SK(Q)
∞∑
j=1

I j

π

[
(−z j )

ω2 + z2
j

]
,

(22)
that is, we modeled the Kubo spectrum as a sum of com-
plex Lorentzian lines Lj (ω). Here, if I j and z j are real, then
Lj (ω) is a genuine Lorentzian function centered at ω = 0,
and characterized by a half width at half maximum equal to
−z j , while if I j and z j are complex, then the correspond-
ing mode and its complex conjugate add up to give a pair
of distorted Lorentzians centered at the nonzero frequencies
±Im z j , with Rez j < 0 (see Eq. (4) of Ref. [55] for details).
This representation in Fourier space of course corresponds to
express FK(Q, t ) as a series of complex exponentials in the
time domain, i.e., as

FK(Q, t ) = FK(Q, 0)
∞∑
j=1

I j exp(z j |t |), (23)

which better clarifies why, in our notation, Rez j must be neg-
ative, playing the role of an exponential damping. Clearly, the
normalization of FK(Q, t )/FK(Q, 0) to its initial value leads
to the sum rule

∑
j
∞
=1

I j = 1, and the existence of its kth
order (k = 0, 1, 2, ...) time derivatives at t = 0 leads, in this
exponential representation, to a set of sum rules of the form

∞∑
j=1

I jz
k
j = dkFK(Q, t )

dtk

∣∣∣∣∣
t=0

= 0 for odd k. (24)

In a fit procedure, either in the frequency or in the time
domain, the series of Eqs. (22) or (23) is of course limited to
a small number of terms, with I j and z j acting as free param-
eters. However, some of the amplitudes can be calculated by
imposing a certain number of constraints, in order to comply,
for instance, with the normalization condition

∑
j I j = 1, and

to enforce the first few odd sum rules dictated by Eq. (24) up to
k − 1, for a given even k. For example, if one has at least three
modes, imposing the normalization and the first odd sum rule
ensures the convergence of the second spectral moment. When
the latter is known, as it is the case for the Kubo dynamic
structure factor (see Sec. II), one can also force its second mo-
ment not only to be finite, but also to take its theoretical value,
via the condition M (2)

K = −SK(Q)
∑

j I jz2
j = Q2/(βM ).

As stated above, Eq. (22) represents the multi-Lorentzian
expansion of the (symmetric) Kubo spectrum SK(Q, ω). In a
recent paper [58], we have shown how the parameters I j and
z j of the various terms of the expansion uniquely determine
the modes of the quantum spectrum S(Q, ω) as well, and how
these are modified in order to remove divergences in their fre-
quency integrals. We also showed that the modes of S(Q, ω)
are characterized by the same dampings and frequencies as
those of SK(Q, ω), indicating that the same relaxation and
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excitation processes drive the quantum dynamics, while the
amplitudes are appropriately modified to produce the correct
quantum frequency dependence. Thus, the identification of the
various dynamical processes that model the Kubo spectrum
and get determined through the fit described above remains
valid for the true quantum dynamics as well.

From a practical point of view, the number of real and
complex terms, and of sum rules to be imposed is essen-
tially dictated by physical considerations, by the accuracy and
extension of the data, and, ultimately, by the quality of the
fit achieved by avoiding unjustified overparametrizations or
undetermined values of some parameters.

Focusing on the D2 case, and considering the investigated
Q range, we do not expect significant deviations from the
spectral shape of most liquids, which is usually well de-
scribed (at very low Q) by a generalized hydrodynamic (GH)
modeling [59] of SK(Q, ω) or (at slightly larger Q) by the vis-
coelastic (VE) lineshape [59]. Both models comply with the
general theory of correlation functions [34–36], and represent
SK(Q, ω), respectively, as: (a) one real mode plus a complex-
conjugated pair (3 modes in total) and one imposed odd sum
rule, in addition to normalization and (b) two real modes
plus one complex-conjugated pair (4 modes in total) and two
imposed odd sum rules, again in addition to normalization. In
both cases, the clear advantage of using the Lorentzian series
representation is that the imposition of physical constraints is
straightforward and easy.

Clearly, the real modes are to be identified with the re-
laxation processes acting in the fluid, while the complex pair
accounts for propagating longitudinal acoustic modes. There-
fore, in the following, we will also use the more familiar
notation [59–61] zs = −Rez for the damping of the acous-
tic (the subscript s here meaning “sound”) excitation, and
ωs = |Imz| for its frequency, where z indicates the complex
frequency of the conjugated pair in the series.

Due to the finite accuracy and resolution of the experi-
mental data, and to the fact that the signal due to collective
(propagating and nonpropagating) modes is only a small part
of the neutron intensity, we could not properly resolve the
fine structure of the central part of the collective spectrum,
and only the 3-Lorentzian GH model could be used at all
the experimental Q values, even at those where a viscoelastic
behavior is physically expected. Therefore, the central width
we extracted from the fits cannot be identified with any single
relaxation process, but rather with a combination of damping
coefficients. Conversely, as shown for other systems [49,50],
such an effective model is still able to capture rather well
the frequency ωs and damping zs of the sound waves, as
alternatively determined, for instance, from viscoelastic fits
to smoother and accurate classical simulation results. It is
worth stressing that a very important property of this effective
modeling of the collective part of the experimental lineshape,
and of the consequent fit result, is undoubtedly its full com-
pliance with the second moment sum rule, that we imposed
on M (2)

K as explained before. This ensures, via Eq. (13), that
the first moment sum rule given in Eq. (9) for the genuine
quantum spectrum is finally obeyed by the fitted S(Q, ω).
Such a requirement assumes special importance in the case
of low mass and low temperature liquids, since the corre-
sponding spectra are strongly asymmetric. Keeping a high

control on the correct asymmetry of the fit results is therefore
decisive.

By imposing the mentioned constraints, the free param-
eters in the model for SK(Q, ω) reduce to three, since the
amplitudes are determined through the sum rules. As far as
the whole fit function of Eq. (21) is concerned, two addi-
tional free parameters are to be considered, one of which
is the normalization factor. The other, not indicated in the
equation, allows for the possible presence of impurities, which
we assumed to be H2 because around E = h̄ω = 15 meV we
observed an extra intensity in the measured spectra, which
was not well accounted for by the very small signal due to
the J0 = 1 → J1 = 2 rotational transition of D2. It is well
known, in fact, that the above is also the energy at which
the J0 = 0 → J1 = 1 transition of H2 is located. Therefore,
we calculated Eq. (6) also for the case of H2 at 20.7 K and
considered it in our fits, leaving the percentage of H2 as a
free parameter (of course, the percentage of D2 was reduced
accordingly). Despite the isotopic purity of the D2 gas was
declared to be 99.8% (the chemical purity is usually much
higher), the fits at all Q values revealed the presence of ∼0.5%
of H2.

Figure 2 shows the fit to I (1)(Q, E ) at three Q values. We
display the results as a function of the exchanged energy E
in units of meV, which is more familiar to experimentalists.
The various components are also shown separately in order
to appreciate the role played by the self contribution, which
is dominant over the collective one owing to the very small
values that the static structure factor [47] assumes at the low
Q values of the present experiment. The experimental (i.e.,
resolution broadened) S(Q, ω), obtained from Eq. (21) as

S(Q, ω) ⊗ R(ω)= 1

u(Q)

[
k0

k1

I (1)(Q, ω)

C
− Js(Q, ω) ⊗ R(ω)

]
,

(25)

is reported in Fig. 3, along with the collective component of
the previous fit to I (1)(Q, E ). Note that, since the ratio k1/k0

depends on frequency, Eq. (25) follows from Eq. (21) only
if the quantities [ k1

k0
S(Q, ω)] ⊗ R(ω) and k1

k0
[S(Q, ω) ⊗ R(ω)]

coincide, which we verified to hold true in our case to a
very good approximation. The resolution broadened simula-
tion results obtained by the mentioned methods, and described
in the next section, are also shown in Fig. 3. With the ex-
ception of the FK-LPI results, comparison of the broadened
quantities indicates that the RPMD and FK-QCW simulations
are compatible with the neutron data, although as Q grows
they appreciably differ from each other and from the fit re-
sult, especially as far as the inelastic peak is concerned. At
this level, one could state that the agreement between the
neutron data points and RPMD/FK-QCW is of the same
quality of that shown for D2 in Refs. [31] and [32]. More
detailed comparisons between the absolute scale (and resolu-
tion free) experimental and computational data will be shown
in Sec. VI, after a brief description of the approximations
involved in each of the used simulation algorithms to which
the following section is devoted.
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FIG. 2. [(a)–(c)] Fully corrected single scattering intensity from the D2 liquid sample (black circles with error bars) at the Q values specified
in each panel. The fit of Eq. (21) to the neutron data (full-red curve) was based on a GH modeling [59] of SK(Q, ω) with the explicit imposition
of the exact value of M (2)

K , which ensures, via Eq. (13), the conformance to the quantum sum rule dictated by Eq. (9). The quantum fit result for
S(Q, ω) is displayed as a cyan-dashed curve. Its elastic (black-dotted curve) and inelastic (black-dashed curve) contributions, adding up to the
cyan curve, are also shown. The dominant component, as far as the central part of the neutron spectrum is concerned, is the contribution of the
single-molecule term (magenta dot-dashed curve) we calculated as explained in the text, and normalized according to the fitted C of Eq. (21).
Finally, the green-thin curve accounts for a ∼0.5 % presence of H2 impurities allowing to better reproduce the experimental data around the
almost coinciding energies (15 meV) pertaining to both the 1 → 2 rotational transition of D2 and the 0 → 1 one of H2. Details can be better
appreciated in panel (d), which displays a zoom of panel (c).

V. COMPUTER SIMULATIONS

A. RPMD

Ring polymer molecular dynamics certainly is the most
straightforward approach to simulating the dynamics of mod-
erate quantum systems and consists in replacing, in the case of

a system of spherical particles obeying Boltzmann statistics,
each quantum particle by a classical ring polymer of P copies
of itself, where successive monomers on the same polymer
are connected by harmonic springs, with spring constants
determined by β, h̄, and the mass m of the particles [16–18].
Thus the Hamiltonian of the equivalent classical system is

H = 1

P

P∑
k=1

{
N∑

j=1

[
1

2mj

(
p(k)

j

)2 + mjP2

2β2h̄2

(
r(k+1)

j − r(k)
j

)2
]

+ V
(
r(k)

1 , . . ., r(k)
N

)}
, (26)

and, in principle, the limit P → ∞ should be taken. In Eq. (26), j labels particles (polymers), k monomers, r(P+1)
j ≡ r(1)

j , and
only monomers with the same index k are allowed to interact through the intermolecular potential V .

Since, in RPMD, expectations of operators depending on positions are defined as averages over the monomers of each
polymer, time correlation functions are calculated along trajectories as

〈Â(0)B̂(t )〉K ≈
〈[

1

P

P∑
k=1

A
(
r(k)

1 (0), . . ., r(k)
N (0)

)][
1

P

P∑
k′=1

B
(
r(k′ )

1 (t ), . . ., r(k′ )
N (t )

)]〉
, (27)

174204-8



COLLECTIVE DYNAMICS OF LIQUID DEUTERIUM: … PHYSICAL REVIEW B 104, 174204 (2021)

Q = 5 nm-1

S(
Q

,E
) 

⊗
R

(E
)

[m
eV

-1
] 

E [meV] 

Q = 9 nm-1

Q = 12 nm-1

Fit 

RPMD 

FK-QCW

FK-LPI

(a) (b) 

(c) (d) 

FIG. 3. [(a)–(c)] Experimental dynamic structure factor (black circles with error bars) obtained from Eq. (25). This quantity is in absolute
units, although still affected by the experimental energy resolution. The red full line is the component due to collective modes resulting from
the fit to I (1)(Q, E ), i.e., apart from the factor Ck1u(Q)/k0, corresponds to the cyan dashed curve of Fig. 2. Comparison is also made with the
three different simulations of the quantum S(Q, E ) broadened by the instrumental resolution function: RPMD (blue-dashed line), FK-QCW
(green-dotted line), and FK-LPI (dot-dashed magenta line). To better distinguish the different results for the central part of the spectrum we
show in panel (d) a zoom of panel (c).

where A and B are the classical functions corresponding
to operators Â and B̂, and we have indicated that it is the
Kubo transform of the correlation function to which the di-
rect output of RPMD provides an approximation, so that,
in order to obtain the genuine quantum mechanical cor-
relations and spectra, one must invert the transform using
Eq. (12).

One problem with naive RPMD is that the frequencies
of the polymers’ internal modes, which are a purely math-
ematical device, may leak into the physical spectra. As in
our previous paper on the velocity correlation function of H2

(see Ref. [1]), we have therefore assigned optimally damped
Langevin thermostats [62] to all noncentroid modes when
integrating the equations of motion, while the translational
kinetic energy of the polymers’ centroids was controlled
by stochastic velocity scaling [63] with a relaxation time
τ = 20 ps. Using a timestep �t = 0.001 ps and a Trotter
number P = 32, we have performed 20 independent 10 ns
simulations with a system of N = 256 polymers interacting
through the Silvera–Goldman potential [19], as well as 10
analogous runs with a larger sample of N = 864 particles,

averaging the results over the subruns. The Kubo interme-
diate scattering function was calculated for all wave vectors
Q compatible with the cubic simulation volume such that
Q < 20 nm−1.

On the other hand, one of the fundamental limitations of
RPMD is that it may not be expected to work well for cor-
relation functions of operators, which are nonlinear functions
of the coordinate or momenta such as Eqs. (2) and (3), and
this has been demonstrated early on [64] for the case of the
self-intermediate scattering function of H2. However, as far as
the static structure is concerned, we find that, in our restricted
range of wave vectors, RPMD provides the correct result. In
fact, Fig. 4 shows that, although the Kubo structure factor
SK(Q)≡FK(Q, 0) falls well below the S(Q) from a reference
PIMC simulation with the same Trotter number and number of
particles, once it is “corrected” by converting it to the genuine
F (Q, 0) [cf. the discussion following Eq. (11)], RPMD is in
perfect accord with PIMC. Of course, agreement with the
correct quantum static structure is only a necessary condition,
which does not guarantee that the time dependence of F (Q, t )
will also be reproduced correctly by RPMD.
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FIG. 4. Static structure factor of D2 at T = 20.7 K, n =
25.40 nm−3, obtained from simulations with N = 256 particles
and Trotter number P = 32. Red-full stars: S(Q) = F (Q, 0) from
RPMD; blue-full circles: SK(Q) = FK(Q, 0) from RPMD; black-
solid line: S(Q) from PIMC.

B. FK-LPI

In contrast to RPMD, the Feynman–Kleinert linearized
path-integral method [30,65–68] is not limited to operators,
which are linear in the coordinates or momenta, and its output
is the genuine quantum mechanical correlation function itself,
rather than the Kubo transform.

The approximation involved is

〈Â(0)B̂(t )〉≈ 1

(2π h̄)3N Z

∫
dq d p

× [e−βĤ Â]W(q, p) [B̂]W(qt , pt ), (28)

where q and p are the collective Cartesian coordinates and
momenta arranged in the order q = (x1, y1, z1, x2, y2, z2, . . .),
Z is the partition function, [. . .]W denotes the Wigner trans-
form of an operator, and (qt , pt ) is a phase space point on the
classical trajectory starting from (q, p).

The basis of the algorithm is a Monte Carlo random walk
in the space of the particles’ “center” coordinates qc, governed
by the Boltzmann factor exp [−βW1(qc)] of the effective po-
tential

W1(qc) = 1

β

3N∑
n=1

ln

{
sinh [β h̄ωn(qc)/2]

β h̄ωn(qc)/2

}

+VA(qc) − 1

2

3N∑
n=1

λn(qc) ω2
n(qc). (29)

Here, VA is a Gaussian-smeared version of the potential energy
V of the system,

VA(qc) =
∫

dq
1√

det (2πA(qc))

× exp

{
−1

2
(q − qc)T A−1(qc)(q − qc)

}
V (q), (30)

λn(qc) = 1

β ω2
n(qc)

[
β h̄ωn(qc)

2
coth

(
β h̄ωn(qc)

2

)
− 1

]
,

(31)

and ω2
n(qc) are the eigenvalues of the Feynman–Kleinert ef-

fective frequency matrix

�2(qc) =
∫

dq
1√

det (2πA(qc))

× exp

{
−1

2
(q − qc)T A−1(qc)(q − qc)

}
× M−1/2H (q)M−1/2, (32)

where HV is the Hessian (matrix of second derivatives) of
V , and M is the diagonal matrix of particle masses. The
smearing-width matrix A and the frequencies ω2

n are deter-
mined iteratively by solving the last equation in conjunction
with

A(qc) = M1/2 U (qc) �UT (qc) M1/2, (33)

where � = diag(λ1, λ2, . . .), and U (qc) is the transformation,
which diagonalizes �2(qc). U (qc) also defines the mass-
weighted instantaneous normal modes and momenta of the
system

η = UT (qc)M1/2q, (34)

ηc = UT (qc)M1/2qc, (35)

ν = UT (qc)M−1/2 p. (36)

Periodically during the random walk, P independent sets
of normal mode positions and momenta (η, ν) are drawn from
the probability density

f (η, ν) =
3N∏

n=1

1

π h̄

√
tanh (β h̄ωn(qc)/2)

αn(qc)

× exp

{
− ωn(qc)

h̄αn(qc)
(ηn − ηc,n)2

− tanh(β h̄ωn(qc)/2)

h̄ωn(qc)
ν2

n

}
,

(37)

with

αn(qc) = coth

(
β h̄ωn(qc)

2

)
− 2

β h̄ωn(qc)
, (38)

which when converted to Cartesian coordinates with the help
of Eqs. (34) and (36), define a “swarm” of phase points (q, p)
in the spatial neighborhood of the current qc. Using these
as initial conditions, the system’s equations of motion are
integrated classically (involving the original potential V ) up
to the desired maximum time lag of the correlation function.

While the Wigner transform of the terms corresponding to
time t in the intermediate scattering function,

F (Q, t ) = 1

N

〈
N∑

j=1

e−iQ·r̂ j (0)
N∑

�=1

eiQ·r̂�(t )

〉
, (39)
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is simply eiQ·r�(t ), i.e., with the position operator of particle �

replaced by the classical variable r�, the analogous terms at
t = 0 may be written in the form w j (Q, qc) je−iQ·r j (0), where
the “weight factors” [69],

w j (Q, qc) =
3N∏

n=1

exp

{
− tanh (β h̄ωn(qc)/2)

h̄ωn(qc)

×
[
νn − h̄

2
m−1/2

j (Qx U (qc)3)( j−1)+1 + Qy U (qc)3)( j−1)+2 + Qz U (qc)3)( j−1)+3)

]2}
, (40)

correct for the fact that f (η, ν) samples from [e−βĤ ]W, rather
than from [e−βĤe−iQ·r̂ j (0)]W, as required by Eq. (28).

We have performed FK-LPI simulations of D2 with sys-
tems of N = 108 and N = 256 particles interacting through
the Silvera–Goldman potential [19]. As in Ref. [66], the SG
potential was represented by a sum of four Gaussians, in order
to facilitate the convolution of the Hessian in Eq. (32), and the
resulting effective frequency matrix �2(qc) was diagonalized
with the help of the LAPACK [70] procedure dsyevr. Since
this is the most time-consuming step, the random walk in
qc-space was based on all-particle (rather than single-particle)
moves in the usual Metropolis Monte Carlo procedure [71].
In the case of the N = 108 system, sets of P = 32 (P = 128)
initial conditions were, in two separate random walks con-
sisting of 20 independent subchains each, sampled every 50
(10) moves out of a total of 106 (2×106) configurations, and
the classical swarm trajectories were followed for 10 ps using
the velocity Verlet algorithm [71] with a timestep of �t =
0.002 ps. For the larger N = 256 system, sets of P = 128 ini-
tial conditions were sampled every 10 moves, but the random
walk was only extended for a total 2×105 steps. As with
RPMD, the intermediate scattering function was calculated
for all wave vectors compatible with the cubic simulation
volume.

In a disordered system, some of the mode frequencies
ωn(qc) will turn out to be imaginary. However, the prefac-
tors of the modes’ positions and momenta in the exponent
of Eq. (37)—the latter factor also appears in Eq. (40)—may
be shown to remain well defined and positive as long as
|ωn(qc)| < 2π/(β h̄) and |ωn(qc)| < π/(β h̄), respectively (in
the latter case one may put νn = 0). We have not observed
that even the more stringent restriction is ever violated for D2

in the present thermodynamic state.

C. FK-QCW

The Feynman–Kleinert quasiclassical Wigner method
[32,33] has been proposed to correct one of the perceived
shortcomings of FK-LPI, namely that thermodynamic proper-
ties are not conserved along the swarm trajectories. FK-QCW
[72] is closely related to FK-LPI and makes use of the iden-
tical ansatz Eq. (28) for the correlation function, as well as
of the concept of center and swarm—here, more aptly called
“satellite”—trajectories. However, instead of being generated
by a random walk, the particles’ centers are now propagated
quasiclassically according to the equations of motion

ṗc = −∇c [VA(qc)], (41)

q̇c = M−1 pc, (42)

where pc are the momenta associated with qc, VA is again the
smeared potential of Eq. (30), and the gradient with respect
to the center coordinates in Eq. (41) is taken keeping the
smearing-width matrix constant [73].

As in FK-LPI, initial conditions for the satellite trajectories
are sampled, in terms of normal coordinates and momenta,
from Eq. (37), but instead of evolving independently under
the influence of the original potential V , the satellites are now
coupled to (“orbiting around”) the center trajectory through

q = qc + M−1/2U (qc)(η − ηc), (43)

p = M1/2U (qc) ν, (44)

and follow the equations of motion

˙̃qn = fn(qc) p̃n, (45)

˙̃pn = − fn(qc) q̃n. (46)

Here, (q̃n, p̃n) are dimensionless normal mode coordinates
related to (ηn, νn) by

q̃n =
√

ωn(qc)

h̄αn(qc)
(ηn − ηc,n), (47)

p̃n =
√

tanh (β h̄ωn(qc)/2)
h̄ωn(qc)

νn (48)

[cf. the prefactors in the exponentials of Eq. (37)], and [74]

fn(qc) =
{
ωn(qc) for ω2

n(qc) � 0,

0 otherwise.
(49)

An FK-QCW simulation consists of a sequence of center
trajectories, where, at the beginning of each trajectory, initial
normal mode coordinates and momenta are sampled from
Eq. (37) for P satellites, and the satellites’ equations of motion
are integrated up to the maximum time lag desired for the
correlation function. As with FK-LPI, each satellite’s t = 0
value of the observable A must be multiplied by a weight fac-
tor such as Eq. (40) before correlating it with B at a later time.
In contrast to FK-LPI, however, FK-QCW is only expected to
provide an approximation to the real (not the imaginary) part
of the quantum mechanical correlation function.

Our implementation of FK-QCW closely followed the
recipe given in the Appendix of Ref. [32], except Eqs. (A2)
and (A3), which we replaced by the exact harmonic oscillator
solution, rather than using the explicit Euler scheme, which
is unstable. Similarly to the case of FK-LPI, we performed
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FIG. 5. [(a)–(c)] Resolution free double differential cross section of liquid D2 at 20.7 K at three typical Q values, as obtained from the fits

to I (1)(Q, ω) explained in the text. The displayed quantity is in absolute units. Note the very different amplitudes and widths of the spectra with
increasing Q. (d) Zoom of the three spectra shown in panels [(a)–(c)] in order to better appreciate how the Brillouin peak (clearly visible at
5 nm−1, red curve) evolves as Q grows, and tends to merge with the 0 → 1 rotational line. Also visible are the low-intensity 1 → 0 and 1 → 2
lines at –7.4 meV and 14.8 meV, respectively.

simulations with systems of N = 108 as well as N = 256
(center) particles, with P = 32 satellites orbiting the central
trajectory. The time step was again set to �t = 0.002 ps, and
individual trajectories were extended to 10 ps. For the smaller
system, the simulation was broken up into 20 independent
runs of 500 consecutive trajectories, while for the larger sys-
tem it consisted of 100 runs of 100 trajectories, bringing to
total up to 104 trajectories in either case.

For the comparison with experiment and for the analysis
described in the next section the results obtained for the larger
systems have been used.

VI. COLLECTIVE DYNAMICS OF LIQUID D2

As mentioned, our objective was to show both the neu-
tron DDCS and S(Q, ω) free from resolution effects and
in absolute units [75]. Therefore, we report in Fig. 5 the
DDCS as obtained from the sum of the calculated Js(Q, ω)
and u(Q)S(Q, ω), with S(Q, ω) directly obtained from the
fit output parameters. S(Q, ω) is finally shown in Fig. 6,
together with the dynamic structure factors obtained by the
RPMD, FK-LPI, and FK-QCW simulation methods described
in the preceding section. In order to perform a correct
comparison, completely free from resolution effects, the cal-
culated spectra were obtained by Fourier transformation of

the quantum F (Q, t ) without applying any windowing, which
differently would give rise to a broadening of the simulated
spectrum.

Turning to the comparisons of Fig. 6, these definitely show
a less than perfect agreement of the experimental results with
all the simulated S(Q, ω)’s, which is particularly pronounced
in the FK-LPI case. On the whole, the experimental spectra
display quite a marked contribution of the acoustic excita-
tions, visibly less damped and located, at a first glance, at
slightly larger energies than those predicted by the RPMD and
FK-QCW simulations. Visual inspection of the position and
width of inelastic spectral contributions in so asymmetrical
spectra can, however, be deceptive. Therefore, a detailed com-
parison of the characteristic features of collective excitations
and relaxations in liquid D2, as found from our experiment
and as predicted by RPMD and FK-QCW simulations, will
be given in the remainder of this section. The complemen-
tary behavior in the time domain is shown in Fig. 7. The
curves represent the Kubo intermediate scattering function at
Q = 12 nm−1, as obtained from the (resolution-free) fit to the
neutron data and from the various simulation methods, using
the same line and color codes of Fig. 6. As deducible also from
the spectra of Fig. 6, the FK(Q, t ) derived from simulations
are visibly more damped and display a less marked oscillatory
behavior than the one obtained from experiment.
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FIG. 6. Resolution free dynamic structure factor obtained from
the fit to the neutron data (red-solid line) compared with three
different evaluations of the quantum S(Q, E ): RPMD (blue-dashed
line), FK-QCW (green -dotted line), and FK-LPI (dot-dashed ma-
genta line). Note that FK-QCW performs better than RPMD at
Q = 9 nm−1.

These results indicate that the way sound modes are re-
produced by different quantum simulation methods is a key
point in the discrepancies, not only with experiment but also
among different simulation algorithms. Conversely, a better
overall agreement, except for the FK-LPI case, is observed
from Fig. 6 as far as the nonpropagating modes are concerned,
both at the experimental and simulation level. In any case, as
mentioned in the previous section, each one of the various
calculation methods that are compared here with the experi-

F
K
(Q

,t)
 

Q = 12 nm-1 

t [ps] 

RPMD 
FK-QCW 

Expt. 
FK-LPI 

FIG. 7. Kubo intermediate scattering function derived from the
fit to the experimental data at Q = 12 nm−1 (red-solid line) compared
with the corresponding RPMD (blue-dashed line), FK-QCW (green-
dotted line), and FK-LPI (dot-dashed magenta line) estimates.

mental results is based on some approximation whose effects
are not easy to evaluate.

The RPMD and FK-QCW results for S(Q, ω), although
not quantitatively matching the experiment seem definitely
more realistic than the unimodal ones obtained by means of
FK-LPI simulations. We therefore decided to analyze in detail
the dynamical properties deducible from these two calculation
methods, in comparison with those derived from the neutron
data. From a numerical point of view, simulations can provide
much more accurate and smoother results than experiment,
so, as it often happens, they allow the use of fit models (with
more parameters than the GH one), which better represent the
behavior of a liquid at the length scales probed in this inves-
tigation. In the Q range of the present study, a viscoelastic
behavior is indeed expected.

As already stated in Sec. IV, the VE model is implemented
by assuming two real modes (hereinafter labeled as R1 and
R2) and one complex pair in the series, and by ensuring the
finiteness of the fourth spectral moment, a condition, which is
enforced by imposing, beyond normalization, the first two odd
sum rules. Correspondingly, the VE spectrum consists of four
lines, i.e., it has an additional central Lorentzian with respect
to the GH model [59].

The VE model has been fitted to the RPMD Kubo interme-
diate scattering function up to a maximum time value tR = 2.2
ps, which is the so called recurrence time due to the use of
periodic boundary conditions in the simulations [2,71]. The
recurrence time is roughly the maximum time lag beyond
which the calculations are no more reliable and typically
present spurious oscillations [76]. Such a cutoff turned out,
instead, to be not restrictive enough to exclude some small
unphysical signal from the reliable fitting window of the FK-
QCW case, where we limited to 1.5 ps the upper bound of the
fit range.

Figures 8 and 9 show that a VE modeling excellently
accounts for the RPMD shape of FK(Q, t ), and of the
corresponding spectrum. Moreover, the semilogarithmic plots
of Fig. 10 indicate that a simpler GH modeling of the RPMD
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FIG. 8. (a) RPMD estimate of the Kubo intermediate scattering function FK(Q, t ) of liquid D2 at Q = 4.11 nm−1 (black circles) and VE
fit result (red-solid curve). Note the change of the spectral variable with respect to previous figures. The multi-exponential fit components are
also shown separately, and specified in the legend. (b) Corresponding spectrum SK(Q, ω)/SK(Q), VE fit result, and fit components, following
the legend of panel (a). Panels (c) and (d) show the time correlation and its spectrum, respectively, on a semilogarithmic scale in order to better
appreciate the quality of the fit (red-solid curve).

data is less accurate than the VE one, even at our lowest Q
value. Note that for an easier comparison with other published
data, we used as spectral variable the angular frequency ω in
units of rad ps−1.

An example of the results of the VE fits to the FK-QCW
FK(Q, t ) is shown in Fig. 11 at the same rather high Q shown
for RPMD in Fig. 9. Again, a VE description is found to
be appropriate, although the FK-QCW simulations display a
more noisy character than the RPMD ones, as can be seen in
Fig. 6. Consequently, FK-QCW fits shown in Fig. 11 are of
a slightly lower, though still very good, quality than those of
the RPMD case. Indeed, such a quality difference can only
be appreciated in the semilogarithmic plots of Figs. 11(c) and
11(d).

Thus, our analysis confirms that, notwithstanding the ap-
proximations discussed in Sec. V, the FK(Q, t ) obtained from
the quantum methods considered here comply with the gen-
eral property of having a multi-exponential representation,
and that a viscoelastic description applies also to liquid D2,
in the explored Q range.

In Fig. 12(a) the experimental dispersion curve ωs(Q) is
compared with the one obtained from the fits to the RPMD
and FK-QCW simulations, all curves showing a considerable
positive dispersion with respect to the hydrodynamic limit
curve, ωs,hyd(Q) = csQ, also shown in the figure. A similar
comparison is performed in panel (b) for the damping zs(Q)
and the undamped frequency �s(Q) = √

ω2
s (Q) + z2

s (Q) of

the longitudinal excitations. As was evident also from Fig. 6,
a larger difference is observed in the damping of the acoustic
modes in the whole experimental Q range. By contrast, the
frequency ωs(Q) deduced from RPMD and FK-QCW only
progressively deviates from the experimental one as Q grows,
with FK-QCW better accounting for the experimental result.
It is important to observe that the error bars of the shown
experimental quantities are of the order of the size of the
symbols. This means that the excitations, as determined by
the fit to the measured data, have very marked features leading
to rather small uncertainties. We note that the results for the
undamped frequency, from both experiment and simulation,
seem to be quite larger than those reported in Fig. 10 of
Ref. [24], in Fig. 2 of Ref. [27], and in Fig. 4 of Ref. [28].
For instance, despite the fact that the temperature of the three
measurements was nearly the same (�20 K), the first paper
reports a maximum of h̄�s(Q) of about 7 meV, the second
paper of 8.5 meV, and the third of 7.5 meV, which are all
substantially lower than the current value of �10 meV. The
three experiments all corresponded to samples with a higher
sound speed than ours (implying a slightly larger density), so
the origin of the discrepancy is even more difficult to explain.

Concerning the experimental determinations of the damp-
ing, all previous estimates provide (around Qp/2) a roughly
common value of about 5 meV, despite the different values
given instead for �s. However, due to the slightly lower den-
sity of our state, such a result is, in principle, not at variance
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FIG. 9. Same as Fig. 8 at Q = 13.01 nm−1.

with the current ones from RPMD and FK-QCW (∼4 meV),
as well as from the experiment (∼3 meV). In fact, as stated
for cold liquids and for normal liquid He [77,78], not only the
frequency, but also the damping of sound waves increases as
density grows, as it happens for classical fluids. Nevertheless,
the above considerations clearly imply that the corresponding
dispersion curves ωs(Q) would completely differ, i.e., would
reach far smaller frequencies at all wave vectors, from those
of Fig. 12(a).

The reasons of such differences might lie, of course, in pos-
sible, although improbable, experimental problems in present

or previous neutron measurements. However, given the very
complex analysis of neutron data in the case of liquid D2,
one can more likely hypothesize discrepancies due to the neu-
tron data correction procedures. One problem, among others,
being the critical evaluation and subtraction of the single-
molecule contribution. Indeed, the self component in Fig. 5
of Ref. [24] seems rather unrealistic, given that the experi-
mental resolution was not so different from ours. The same
applies to the one reported in Fig. 3 of Ref. [28], in which
no fingerprint of the rotational transition around 7 meV is
visible, while we clearly showed, in Figs. 2(d) and 5, how
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FIG. 10. Same as Figs. 8(c) and 8(d) but in the case of a GH fit to the RPMD data.
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FIG. 11. Same as Fig. 9 but referring to the FK-QCW simulations. Note that the cutoff in time is shorter than in Fig. 9, due to some noise
in these results that was absent in the RPMD data. Consequently, also the fit quality, though more than acceptable, is inferior to that of the
RPMD case, as it is particularly evident from panels (c) and (d).

much it interferes with the Brillouin peak and, consequently,
with the fitted values of both ωs and zs. Further, in Ref. [27]
the self component was accounted for by assuming the ideal
gas Ss(Q, ω) in the Young and Koppel model, which is not
a good approximation for such a critical correction. This can
be deduced from Fig. 13, where we show the quite different
fit we obtain [to be compared to that of Fig. 2(c)] if the ideal
gas lineshape is used in place of the quantum SGA

s (Q, ω) in
the calculation of Js(Q, ω). The crucial difference between
the two is that the correct quantum asymmetry of the ideal
gas is simply due to the frequency shift introduced by recoil.
Conversely, the SGA

s (Q, ω) obeys the first moment sum rule
because of its shape, and not through a frequency shift. It is
clear then that the subtraction based on these two lineshapes
has quite different effects in the two cases. Interestingly, by
the fit shown in Fig. 13 we obtain a rather lower value of the
undamped frequency (8.2 meV). Another important difference
is that in the previous works no mention is made about the
imposition of physical constraints, which in this case are a
particularly important requirement. Without this condition,
the fit is much more flexible and can provide different results,
which naturally better adapt to the data points. For instance,
an unconstrained fit at Q = 9 nm−1 in Fig. 3 would have
provided a better description of the points on the right wing
of the spectrum, but at the cost of having a wrong M (1) and
consequently different values for ωs and zs.

Finally, in Fig. 14 we show the amplitude [panel (a)] and
damping [panel (b)] of the real mode (labelled as R0) obtained

from the GH fit to the experimental data. In both panels, these
are compared with the corresponding quantities that describe
the central part of the RPMD spectra in a VE modeling, i.e.,
those related to the two central Lorentzians R1 and R2. The
comparisons shown in Fig. 14(a) resemble very much the
trends already observed in other insulating liquids, like CO2

[79]. However, these are specially interesting as soon as we
look at the sum of the intensities of the two real modes of
the VE fits to the simulations. Indeed, such a sum is found
to nicely agree with the experimental amplitude. This means
that the GH model describes rather well, though in an effective
way, the more detailed structure of the central peak confirmed
by the VE fits to the RPMD data. Moreover, this fact also
confirms what we mentioned before, i.e., that the relaxation
modes in the liquid are almost equally witnessed by the neu-
tron data and by the RPMD simulations. By contrast, the
source of the discrepancies mainly lies in the way propagating
excitations appear to be damped.

VII. CONCLUSIONS

We presented the results of an inelastic neutron scattering
experiment aimed at determining the center-of-mass dynam-
ics of liquid D2, that is its characteristic relaxation processes
and excitations. For applicative purposes, we were also in-
terested in providing both the dynamic structure factor of
this liquid and its neutron DDCS in absolute units. We per-
formed a rather demanding analysis of the neutron data, using

174204-16



COLLECTIVE DYNAMICS OF LIQUID DEUTERIUM: … PHYSICAL REVIEW B 104, 174204 (2021)

ω
s(

Q
) 

[r
ad

 p
s-1

] 

Q [nm-1] 

RPMD

(a) 

Expt.

(b) 

Ω
s(

Q
),

z s
(Q

) 
[r

ad
 p

s-1
] 

Expt. 

RPMD

FK-QCW

FK-QCW

Expt.

cs = 984 m/s (0.984 nm/ps)

ω
s (Q

) [m
eV

] 
Ω

s (Q
),

z
s (Q

) [m
eV

] 

3.3 

6.6 

9.9 

3.3 

6.6 

9.9 
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FIG. 13. Same as Fig. 2(c) but using the ideal gas lineshape in
the calculation of Js(Q, ω) of Eq. (6) (magenta-chain curve).
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FIG. 14. Q dependence of the amplitudes and dampings of the
real modes considered in a GH modeling of the neutron data (labelled
as R0, full red circles) and in a VE one of the simulated RPMD
spectra, with R1 represented by the blue empty squares, and R2 by
orange empty diamonds. In panel (a) the sum of the R1 and R2 VE
contributions to the central RPMD spectrum is also compared with
the effective one obtained from experiment.

the best available methods at present for the calculation of
the single-molecule contribution, which must be subtracted
from the total neutron signal to access S(Q, ω). This step is
particularly complex because of the quantum nature of D2,
which requires a quantum compliant evaluation of its self
dynamic structure factor Ss(Q, ω) that, as we showed, cannot
be crudely substituted by an ideal gas approximation, at least
when performing a correction as important as the subtraction
of the single-molecule term from the neutron data.

We complemented the experimental part with an extensive
simulation work aimed at comparing also different quantum
algorithms whose effectiveness for direct calculations of the
S(Q, ω) of a quantum fluid is, actually, still completely un-
settled. This is also another reason explaining why we were
striving to perform comparisons on an absolute scale and
free from experimental or simulation resolution effects. Our
work reveals that, when doing so, appreciable discrepancies
emerge not only between experiment and all the attemped
simulation algorithms (RPMD, FK-LPI, FK-QCW), but also
among the different simulation methods. As clearly stated in
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this work, it is evident that something in the algorithms deeply
affects the way longitudinal acoustic modes are described.
This point regarding different simulation techniques should
indeed be the objective of future investigations and simulation
research. As far as the disagreement between simulations and
experiment is concerned, of course we cannot exclude exper-
imental problems due to possible systematic errors. Anyway,
as stated before, we performed a very careful analysis that
also took advantage of the unique opportunity, provided by the
multi-exponential expansion of correlation functions, of easily
imposing physical constraints in fit procedures. In fact, our
comparisons show that important details of the spectral shape
might be missed either by experiment or by calculations or
both, but the absolute scale of the functions is correct in either
way. This hopefully means that the main thing to understand
further is why simulation data have so less marked collective
sound excitations with respect to the present experimental
results for S(Q, ω).

It is well known that cold liquids [77,80], and He in partic-
ular [81], are characterized by rather long lifetimes (ideally
infinite in superfluid He) of the collective excitations, with
respect to classical liquids. This behavior was interpreted
as the main manifestation, in the dynamical properties, of
the quantum nature of such fluids [80,81]. To what extent
also liquid D2 might show so clear dynamical evidences of
quantum effects it is difficult to say. Our experimental results
seem to suggest that quantum delocalization visibly affects
the damping of propagating modes in liquid D2, even more

than RPMD and the other simulation techniques are able to
predict. Although, for brevity, we classified as “quantum” the
considered simulation methods, it is important to recall that,
unavoidably, they are all the result of semi-classical approxi-
mations, which might be unable to fully grasp the most typical
fingerprint in S(Q, ω) of genuine quantum behavior.

Finally, still concerning our dynamical characterization of
liquid D2, both by VE fits to RPMD/FK-QCW data, and
by GH fits to the neutron ones, we do not observe striking
differences from the behavior of other insulating liquids [79],
also showing a marked positive dispersion as liquid D2. The
overall acceptable agreement of the RPMD/FK-QCW and
experimental dispersion curves, indeed confirms that the most
studied property in liquids dynamics is reasonably captured
by both our experiment and simulations on liquid D2.
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