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Tunable Anderson localization of dark states
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Random scattering of photons in disordered one-dimensional solids gives rise to an exponential suppression
of transmission, which is known as Anderson localization. Here, we experimentally study Anderson localization
in a superconducting waveguide quantum electrodynamics system comprising eight individually tunable qubits
coupled to a photonic continuum of a waveguide. Employing the qubit frequency control, we artificially introduce
frequency disorder to the system and observe an exponential suppression of the transmission coefficient in the
vicinity of its subradiant dark modes. The localization length decreases with the disorder strength, which we
control in situ by varying individual qubit frequencies. Employing a one-dimensional noninteracting model of
coupled qubits and photons, we are able to support and complement the experimental results. The difference
between our investigation and previous studies of localization in qubit arrays is the coupling via a common
waveguide, allowing us to explore the localization of mediating photons in an intrinsically open system. The
experiment opens the door to the study of various localization phenomena on a new platform, which offers a
high degree of control and readout possibilities.
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I. INTRODUCTION

The exponential suppression of diffusive transport due to
disorder-induced random scattering is known as Anderson
localization [1,2]. Whereas the phenomenon was first consid-
ered in electronic systems where the electronic wave function
gets localized due to quantum interference, it proved to be
present in a much wider range of different physical systems.
This includes localization of light in the optical [3,4] and
microwave domain [5] as well as of sound waves [6].

An emerging platform to study the interactions between
photons and matter is superconducting waveguide quantum
electrodynamics (wQED), where qubits interact with a broad
continuum of electromagnetic modes (rather than with a sin-
gle mode as in cavity QED) [7]. Pioneering experiments with
single qubits demonstrated that such systems can be well
controlled, feature strong coupling [8], and various quantum
optical effects like antibunched light [9] and the Autler-
Townes splitting [9,10]. If multiple qubits are coupled to the
same waveguide, they obtain an effective photon-mediated
infinite-range interaction [11,12]. This gives rise to collective
super and subradiant polaritonic excitations, which corre-
spond to the eigenmodes of finite wQED systems [12–15].
First experiments showcased a scaled superconducting wQED
system featuring multiple qubits in a metamaterial con-
figuration [15], an atomic mirror [16], and a topological
waveguide [17].

Recently it was shown that Anderson localization of light is
expected in wQED systems with either position or frequency

disorder of the constituent qubits [18–22]. Although medium-
sized wQED systems with controllable qubits can be tuned
to a barely disordered state [15], they can also be used as
a simulator for tunable disorder, which is unavoidably intro-
duced in large-scale superconducting wQED systems lacking
local qubit control. This makes them a particularly well-suited
system to study Anderson localization.

Several recent experimental studies focused on many-body
localization in a cavity QED architecture with either directly
nearest-neighbor coupled qubits [23–25] or indirectly coupled
qubits via a bus resonator [26,27]. While these systems are
intrinsically closed, here we investigate localization in an open
quantum system and measure propagating photons rather than
excitations in the stationary qubits. This provides the benefit
to study localization phenomena in a dissipative environment.
Having photons as mediators with a continuous spectrum and
directly measuring the transport through the system sets our
work apart from previous studies.

We experimentally investigate Anderson localization in a
superconducting wQED system in the noninteracting (low-
power) limit. Our system is formed by eight transmon qubits
coupled to the mode continuum of a coplanar waveguide.
First, we theoretically motivate that such a system can in-
deed feature Anderson localization in a disordered state by
investigating a model of the experiment, which reproduces
its main features. Our analysis shows that in a finite system
the localization manifests as the suppression of subradiant
modes. Based on these insights, we establish the localization
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FIG. 1. Visualization of the Hamiltonian (1) with N = 4 qubits,
Nint = 1, and Nγ = (Nint + 1)N − Nint = 7 photon sites. Blue circles
represent photon sites, orange squares represent qubit sites. On each
node, the corresponding onsite energy is indicated. Nearest-neighbor
photon sites are coupled to each other with coupling constant J;
the qubit sites are coupled to the corresponding photon sites with
coupling constant g.

experimentally, using the qubits’ tunability to introduce fre-
quency disorder to the system. The effective localization
length is accessed by performing an average over several ran-
dom disorder realizations. The experiment features the benefit
of precise and in situ control of the disorder strength and is
thus a useful tool for the study of Anderson localization in
photonic systems. Due to the nonlinearity of the employed
superconducting qubits our experiment paves way towards
more evolved concepts such as the study of many-body local-
ization phenomena [28–33], which were recently discussed in
a similar context in Ref. [22].

II. THEORETICAL MODEL

We consider a one dimensional (1D) N-qubit wQED
Hamiltonian H = Hq + Hγ + Hγ q with terms corresponding
to qubit energies Hq, photon energies Hγ and coupling Hγ q

between photons and qubits [34]. As the experiment is per-
formed in the low-power regime, interactions do not play
a role and we limit ourselves to a noninteracting model.
We therefore write for the qubits Hq/h̄ = ∑N−1

j=0 ω ja
†
j a j

with the qubit creation and annihilation operators in site
space a†

j and a j . The qubit energies ω j are drawn from a
random Gaussian distribution P(ω) = (2πσ 2

ω )−1/2 exp[(ω −
μ)2/(2σ 2

ω )] with standard deviation σω and mean μ. For

the photon we choose a periodic dispersion relation Hγ /h̄ =
−2J

∑Nγ −1
n=0 cos(dγ kn)b̃†

kn
b̃kn with bandwidth 4J and lattice

spacing dγ ; b̃†
k and b̃k are photon creation and annihilation

operators in momentum space. Lastly, we specify Hγ q/h̄ =
g
∑N−1

j=0

∑Nγ −1
n=0 (eiknd j b̃†

kn
a j + H.c.) where g is the coupling

strength. The site-space equivalent of this Hamiltonian reads

H

h̄
=

N−1∑
i=0

ωia
†
i ai − J

Nγ −1∑
i, j=0

δ〈i, j〉b†
i b j

+ g
N−1∑
i=0

(b†
id/dγ

ai + a†
i bid/dγ

),

δ〈i, j〉 =
{

1 , i, j nearest neighbors,

0 , else,
(1)

here b†
i , bi are the site-space photon creation and annihilation

operators, d is the spacing between qubits, and d/dγ is an
integer. Note the position indices x = id/dγ of the photon
operators in the coupling term: two neighboring qubits are
coupled to photon sites that are separated by Nint = d/dγ − 1
intermediate photon sites, see Fig. 1. Taking the limit J → ∞
and dγ → 0 while keeping d constant, one can restore the
actual linear photon dispersion by adapting the band slope
in the frequency range of interest to the speed of light. In
practice (see below), one does not need a large number Nint

of intermediate sites in the simulations; already Nint = 1 as in
Fig. 1 turns out to be sufficient.

For the analysis of disorder-induced localization in the
wQED system, it is instructive to integrate out the qubit
degrees of freedom in the Hamiltonian (1) (rather than the
photons as frequently done in the literature [11,34,35]; see
the Supplemental Material [36] for the corresponding photon-
integrated effective model), to obtain an effective photonic
Hamiltonian. This can be conveniently done by using the
generating integral I for the Hamiltonian (1) with the corre-
sponding action S(ω):

I =
∫

D{a, a∗, b, b∗} exp[−S(ω)] =
∫

D{a, a∗, b, b∗} exp

(
−

N−1∑
i=0

(ωa∗
i ai ) −

Nγ −1∑
i=0

(ωb∗
i bi ) + H

)

=
∫

D{a, a∗, b, b∗} exp

(
−

N−1∑
i, j=0

a∗
i (ω − ωi )δi, ja j +

N−1∑
i=0

g(a∗
i bid/dγ

+ b∗
id/dγ

ai )

)
exp

(Nγ −1∑
i, j=0

b∗
i (−Jδ〈i, j〉 − ωδi, j )b j

)

∼
∫

DbDb∗ exp

(
−

Nγ −1∑
i, j=0

Jb∗
i b jδ〈i, j〉 +

N−1∑
i=0

b∗
id/dγ

bid/dγ

[
g2

ωi − ω
− ω

])
. (2)

Using the last line of Eq. (2), we read off the effective
photonic Hamiltonian

Heff (ω)/h̄ =
N−1∑
i=0

ni(Nint+1)
g2

ωi − ω
− J

Nγ −1∑
i, j=0

δ〈i, j〉b†
i b j,

ni = b†
i bi , (3)

which depends on the considered frequency ω. For any fixed
ω, we obtain a 1D Hamiltonian with onsite disorder cor-
responding therefore to an Anderson-localized system [37].
(See Appendix C for a discussion of the weak-disorder limit
of the model.)

Due to the tridiagonal shape of Heff , we can efficiently
calculate the average inverse localization length 1

ξ
[38] and the

174202-2



TUNABLE ANDERSON LOCALIZATION OF DARK STATES PHYSICAL REVIEW B 104, 174202 (2021)

power transmission coefficient T [39] by solving the discrete
Schrödinger equation with standard transfer-matrix methods
(see Supplemental Material [36]). Since localization implies
exponential suppression of the wave function with system
size, the localization length and the transmission are related
as

1

ξ
= lim

N→∞

〈
− log(T )

N

〉
=: lim

N→∞
1

ξN
. (4)

Here and in the following, the localization length is given
in units of the lattice constant; angular brackets denote an
average over disorder realizations. With Eq. (4), effective
localization lengths ξN can be obtained from transmission
through systems of any size. However, for small N , the local-
ization length ξN may be substantially influenced by finite-size
effects. The limit N → ∞ implies that the system has to be
sufficiently large for ξN to converge to the localization length
ξ .

To describe the experiment with the model, we need to find
the appropriate parameters d , μ, σω, J , dγ and Nint . In accor-
dance with the specifications of the sample the experiment is
performed on (see Sec. III), we set the distance between two
qubits to d = 400 μm and choose μ/(2π ) = 7.835 GHz for
the center frequency. We also use the same values of disorder
strength σω as in the experiment. (The disorder strength can
be controllably varied in the experiment.) Furthermore, we
can express the single qubit decay width through the model
parameters as �10 = g2/J (assuming �10/J � 1). In corre-
spondence to the experiment, we set �10/(2π ) = 6.4 MHz.
The parameters J and dγ do not have direct equivalents in
the experiment since they were introduced in the model by re-
placing the actual photon dispersion with a periodic spectrum.
The linear dispersion is restored by considering a frequency
window much smaller than J near the middle of the photon
band. Near the middle of the band the effective photonic speed
in the model is c = 2Jdγ = 2Jd/(Nint + 1) and we calculate J
from d and the speed of light in the sample, c = 1.8×108 m/s.
Lastly, we need to choose the number Nint of the intermediate
photon sites. Due to the photon dispersion in the lattice model,
the physics is different at even/odd Nint at the considered
frequencies as the even case leads to an additional, frequency-
independent phase shift between qubit-coupled sites, not
corresponding to the linear photon dispersion. This is because
linearization in the middle of the band gives us an approx-
imate dispersion of ω(k) ≈ kc − Jπ , and the corresponding
phase shift 	ϕ = dk ≈ ωd/c + (Nint + 1)π/2 between two
qubit-coupled sites. We observe that for even Nint there is an
additional contribution π to the phase shift, which makes pos-
sible spurious Fabry-Pérot resonances between neighboring
qubit sites. Thus, even Nint is less appropriate for modeling
the photonic continuum, and we choose Nint to be odd. While
formally we need the limit of large Nint to get a strictly
linear dispersion, it turns out that Nint = 1 is fully sufficient
for our purposes. This is because we work in a relatively
narrow window around the center frequency μ/(2π ), in which
the dispersion is approximately linear already for Nint = 1.
(To verify this, we performed numerical calculations also for
larger odd values of Nint and found no substantial difference.)
We thus fix Nint = 1 in the following. Using the experimen-
tal values of c, d , and �10, we then find J = 4.5× 1011 1/s

FIG. 2. Model results for parameters J = 4.5×1011 1/s, g ≈
4.25×109 1/s, and μ/(2π ) = 7.835 GHz corresponding to the ex-
perimental values. (a) Average density of states (DOS) ρ( f ) of
Hamiltonian (1) with N = 2000 and W ∈ [0.16, 2.04], for f ∈
[7.8 GHz, 7.92 GHz]. (b) Average localization length as a function of
frequency and disorder strength W obtained in systems of N = 104

sites, averaged over 40 disorder realizations. (c) Comparison of ξ8 as
defined in Eq. (4) (dashed lines, averaged over 104 disorder realiza-
tions) to ξ2000 (solid lines, averaged over 102 disorder realizations).
(d) Average localization length ξ8 as a function of frequency and
disorder strength W averaged over 104 disorder realizations.

and g ≈ 4.25×1091/ s from the above considerations. Fur-
ther, we introduce the dimensionless disorder strength via
W = σω/�10.

As we show below, the model that we consider captures
very well key physical properties of our experimental setup.
At the same time, this model involves an idealization of the
experimental setup in several respects. In particular, the fol-
lowing additional effects present in the experiment are not
taken into account by the model:

(1) Experimental transmission spectra are influenced by
interference effects in the cryostat [15];

(2) Nonradiative decays take place in the qubit array, in-
troducing an additional suppression of transmission.

These effects are discussed in more detail in the next
section.

While our experimental setup contains a modest number of
qubits, N = 8, we study first the model in the limit of large N
that guarantee the convergence (i.e., essentially the limit N →
∞). Later, we will analyze the impact of finite-size effects by
comparing the N → ∞ and N = 8 systems.

In Fig. 2(a) the average density of states ρ( f ) of the
Hamiltonian (1) with N = 2000 is shown in the disorder range
W ∈ [0.16, 2.04]. At low disorder, the system exhibits a band
gap of width 	 f ∼ 60 MHz around μ/(2π ). The spectrum
is asymmetric with most of the eigenvalues situated below
the gap. Inside the gap, for f � 7.84 GHz and weak disorder,
the density of states is very low. In this region, strongly sup-
pressed transmission coefficients and correspondingly short
localization lengths are therefore expected.
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Values of the localization length obtained for frequencies
in the lower band and in the gap region are shown for disorder
strengths W � 2.04 in Fig. 2(b). Here we used a very large
system size, N = 104, which ensures a precise determina-
tion of the displayed localization length ξ � N . Depending
on the frequency f , we observe three qualitatively different
regimes, regarding the localization length as a function of
disorder.

(1) At “low” frequencies f � 7.83 GHz, the localization
length decreases with increasing disorder strength. This is
the usual behavior for an Anderson-localized system. In this
regime, we predict the experimental observation of Ander-
son localization. We expect the experimentally determined
localization lengths to be most accurate at sufficiently strong
disorder, such that ξ � 8. This minimizes finite-size effects in
our sample of size N = 8. The yellow area in the lower left
corner of Fig. 2(b) corresponds to localization lengths much
larger than the experimentally realized system size.

(2) At “high” frequencies f � 7.845 GHz, the localization
length increases with increasing disorder strength—in con-
trast to the usual behavior for disorder-induced localization.
This can be understood by the dilution of the gap due to
stronger disorder [cf. Fig. 2(a)]. Another way to see this is to
consider the onsite disorder in the effective model εi = g2

ω−ωi
:

For sufficiently large σω � (ω − μ) an increase of the disor-
der strength σω leads to decreasing effective disorder values εi.

(3) In between, at frequencies 7.83 GHz � f �7.845 GHz,
the system exhibits a crossover between the aforementioned
regimes. Consequently, the localization length behaves non-
monotonically as a function of disorder strength: it first
decreases and then increases with increasing W . This can best
seen at f ≈ 7.835 GHz where the same contour line is crossed
twice when the disorder increases at constant frequency.

Having determined the localization length as a function of
disorder strength and frequency, we can investigate how much
of the localization physics is already visible in a disordered
wQED system of experimentally realizable size. To this end,
we calculate the power transmission coefficient T and the cor-
responding localization length ξN in a system with relatively
small number N of qubits and compare ξN to ξ . Specifically,
we choose N = 8, corresponding to the number of qubits
in the experimental sample (see below). At zero disorder,
the transmission coefficient T (ω) obtained from the Hamil-
tonian (3) features several peaks of perfect transmission, with
strong reflection between the peaks. These peaks correspond
to Fano-type resonances related to “subradiant”, or “dark”,
modes observed in the experiment [15]. Consideration of the
clean system away from the peaks demonstrates the difference
between the N = 8 and N → ∞ models: while the N = 8
system exhibits substantial reflection there, the infinite system
is perfectly transmitting. On the other hand, in the peak region,
the small system mimics the behavior of the infinite one,
featuring a diverging localization length with T → 1 within
numerical precision. With increasing system size the number
of peaks would increase, gradually forming continuous bands
corresponding to the converged localization length.

We can now test, focusing on the frequency range within
the peaks (“dark modes”), how the introduction of disorder
influences their behavior. The localization length ξ8 in the
experimentally relevant range of disorder and frequency is

FIG. 3. Microscopic image of the qubit metamaterial and sketch
of the used measurement and control electronics. The metamate-
rial consists of eight superconducting transmon qubits coupled to
a coplanar waveguide. All structures are fabricated from aluminum
(bright areas) on a sapphire substrate (dark). Every qubit can be
individually tuned with a local dc-flux bias line inducing magnetic
flux in the qubit’s split Josephson junction (red dotted).

shown in Fig. 2(c), in comparison with the thermodynamic-
limit localization length ξ . It can be seen that ξ8(ω) at small
disorder W = 0.16 features a peak at fpeak ≈ 7.829 GHz,
which corresponds to a perfect transmission frequency at
zero disorder. With increasing disorder strength, the peak
frequency decreases and the peak smoothens out. While there
is hardly any disorder dependence of the localization length
away from the peaks, the peaks themselves get strongly sup-
pressed with increasing disorder strength. This demonstrates
that even a shorter finite system (N = 8) shows indeed at the
peak frequencies the behavior characteristic for a large sys-
tem. In Fig. 2(d) we show ξ8 as a function of disorder strength
and frequency, to be compared with ξ in Fig. 2(b). Again, it
can be seen that a small system indeed captures the behavior
of the large system qualitatively as well as quantitatively as
long as the localization length is not much larger than the
system size. In particular, all three qualitatively different types
of behavior of the localization length with increasing disorder
strength are reproduced. As expected, significant deviations
are present in the parameter regime of the yellow area in
Fig. 2(b), where ξ > 160 � 8.

III. EXPERIMENT

The localization is experimentally tested in a supercon-
ducting wQED system comprising eight transmon qubits [40],
coupled to a common coplanar waveguide (see Fig. 3). The
distance between neighboring qubits is d = 400 μm, which is
at all accessible frequencies smaller than the corresponding
wavelength λ. Each qubit is individually frequency tunable
between 3 and 8 GHz with a local flux-bias line, which
induces a magnetic flux in its superconducting quantum in-
terference device (SQUID). A calibration scheme is used to
compensate for magnetic crosstalk of the bias lines, which
allows for true individual qubit frequency control [15,41].
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A schematic of this setup is provided in the Supplemental
Material [36].

By measuring the transmission signal of the resonance
fluorescence of the individual qubits, we extract the average
radiative relaxation rate of �10/(2π ) = 6.4 MHz and an av-
erage decoherence rate of γ10/(2π ) = (�10/2 + �nr)/(2π ) =
3.6 MHz around the qubit frequencies of 7.9 GHz [15].
The average nonradiative decoherence rate is �nr/(2π ) =
400 kHz. The incident microwave power is kept far below the
single photon regime (P < h̄ωc�10). This avoids saturation of
the qubits and eliminates the interaction in the system, which
allows to study the single-particle regime where Anderson
localization is expected.

We introduce disorder to the system by tuning the qubits
to random frequencies ωi picked according to a Gaussian
probability distribution P(ω) with standard deviation σω. The
distribution is centered around μ/(2π ) = 7.835 GHz, which
is near the qubits’ upper flux sweet spot. The interval of
allowed qubit frequencies is limited to (ωi − μ) ∈ [−2.5 ×
σω,+2.5 × σω]. Again, the disorder strength is characterized
by the dimensionless variable W = σω/�10. All spectroscopic
measurement data in this work is normalized with Snorm

21 (ω) =
Smeas

21 (ω)/max[Smeas
21 (ω)] where S21 is the transmission coeffi-

cient.
We first consider the transmission |S21| through the sample

at very weak disorder W = 0.16 [Fig. 4(a), top panel], where
it is similar to the clean case, which is discussed in detail in
Ref. [15]. In the experimental data (blue solid line), only the
brightest of the subradiant modes is visible as a pronounced
peak. The experimental results compare very well with the-
oretical data obtained by using the model of Sec. II (orange
dashed line). There are small deviations of the theoretical
curve from the experimental one; in particular, the theoreti-
cal transmission amplitude at the peak is slightly larger. As
was already mentioned in Sec. II, these differences can be
explained by the nonradiative decay in the sample as well as
by the background in the cryostat. We confirm this by fitting
the experimental data to a transfer-matrix calculation (black
dotted line) incorporating both effects on a phenomenological
level (for details of the procedure see Ref. [15]). The asym-
metric line shape of the transmission dip is a manifestation of
the asymmetric opening of the band gap (for ω > μ) as seen
from the theoretical calculation, Fig. 2(a).

For larger disorder strengths, the pronounced peak of the
collective eight-qubit subradiant state is not observable any-
more. Instead, the line shape changes to an ensemble of peaks
and dips, which differs significantly between different disor-
der realizations [Figs. 4(a) and 4(b)] and is well reproduced
by the model (orange dashed lines). In Fig. 4(a), the indi-
vidual qubit frequencies are indicated by grey dotted lines.
It is seen, both in theoretical and in experimental curves that
every frequency corresponds to a distinct dip in the trans-
mission. Recalling our convention for the disorder strength
W = σω/�10 this can be intuitively understood from the fact
that the difference between two qubit frequencies is typically
larger than the single-qubit decay width if W � 1.

To analyze the localization length in the sample, the disor-
der strength is varied between W = 0.16 and W = 2.04 and,
for each value of W , the transmission |S21| of 50 random
disorder realizations is measured. Using Eq. (4), we obtain

(a)

(b)

FIG. 4. (a) Transmission coefficient |S21| through the metamate-
rial for different disorder strengths W in the experiment (blue solid
lines) and in the theoretical model (orange dashed lines). For the
case of very weak disorder, W = 0.16 (upper panel), the observed
transmission is nearly identical to the results of a transfer-matrix
calculation for a clean system. The agreement becomes especially
good when the nonradiative decay in the sample as well as the back-
ground in the cryostat are incorporated (black dotted line). For strong
disorder, W = 2.04, the middle and the bottom panels display results
for two individual disorder realizations. Vertical dotted lines mark the
frequency of the individual qubits in each disorder realization. It is
seen that the profile of the transmission coefficient differs strongly
from one realizations of disorder to the other, in agreement with
theoretical predictions. (b) Overview of the transmission coefficient
for 50 random disorder realizations for W = 2.04. The distribution
of qubit frequencies is picked according to a Gaussian probability
distribution P(ω) (right panel).

ξ8 from the logarithmic averaged power transmission T =
|S21|2. The resulting dependencies of the localization length
ξ8 on frequency are shown in Fig. 5(a) for several disorder
strengths. In Fig. 5(b), the same experimental data for ξ8 are
presented by a color code in the parameter plane spanned by
disorder strength and frequency. These experimental findings
are in good agreement with the corresponding theoretical re-
sults in Fig. 2(c) (dashed lines) and Fig. 2(d). For a direct
comparison of the frequency dependence of the localization
length ξ8 in theory and experiment for each disorder strength,
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(a)

(b) (c)

FIG. 5. (a) Localization length ξ8 obtained experimentally from
an average of 50 random disorder realizations. Different curves
correspond to different values of the disorder strength W . Large
localization lengths at the peak of the brightest collective sub-
radiant mode are suppressed with increasing disorder strength,
which demonstrates the Anderson localization of waveguide pho-
tons. (b) Dependence of the measured localization length ξ8 on
frequency and disorder strength W . Each vertical trace is based on
an average of 50 random disorder realizations. (c) Colored symbols:
Disorder-strength dependence of the measured localization length
at the peak of the brightest subradiant state [marked as blacked
dots in the panel (a)], in comparison with the theoretical calculation
for a small (N = 8) and a large (N = 105) system. The theoretical
localization lengths at W ∈ {0.16, 0.47} were calculated at slightly
different frequencies since the peak positions differ by a small
amount of approximately 1 MHz. Dashed black line: Power law
ξ ∼ W −2 as a guide to the eye.

see Appendix B. As in the theoretical model, we find in
the experiment a strong reduction of ξ8 at the peak of the
brightest subradiant mode around f ≈ 7.829 GHz with in-
creasing disorder strength W . For the largest disorder strength
of W = 2.04, the localization length is reduced to ξ8 ≈ 3,
implying that the localization is strong in comparison with the
overall length of N = 8 unit cells of the structure. Comparing
Figs. 2(b) and 5(b), we find all three qualitatively different
regimes predicted by the theory reproduced in the experiment:
For f � 7.82 GHz, the localization length decreases with
increasing disorder strength, showing disorder-induced local-
ization. For f � 7.84 GHz, the localization length increases
with increasing disorder strength due to the dilution of the
band gap. In the crossover region in between, the localization
length behaves non-monotonically as a function of disorder.

In Fig. 5(c) we show the disorder dependence of the lo-
calization length at the peak, as obtained experimentally, and
compare it to the theoretical calculations for N = 8 and in
the large-N limit. (Note that the peak frequencies in model
and experiment exhibit a small difference of approximately
1 MHz, so that we compare the localization lengths at slightly

different frequencies for W ∈ {0.16, 0.47}.) At weak disorder,
the large-N theoretical data is close to a power law ξ ∼ W −2

(black dashed line). This is expected from perturbative anal-
ysis and discussed in more detail in Appendix C, where we
also demonstrate an excellent 1/W 2 scaling of the localization
length by using weaker disorder and much larger system sizes.

For the weakest disorder strength in Fig. 5(c), W = 0.16,
the experimentally determined localization length is signifi-
cantly smaller than the actual ξ , which is rooted in ξ � 8 for
these parameters. Furthermore, the experimentally extracted
ξ8 is also smaller by almost an order of magnitude than the
theoretical ξ8, which is due to the above-mentioned additional
peak-suppressing effects in the experiment, which are not
present in the model. In particular, dissipation, i.e., nonra-
diative decay of the qubits, yields an additional contribution
to Im(k) for frequencies below and above the bandgap [19].
This effect reduces the maximum T at the subradiant polari-
ton peak and limits the experimentally extracted localization
length from above, even in the absence of disorder. A further
potential source of differences between the theory and the
experimental data is the interference between the signal and
standing waves in the cryostat [15]. This effect leads, e.g.,
to an asymmetry in the one-qubit transmission dip [15] and
accounts for further suppression of the localization length
in experiment. At the same time, as the disorder strength is
increased, the disorder-induced peak suppression becomes the
dominant effect. Indeed, it is evident in Fig. 5(a) that the peak
height decreases with the increase of disorder. On a quanti-
tative level, all effective localization lengths (experimental ξ8

as well as theoretical ξ8 and ξ ) converge towards each other.
In particular, for W = 1.1 the experimentally determined ξ8

is smaller than the theoretical ξ8 (ξ ) by approximately 10%
(respectively 40%). Furthermore, we explicitly demonstrate in
Appendix A, by incorporating the nonradiative decay rate into
the transfer-matrix approach, that the influence of dissipation
associated with the nonradiative decay becomes negligible
at W � 1. Since the experiment reaches sufficient disorder
strengths and shows a distinct dependence on disorder, we
conclude, in agreement with the results of the theoretical
model, that the observed suppression of the subradiant mode
peak is an observation of Anderson localization in an eight-
qubit system.

IV. SUMMARY AND OUTLOOK

In conclusion, we experimentally demonstrated Anderson
localization in a finite wQED system with N = 8 qubits.
Individual frequency control allowed us to manipulate the
disorder strength in situ. Attributing an effective localization
length to the suppression of a subradiant polaritonic mode,
we found a decrease of the effective localization length with
increasing disorder. Using a theoretical model, we showed
that in finite systems localization indeed manifests as the
suppression of transmission peaks, which constitute the po-
lariton bands for infinite structures. The model allowed us
to compare localization lengths obtained in small systems to
the thermodynamic-limit (N → ∞) results. We found that
the finite system mimics the infinite one at the peak posi-
tions, giving a reasonable estimate for the localization length
at the corresponding frequencies. The theoretical analysis
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reproduces all salient aspects of the experiment. This con-
firms the accuracy of the experiment and corroborates the
appropriateness of the model as well the interpretation of the
experimental findings.

The experiment paves the way to further experimental
studies in disordered wQED systems. One very interesting
prospective direction is the implementation of an individual
readout of the qubits. This will give access to dynamical prop-
erties of the system by studying observables such as the return
probability or the wave packet spread. Such studies would
also contribute to investigation of finite-size effects. Further-
more, an individual qubit readout would allow one to probe
the spatial profile of localized collective excitations, provid-
ing a potential experimental platform to test the localization
landscape technique [42,43]. Finally, a very intriguing and
challenging prospect is to explore the regime of many-body
localization by increasing the incident power in the system.
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APPENDIX A: LOCALIZATION VERSUS DISSIPATION

Since the localization length is in the experiment ex-
tracted from the power transmission coefficient T = |S21|2,
the effective localization length ξ8 = −〈8/ log(T )〉 is also
influenced by dissipation (i.e., nonradiative decoherence)
of the qubits. This can be numerically investigated with
a phenomenological transfer-matrix approach based on the
reflection coefficient of the individual qubits, which incorpo-
rates nonradiative decay. The calculation follows the methods
presented in Refs. [15,44]. The left panel of Fig. 6 shows the
calculated ξ8 = −8/ log(T ) for the clean system (all qubits at
ωi/2π = 7.835 GHz, �10/2π = 6.4 MHz) and different non-
radiative decoherence rates �nr. Although the maximum value
of ξ8 at the Fano-peak of the subradiant mode is strongly
influenced by the amount of dissipation, it shows a distinct
monotonic decrease with the disorder strength W (right panel
of Fig. 6), which is a manifestation of Anderson localization.
For larger disorder strengths, ξ8 converges to the value of a
nondissipative model.

APPENDIX B: COMPARISON OF AVERAGED
EXPERIMENTAL AND THEORETICAL LOCALIZATION

LENGTHS ξ8 FOR VARIOUS DISORDER STRENGTHS

In Fig. 7 we show a direct comparison of the averaged
localization lengths ξ8 in experiment (solid blue lines) and in
the theoretical model (dashed orange lines) for various values
of disorder W in the range W ∈ [0.16, 2.04]. There is good
agreement between the experiment and the theory with re-

FIG. 6. Effect of dissipation (nonradiative decay) on the effec-
tive localization length. Left panel: numerically calculated ξ8 =
−8/ log(T ) for the N = 8 clean system obtained from a transfer-
matrix calculation around the frequency of the brightest subradiant
mode. Here the dissipation is included via the nonradiative decoher-
ence rate �nr of the qubits. With increasing dissipation, the value
of ξ8 at the peak gets progressively suppressed. Right panel: ξ8 =
−8/〈log(T )〉 at the position of the peak as a function of disorder.
Even in the presence of dissipation, ξ8 monotonously decreases with
increasing disorder due to Anderson localization. At sufficiently
strong disorder, the dissipation does not play any essential role.

spect to the overall behavior of the localization length. At the
same time, the experimental ξ8 is substantially lower than the
theoretical one for weak disorder, in the range of frequencies
where the theoretical ξ8 is large (in particular, at the peak).
The reasons for this are discussed in Secs. II and III of the

FIG. 7. Comparison of frequency dependencies of the localiza-
tion length ξ8 in experiment (solid blue lines) and theory (dashed
orange lines) for different strengths of disorder W ∈ [0.16, 2.04].
The experimental and theoretical data was averaged over 50 and 104

random disorder realizations, respectively.
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FIG. 8. Localization length ξ in the model (1) at frequency
f = 7.82 GHz and weak disorder, W ∈ [10−2, 10−1] determined for
a system of size N = 3×107 (blue dots). The data are based on
averaging over 40 disorder realizations. The error bars were obtained
with a bootstrapping procedure. The orange line is a power-law fit
ξ (W ) ∝ W −β with β = 1.97. The obtained value of β is very close
to the analytical prediction β = 2 in the weak-disorder limit.

paper: the experimental data are affected by the nonradiative
decay and by effects in the cryostat that are not included in
the theoretical model. With increasing disorder, the agreement
between the experimental and theoretical values of ξ8 im-
proves, as Anderson localization becomes the most important
effect controlling the experimentally determined localization
length.

APPENDIX C: MODEL (1) IN THE WEAK
DISORDER LIMIT

For weak disorder, the localization length scales as ξ ∝
W −β with β = 2. This is because the localization length in
1D geometry is given by the back-scattering mean free path,

which scales as 1/W 2 by virtue of Fermi’s golden rule. To
verify with a high accuracy numerically that our model fulfills
this limit, we performed numerical simulations in the range
of very weak disorders, 0.01 � W � 0.1 and for a very big
system size N = 3×107. The results are shown in Fig. 8.
The power-law fit yields the exponent β ≈ 1.97, in excellent
agreement with the analytical prediction β = 2.

We can estimate an upper border of the range of disorder
strength W in which this behavior can be reasonably observed.
For this purpose, we use the effective photonic Hamilto-
nian (3). There the effective onsite random field reads

εi = g2

ω − ωi
. (C1)

Investigating the model at a frequency ω = μ + 	ω and as-
suming σω/	ω � 1, we find

εi 
 g2

	ω
+ (ωi − μ)g2

(	ω)2
. (C2)

Therefore, the characteristic magnitude of fluctuations of
the random on-site field is σeff = σωg2/(	ω)2. The weak-
disorder condition reads σeff/J � 1. We further use 	ω ≈
�10, as in the experiment, with �10 = g2/J being the single-
qubit radiative decay rate. The weak-disorder condition then
takes the form

W ≡ σω/�10 � 1 . (C3)

Thus, we expect that the 1/W 2 weak-disorder scaling of the
localization length ξ can be observed with reasonable accu-
racy up to W � 1. This is indeed what is seen in Fig. 5(c).
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