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Stress tensor in the linearized augmented plane wave method
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In this paper we present a detailed derivation of the stress tensor for the nonrelativistic full potential linearized
augmented plane wave (LAPW) method. The formalism has been implemented into the WIEN2K code and has
been thoroughly tested for the equilibrium lattice parameters in various solids. Hydrostatic and nonhydrostatic
conditions have been applied and the accuracy of individual stress components has been tested at finite strain.
We also tested the convergence of the stress tensor with respect to the basis set and found it necessary to increase
the basis set a bit as compared to total energy calculations. The effect of the tetrahedron and Fermi-Dirac (FD)
methods on the calculated stress is studied for aluminum and found that the FD method improves the results.
Finally, a brief comparison with previous attempts in the literature on this topic is given.
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I. INTRODUCTION

The minimization of the total energy (Etot) with respect
to the structural parameters of a material under a specific
set of constraints is one of the fundamental tasks of modern
solid state theory. Since in compounds with lower symme-
try there could be tens to hundreds of structural parameters,
determining the total energy alone is not sufficient for this
goal and additional observables must be considered. One is
the derivative of Etot with respect to the atomic positions, i.e.,
the forces acting on the atoms [1–3]. Basically all major codes
for solid state simulations have implemented efficient algo-
rithms to determine these forces, and various force relaxation
methods for optimizations of the atomic positions exist [4].
Another ingredient is knowledge of the stress tensor [5,6], i.e.,
the derivative of Etot with respect to strain, which is necessary
to optimize the lattice parameters and angles in low symmetry
cases.

The stress tensor formalism was first adapted to den-
sity functional theory (DFT) [7,8] by Nielsen and Martin in
Refs. [5,6], and verified using a plane wave based pseudopo-
tential implementation. Their work was limited to the local
density approximation (LDA), but later the derivation was
extended to a semilocal exchange-correlation functional by
Dal Corso and Resta [9]. A further extension to the projector
augmented wave (PAW) method was published by Torrent
et al. [10]. An alternative but less common way to calculate
the stress tensor is via density functional perturbation theory
(DFPT) [11], since strain may be regarded as a parametric
perturbation. However, the application of strain also changes
the periodic boundary conditions of the eigenfunctions of
a Hamiltonian, which creates difficulties in the perturbative
expansions used in DFPT [11]. These problems were finally
overcome by an elegant reduced coordinate formulation in
terms of strain-dependent metric tensors [12–14].

In plane wave pseudopotential calculations, a full structural
optimization of both the atomic positions and the shape and
size of the unit cell has thus been made possible and has been

implemented in many such DFT codes. On the other hand, in
all-electron linearized augmented plane wave (LAPW) meth-
ods [15,16], depending on the symmetry of the system at hand,
a unit cell optimization could only be achieved by tedious if
not prohibitively expensive procedures based on fitting lattice
parameters to a possibly large number of total energy calcula-
tions, putting the all-electron LAPW approach at a significant
disadvantage as compared to the pseudopotential plane wave
based methods. Therefore, it is only too understandable that a
number of efforts [17–21] have been made within the last two
decades to remove this shortcoming of the LAPW approach.
However, only the work of Nagasako and Oguchi [19,20] led
to a fully functional stress tensor implementation, but their
approach was based on the Soler-Williams LAPW method
[22,23], which is somewhat different from standard LAPW.
Thus it is fair to say that the task of implementing a fully
functional stress tensor into a standard LAPW DFT code
persisted to represent a long-standing and pressing problem.
This task has finally been accomplished in our present paper.

Below, we shall present a thorough description of the for-
malism of the stress tensor within the LAPW method. The
implementation into our WIEN2k code [24,25] is tested in
terms of convergence and accuracy on a couple of examples.
Then a brief comparison with previous respective work is
given in the discussion. We limit ourselves to a nonrelativistic
description of the valence states, while the core states can be
handled fully relativistically.

II. STRESS TENSOR IN LAPW BASED METHODS

A. Basis function

The introduction of a set of basis functions is necessary
to numerically solve Kohn-Sham single-particle equations in
density functional theory (DFT) and to represent the electron
density. In the LAPW method [16], the basis functions are
defined according to the behavior of the potential and its effect
on wave functions. Near the nuclei, the potential is very strong
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but still approximately spherical, and the wave functions are
similar to those of a free atom, and thus may contain several
nodes and a cusp at the nucleus. In the so-called interstitial
(IS) region farther away from the nuclei, the potential is
weaker, and the wave functions are much smoother. Based on
these observations, the unit cell of a crystal with volume � is
divided into nonoverlapping atom-centered spheres with radii
Ra and the remaining IS region. The LAPW basis functions
are defined by smoothly augment plane waves 1√

�
ei(k+K )·r in

the IS with an atomiclike angular momentum expansion in
the atomic spheres, where K is a reciprocal lattice vector with
modulus |K| � Kmax smaller than a chosen cutoff. Specifi-
cally, inside the atomic spheres around nucleus of an atom a at
position τa, for each l � lmax we solve the radial Schrödinger
equation using the spherically symmetric potential at certain
prescribed energies Ea

l and obtain the resulting numerical
solutions ul (ra, Ea

l ) and their energy derivatives u̇l (ra, Ea
l ) as

our radial basis functions:

φkK (r) =

⎧⎪⎨⎪⎩
1√
�

ei(k+K )·r, r ∈ IS,

lmax∑
l=0

l∑
m=−l

[
aakK

lm ul
(
ra, Ea

l

)+ bakK
lm u̇l

(
ra, Ea

l

)]
Ylm(r̂a), r ∈ Ra.

(1)

Here, ra = r − τa denotes the local position vector of a nu-
cleus of an atom a with length ra = |ra| and directional unit
vector r̂a = r/ra, whereas the position vector r is defined with
respect to the global coordinate system, which is often the
crystal coordinate system. Ylm is a spherical harmonic for
angular momentum quantum numbers lm and k denotes a
wave vector in the first Brillouin zone while K denotes a re-
ciprocal lattice vector. In Eq. (1) each interstitial plane wave is
augmented within the atomic spheres by a linear combination
of radial functions plus their energy derivative times spherical
harmonics. Imposing continuity in value and slope of the basis
functions at the sphere boundary ra = Ra fixes the unknown
coefficients aakK

lm and bakK
lm in Eq. (1).

In the presence of energetically high lying core states,
which are often referred to as semicore states, the so-called
local orbitals φLO (LOs) as described in Ref. [16] can be
added. These additional functions contain an additional radial
basis function at an energy Ea,sc

l close to the semicore (sc)
eigenvalues and are nonzero only within the region of the
atomic spheres.

The basis functions Eq. (1) and the LOs are used to rep-
resent the wave function ψvk(r) for the band v and wave
vector k,

ψv
vk(r) =

∑
K

cvkKφkK (r) +
∑
LO

cvk,LOφLO(r), (2)

with expansion coefficients cvkK and cvk,LO, where the sum-
mation runs over all reciprocal lattice vectors with |K| � Kmax

and all LOs of all atoms in the cell.
In the calculation of the total energy, the valence wave

functions enter implicitly only through the valence charge
density ρv(r) =∑vk nvk|ψv

vk(r)|2, where nvk is the corre-
sponding occupation number. When calculating the stress
tensor, however, the individual wave functions are explicitly
involved in the valence kinetic energy stress and the valence
correction stress, as will be shown below.

The valence electron density is expanded into a Fourier
series in the interstitial and into symmetry adapted lattice
harmonics inside the spheres [16],

ρv(r) ≡
{∑Gmax

K ρ(K )ei(K )·r, r ∈ IS,∑
LM ρLM(r)YLM(r̂), r ∈ Ra,

(3)

where Gmax should be chosen at least as large as 2Kmax. The
total charge density and the potential are also expanded anal-
ogously to Eq. (3).

B. Stress tensor

The stress tensor is defined as the first-order variation in
the total energy with respect to strain. The DFT Kohn-Sham
total energy [26],

Etot = Ekin + Ees + Exc, (4)

is therefore an appropriate starting point of its calculation.
Here,

Ekin =
∑
υk

nυkευk −
∫

�

d3rρ(r)Veff(r), (5a)

Ees = 1

2

∫
�

d3r ρ(r)VC (r) − 1

2

∑
a

ZaVM (τa), (5b)

Exc =
∫

�

d3r ρ(r)εxc(r), (5c)

are the noninteracting kinetic, electrostatic, and exchange-
correlation energy, respectively. ευk represents the Kohn-
Sham eigenvalue for the υth band at wave vector k and Veff(r)
is the effective potential, which is the sum of the Coulomb and
the exchange-correlation potential μxc(ρ). In (5b),

VC (r) =
∫

d3r′ ρ(r′)
|r − r′| −

∑
a

Za

|r − τa| , (6a)

VM (τa) =
∫

d3r′ ρ(r′)
|r′ − τa| −

∑
a �=b

Za

|τa − τb| , (6b)

are the Coulomb and Madelung potential, respectively. Za is
the nuclear charge of an atom a located at τa. In the local
density approximation (LDA) the exchange-correlation en-
ergy per particle εxc(r) is a local function of the total charge
density ρ.

In order to compute the stress tensor, the total energy
Etot[ε] of a strained system needs to be differentiated with
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respect to the strain tensor components εαβ :

σαβ = 1

�

dEtot[ε]

dεαβ

∣∣∣∣
ε=0

. (7)

The symbol [ε] will be generally used to denote quantities
after deformation. Greek letters α and β are used to denote the
Cartesian coordinate components. The substitution of Eq. (4)
in Eq. (7) suggests that in order to calculate the stress tensor,

the strain variation of Ekin, Ees, and Exc must first be assessed,
which is done in the following sections.

1. The strain variation of the kinetic energy

This contribution results from the change in kinetic energy
upon deforming the system. Formally, Ekin[ε] is given by
Eq. (5a) evaluated in the strained system. Taking the strain
derivative of Ekin[ε] results in

dEkin[ε]

dεαβ

∣∣∣∣
ε=0

= d

dεαβ

∣∣∣∣
ε=0

∑
υk[ε]

nυk[ε][ε]ευk[ε][ε] − d

dεαβ

∣∣∣∣
ε=0

∫
�[ε]

d3rερ[ε](rε )Veff[ε](rε ). (8)

To calculate the first term, the strain derivative of the occupation number is required. In parallel with the calculation of LAPW

forces [3], we assume that the strain dependence of the occupation numbers nυk[ε][ε] vanishes to linear order, i.e.,
dnυk[ε][ε]

dεαβ
|ε=0 →

0. The strain variation of the total Kohn-Sham eigenvalues
dευk[ε][ε]

dεαβ
|ε=0 is split into the change of core eigenvalues

dεc[ε]

dεαβ
|ε=0 and

valence eigenvalues
dεvvk[ε][ε]

dεαβ
|ε=0. We first calculate the strain variation of the core eigenvalues using the Hellmann-Feynman

theorem similar to the strategy used in the LAPW force calculations:

∑
c

nc

dεc[ε]

dεαβ

∣∣∣∣
ε=0

=
∑

c

nc
d

dεαβ

〈
ψa

c [ε](rε ) | −1

2
∇[ε]2 + Veff[ε](rε ) | ψa

c [ε](rε )

〉∣∣∣∣∣
ε=0

=
∑
a∈�

∫
Ra

d3raρ
a
c (ra)

dVeff[ε](ra)

dεαβ

∣∣∣∣∣
ε=0

. (9)

Here, ψa
c (r) denotes a core state c of an atom a, 〈· | · | ·〉 refers to the volume integration within the unit cell, the sum

∑
a∈� runs

over all atoms and core states of the unit cell, ρa
c refers to the core electron density of an atom a, and

∫
Ra

d3ra indicates that the
integration is limited to atomic spheres because the core wave functions vanish outside the spheres.

In the following we evaluate the strain variation of the valence eigenvalues,

dεvvk[ε]

dεαβ

= d

dεαβ

∫
�[ε] d3rεψ

v∗
vk[ε][ε](rε )Ĥeff[ε](rε )ψv

vk[ε][ε](rε )∫
�[ε] d3rεψ

v∗
vk[ε][ε](rε )ψv

vk[ε][ε](rε )
. (10)

(1) The volume integration is transformed back to the unstrained unit cell as
∫
�[ε] d3rε → det(1 + ε)

∫
�

d3r.

(2) Differentiation with respect to the strain is simplified as described in Appendix B.
(3) The strain variation of the effective Hamiltonian is computed as

dHeff[ε](r[ε])

dεαβ

∣∣∣∣
ε=0

= 1

2
(∂α∂β + ∂β∂α ) +

dVeff[ε](r[ε])

dεαβ

∣∣∣∣
ε=0

. (11)

The first term results from the strain variation of the nonrelativistic kinetic energy
d∇2[ε]

dεαβ
of the Hamiltonian operator and the

second term results from a change in the total potential according to the strain. The symbol ∂α = r̂α
∂
∂r is shorthand for the partial

derivative along the Cartesian direction α.
Using Eq. (11) and Appendix B, Eq. (10) can be brought into the form

dεvvk[ε]

dεαβ

= 2 Re

〈
dψv

vk[ε][ε](r[ε])

dεαβ

∣∣∣∣∣
ε=0

∣∣ Ĥeff(r) − εvvk

∣∣ψv
vk(r)

〉
+ 1

2

∫
�

d3rψv
vk(r)(∂α∂β + ∂β∂α )ψv

vk(r)

+
∫

�

d3rρv(r)
dVeff[ε](r[ε])

dεαβ

∣∣∣∣
ε=0

. (12)

Here, Re denotes the real part of a complex number. The first term of Eq. (12), which is similar to the Pulay term in the force
calculation, is the so-called valence correction or incomplete basis-set (IBS) correction. To compute this IBS correction, the
valence states described in Eq. (2) need to be defined in the strained environment followed by differentiation with respect to the
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strain:

dψv
vk[ε](r[ε])

dεαβ

∣∣∣∣∣
ε=0

=
∑

K

⎛⎜⎜⎝ d

dεαβ

⎡⎣cvk[ε]K[ε][ε]√
�[ε]

⎤⎦
ε=0

√
�φkK (r) + cvkK√

�

d

dεαβ

[√
�[ε]φk[ε]K[ε][ε](r[ε])

]
ε=0

⎞⎟⎟⎠. (13)

(1) The first term on the right-hand side of (13) is proportional to the basis functions, so it does not contribute to the valence
correction at all.

(2) The second term does not contribute in the interstitial region since the � times the basis function do not change with strain
in first order [see Eq. (D1) of Appendix D]. Therefore, it suffices to calculate the total integral 〈·| · |·〉 only within the atomic
spheres 〈·| · |·〉Ra . Inside the atomic spheres, using the so-called frozen augmentation approximation [3], we discard an explicit
strain dependency in φk[ε]K[ε][ε](r[ε]) while keeping an implicit dependency via its smeared argument, i.e., φk[ε]K[ε][ε](r[ε]) →
φk[ε]K[ε](r[ε]) [see Eq. (D6)].

Substitution of Eqs. (9) and (12) into (8), and the evaluation of the second integral of Eq. (8) along the lines of Appendix B,
results in

dEkin[ε]

dεαβ

∣∣∣∣
ε=0

= 2
∑
υk

nυk Re

〈
dψv

vk[ε](r[ε])

dεαβ

∣∣∣∣∣
ε=0

| Ĥeff(r) − εvk | ψv
vk

〉Ra

+ 1

2

∑
υk

nυk

∫
�

d3rψv∗
vk (r)(∂α∂β + ∂β∂α )ψv

vk(r)

−δαβ

∫
�

d3rρ(r)Veff(r) −
∫

�

d3r
dρ[ε](r[ε])

dεαβ

Veff(r) − 1

2

∑
a∈�

∫
Ra

d3raρ
a
c (ra)(rβ∂α + rα∂β )Veff(r). (14)

The evaluation of the above integrals is straightforward:
(1) Integrals over the unit cell are divided into integrals

over atomic spheres and over the interstitial region.
(2) The first and second terms can be simplified using

Eq. (D3) and Eqs. (C1) and (C9), respectively.
(3) The third term is easy to evaluate using the correspond-

ing expressions for ρ(r) and Veff(r) in terms of the spherical
harmonics expansion inside atomic spheres and the Fourier
expansion in the interstitial region.

(4) The fourth term will get canceled in combination with
similar terms appearing in the electrostatic and exchange-
correlation stress, and hence does not contribute to the final
stress tensor.

(5) The last term is referred to as the core correction stress.
When the unit cell is deformed, the core states change in two
different ways. On the one hand, the core states will move
along with the nuclei to a new position in the strained unit
cell. On the other hand, the total potential in the unit cell
is changed, and core states will interact with this modified
potential. The explicit expression of the core correction in
Eq. (14) illustrates that the core correction resembles the latter
change. For a detailed evaluation, see Appendix E.

2. Strain variation of electrostatic energy

This contribution results from the change in electrostatic
energy according to strain. In the following the electrostatic
energy given in Eq. (5b) is first formulated in the strained
system, i.e., Ees[ε], and then differentiated with respect to
strain:

dEes[ε]

dεαβ

∣∣∣∣
ε=0

= 1

2

d

dεαβ

∣∣∣∣
ε=0

∫
�[ε]

d3rερ[ε](rε )VC[ε](rε )

−1

2

∑
a∈�[ε]

Za

dVM[ε](τa[ε])

dεαβ

∣∣∣∣
ε=0

. (15)

Using Eq. (B1) to evaluate the strained variation of the inte-
gral, we obtain σ es

αβ as

dEes[ε]

dεαβ

∣∣∣∣
ε=0

= δαβ

2

∫
�

d3rρ(r)VC (r)

+
∫

�

d3r
dρ[ε](r[ε])

dεαβ

∣∣∣∣
ε=0

VC (r)

+1

2

∫
�

d3rρ(r)
dVC[ε](r[ε])

εαβ

∣∣∣∣
ε=0

−1

2

∑
a∈�

Za

dVM[ε](τa[ε])

dεαβ

∣∣∣∣
ε=0

, (16)

where δαβ denotes the Kronecker delta.
(1) The first term contributes only to the diagonal elements

of σ es
αβ . The corresponding integral is straightforward to ob-

tain.
(2) The second term cancels with a corresponding term in

Eq. (14).
(3) When calculating the strain variation of VC (r) and

VM (r), the strained charge density ρ[ε](r[ε]) is replaced by
the charge density of the unstrained system but smeared over
the strained system, i.e., ρ((1 − ε)rε ).

It is clear from the above equation that to evaluate the elec-
trostatic stress tensor we need to calculate the strain variation
of the Coulomb and Madelung potentials. Two different ap-
proaches are available in Refs. [17,21] to calculate the change
in the potential under infinitesimal strain, but due to the lack
of sufficient results it is unclear which approach works best
for the original LAPW method. In Ref. [17], the authors
suggest that the strain potential can be determined directly
from the strained charge density using Poisson’s equation.
In contrast, in Ref. [21] an explicit derivation of the strain
variation of the Coulomb potential using Weinert’s method

174113-4



STRESS TENSOR IN THE LINEARIZED AUGMENTED … PHYSICAL REVIEW B 104, 174113 (2021)

[27] was presented. We tried to work with the expression pro-
vided in Ref. [21] first, but unfortunately this resulted in huge
errors in the calculated stress tensor and we could not figure
out where the problem was actually originating from. Similar
problems are reported by Klüppelberg in Ref. [21]. Therefore,
after some painstaking numerical testing we finally decided
to resort to a different approach to simplify the electrostatic
stress tensor. In our derivation we first transform all the in-
tegrals from the strained to the unstrained system. Following
the standard procedure of the LAPW method, the total integral
is divided into the interstitial and the atomic sphere parts.
When solving the strain variation of the Coulomb potential
in the interstitial, we assume that the Fourier component of
both the real interstitial charge density and the pseudocharge
density are invariant under strain [see Eqs. (F3) and (F4)], and
that the change in the potential is only due to the change in
the reciprocal lattice vector. This leads to our expression of
the electrostatic stress tensor in the interstitial region similar
to that in Refs. [5,19]. In the atomic sphere region, we only
consider the change in VC (r) due to the change in the unit cell
volume and the change in the radial vector.

3. The strain variation of the exchange-correlation energy

The LDA exchange-correlation energy per particle εxc(ρ)
depends exclusively on the density ρ. When the system is

deformed, Exc changes compared to the undeformed system,
which makes it necessary to evaluate the strain variation of
Exc. In the following, Exc given in Eq. (5c) is first defined in
the strained system Exc[ε], differentiated with respect to strain
and using the same techniques discussed in the calculation of
the kinetic energy and the electrostatic stress tensor results in

dExc[ε]

dεαβ

∣∣∣∣
ε=0

= δαβ

∫
�

d3rρ(r)εxc +
∫

�

d3r
dρ[ε](r[ε])

dεαβ

μxc.

(17)

Due to the presence of the Kronecker delta, the first term only
contributes to the diagonal elements of σ xc

αβ . The second term
cancels with a corresponding contribution in the double count-
ing part of the kinetic energy—the second term of Eq. (5a).
In the spin-polarized case, contributions of spin-up and spin-
down charge densities must be explicitly included, yielding
separate contributions to the total exchange-correlation stress
tensor.

4. Total stress tensor

We collect the strain variation of the kinetic energy, the
electrostatic energy, and the exchange-correlation energy from
Eqs. (14), (16), and (17) to define the strain variation of the
total energy and thereby the stress tensor, Eq. (7). Finally the
stress tensor in the LAPW method is

σαβ = σ val,kin
αβ + σ val,corr

αβ + σ core,corr
αβ + σ es

αβ + σ xc,LDA
αβ , (18)

with

σ val,kin
αβ = 1

2�

∑
υk

nυk

∫
�

d3rψv∗
vk (r)(∂α∂β + ∂β∂α )ψv

vk(r), (19)

σ val,corr
αβ = 2

�

∑
υk

nυk Re

〈
dψv

vk[ε](r[ε])

dεαβ

∣∣∣∣∣
ε=0

| Ĥeff(r) − εvk | ψv
vk

〉Ra

, (20)

σ core,corr
αβ = − 1

2�

∑
a∈�

∫
Ra

d3rρa
c (r)(rβ∂α + rα∂β )Veff(r), (21)

σ es
αβ = −δαβ

2

∫
�

d3rρ(r)VC (r) + 1

2

∫
�

d3rρ(r)
dVC[ε](r[ε])

εαβ

∣∣∣∣
ε=0

− 1

2

∑
a∈�

Za
d

dεαβ

VM[ε](τa[ε])

∣∣∣∣
ε=0

, (22)

σ xc,LDA
αβ = δαβ

∫
�

d3rρ(r)[εxc(ρ) − μxc(ρ)]. (23)

The final expressions of Eqs. (19)–(23), which are imple-
mented in the WIEN2K code, may be found in Appendix G, and
the results for validating our implementation are presented
in Sec. III. Note that most of the quantities such as ψvk(r),
ρ(r), ρc(ra), VC (r), εxc, μxc, and ∂εxc/∂σ that appear in this
formula are readily available from a regular total energy cal-
culation. Most of the terms involved in Eqs. (19)–(23) are easy
to evaluate, but the evaluation of σ val,corr

αβ and σ val,kin
αβ , which

explicitly contains the wave functions, is both mathematically
and computationally demanding.

III. RESULTS

In the LAPW method, the accuracy of results is controlled
by the selection of various input parameters. One of them is

RaKmax, where Ra is the smallest atomic sphere size among
the constituent atoms, and Kmax is the modulus of the largest
reciprocal vector contributing to the Fourier expansion of
wave functions. RaKmax limits the total number of basis func-
tions in the LAPW method and determines the cutoff energy
of the plane waves via Emax = K2

max. The value of RaKmax

in a total energy calculation typically ranges from 7 to 10
depending on the atoms in the system (for elements with
f electrons even a value of 11 may be required). However,
it is unclear how the accuracy of the analytically computed
stress tensor would depend on the choice of RaKmax. One may
anticipate that a larger value than for regular total energy cal-
culations might be required, because the energy is variational
with respect to small changes in the density according to the
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Hohenberg-Kohn theorems [7,8] and thus errors in the density
only enter in quadratic order, while there is no corresponding
variational principle for the stress tensor so that errors may
already manifest themselves in linear order.

In addition to RaKmax, lmax, the cutoff value for the expan-
sion of basis functions in the region of the atomic spheres,
the cutoff value Gmax for the plane wave expansion of the
charge densities and the potential, the cutoff value Lns

max for
the expansion of the nonspherical potential, and the chosen
size of the k mesh in the Brillouin zone (BZ) also have a
certain impact on the accuracy of the calculation. Moreover,
in metallic systems, the choice of the smearing method and, if
the Fermi-Dirac (FD) method is chosen, the particular value
of the corresponding temperature broadening parameter, de-
termine the quality of results.

In the sections below we provide various convergence tests
of the above mentioned parameters on several systems. The
results were produced using our WIEN2K [24,25] implemen-
tation using LDA for the exchange-correlation energy and
potential. To validate our implementation, we compare the
results of the stress tensor with the least squares fit of to-
tal energy versus volume using the Birch-Murnaghan [28]
(BM) equation of state. From the BM fit we obtain the pres-
sure P(E ) := − dE (�)

d�
[see Fig. 1(a)]. The resulting pressures

P(E ) are then compared with the hydrostatic pressure P(σ ) :=
−(σ11 + σ22 + σ33)/3 as calculated directly from our analyt-
ical expression Eq. (18) of the stress tensor. The difference
between P(E ) and P(σ ) represents an excellent measure of
the accuracy and reliability of our formalism. In particular, a
small remainder of P(E ) − P(σ ) within some acceptable limit
suggests that the zero pressure equilibrium configuration pre-
dicted from the stress tensor calculation is quite close to that
obtained from the minimum of the total energy.

A. Aluminum

For fcc aluminum, the total energy and P(E ) as a function
of � for different RaKmax is plotted in Fig. 1(a). P(σ ) is shown
in Fig. 1(b), and the deviation P(E ) − P(σ ) between P(E ) and
P(σ ) in Fig. 1(c). Calculations are done with RaKmax of 7, 8,
9, and 10. In this case Ra = 2.5 bohrs is chosen as the atomic
sphere radius of the Al atom. In the following calculations,
1s and 2s states of Al are treated as core states and all other
states up to lmax = 10 are treated as valence states. All valence
states except the 2p states are described using pure LAPW
basis functions Eq. (1), while 2p states are represented using
semicore local orbitals (LOs)—the second term in Eq. (2). We
choose most of the input parameters higher than necessary for
a regular total energy calculations in order to exclude possible
numerical errors due to these parameters. The Gmax in the ex-
pansion of the charge density [see Eq. (3)] and the potential in
the interstitial is 20 Ry

1
2 , and a k mesh is (24 × 24 × 24). The

standard tetrahedron method with Blöchl’s correction [29]
[Figs. 1(a)–1(c)], as well as the FD method with a broadening
parameter of 0.005 Ry [Fig. 1(d)], for the integration in the
irreducible Brillouin zone (IBZ) are used. All integrations
in the interstitial region are evaluated using the fast Fourier
transform (FFT) method with a FFT grid of 90 × 90 × 90.

The total energy curves [Fig. 1(a)] show that the equi-
librium volume and P(E ) are insensitive to RaKmax although

FIG. 1. (a) Energy-volume curves as well as P(E ), (b) the nega-
tive trace of the full stress tensor P(σ ), and (c) the difference between
P(σ ) and P(E ) as a function of � for various RaKmax for fcc Al. The
standard tetrahedron method with the Blöchl correction is used in
(a)–(c), while the FD method with a 0.005 Ry broadening parameter
is used for (d).
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TABLE I. Predicted lattice constant a0 (in bohrs) and bulk mod-
ulus B (in kbars) from the analytical stress tensor [superscript (σ )]
and directly from the total energy [superscript (E )] as a function of
RaKmax for fcc Al. The standard tetrahedron method with Blöchl’s
correction is used for k-space integration.

RaKmax a(σ )
0 a(E )

0 B(σ ) B(E )

7 7.508 7.528 871 844
8 7.516 7.528 859 844
9 7.518 7.528 857 843
10 7.518 7.528 856 843

the magnitude of the total energy does change with RaKmax.
As a result, P(E ) barely changes, which can also be seen in
the resulting prediction for the equilibrium lattice parameter
shown in Table I. The pressure P(σ ) estimated from the stress
tensor shown in Fig. 1(b) clearly shows a RaKmax dependency.
However, this dependency, which can also be seen in Fig. 1(c),
only manifests itself at the third decimal place in the predicted
lattice parameter provided RaKmax is chosen greater than 7
(see Table I). All calculations in Figs. 1(a)–1(c) were done
with the Blöchl correction [29] in the tetrahedron method. We
also repeated the same calculation without Blöchl’s correction
and found that this correction neither improved nor worsened
the results. Aluminum is a metallic system with a complicated
Fermi surface and has partial occupations close to the Fermi
level. When deriving stress tensor formulas, we assumed that
the occupancy does not depend on the strain in a first-order
approximation. The underlying reasoning for this assumption,
which is also supported for the closely related force calcu-
lations [3], is that the number of electrons in the system is
conserved and thus the change in the occupation numbers is a
second-order effect. For the system with partial occupations,
however, Ref. [30] reports that when calculating forces, the
total energy given in Eq. (4) is not variational and needs to be
replaced by the more general expression

F = Etot −
∑
vk

nvkσS, (24)

in which F denotes the Helmholtz free energy, S is the en-
tropy, and σ = kBT , where T and kB denote the temperature
and Boltzmann’s constant, respectively. Similar to what is
observed in the force formalism, we expect that when calcu-
lating the strain variation of the second term of Eq. (24), a
corresponding term will be canceled when the strain variation
of the occupation number is computed. In Ref. [30] an ex-
plicit equation for S is given for the Fermi-Dirac distribution
function. We repeated the above calculations [Figs. 1(a)–1(c)]
using the FD method which is shown in Fig. 1(d). The com-
parison of Figs. 1(c) and 1(d), and Tables I and II shows that
the analytical stress tensor and thereby the predicted lattice
constant a(σ )

0 from the stress tensor improves significantly.
These tables also show that there is a small change in the
total energy, affecting a(E )

0 only in the third digit, but more
noticeable in the bulk modulus. The effect on the analytical
stress calculation, on the other hand, is much stronger, as can
be seen from comparing the a(σ )

0 columns of Tables I and II.
Moreover, unless we choose RaKmax as small as 7, the discrep-

TABLE II. Predicted lattice constant a0 (in bohrs) and bulk
modulus B (in kbars) from the analytical stress tensor formalism
[superscript (σ )] and directly from the total energy [superscript (E )]
as a function of RaKmax for fcc Al. The FD method with a broadening
parameter of 0.005 Ry is used.

RaKmax a(σ )
0 a(E )

0 B(σ ) B(E )

7 7.513 7.526 854 838
8 7.521 7.526 843 839
9 7.523 7.526 841 838
10 7.523 7.526 840 837

ancy between P(E ) and P(σ ) manifests itself only in the third
digit place of the predicted lattice constants a(σ )

0 when the
FD method is used, which certainly appears to be acceptable
in standard electronic structure calculations. Tables I and II
show that RaKmax = 8 is sufficient for the FD method, while
at RaKmax = 10 a difference of 0.01 bohrs between a(E )

0 and
a(σ )

0 persist using the tetrahedron method. Figures 1(c) and
1(d) also reveal a stronger volume dependency of P(E ) − P(σ )

calculated using the tetrahedron method as compared to the
FD method.

The convergence of the stress tensor with respect to k mesh
with the two different BZ sampling methods, the tetrahedron
and FD method, is shown in Fig. 2. Two different k-mesh grids
of 15 × 15 × 15 and 24 × 24 × 24 are used. The results show
that P(E ) − P(σ ) in the FD method is fairly insensitive to the
choice of the k mesh while with the tetrahedron method there

FIG. 2. (a) Analytical pressure P(σ ) and (b) the difference be-
tween P(σ ) and P(E ) for two different k-mesh grids as function of
� for fcc Al. The BZ is sampled using the FD method with smear-
ing 0.005 Ry and the tetrahedron method with Blöchl’s correction.
RaKmax = 10 and all the remaining input parameters are the same as
in Fig. 1.
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FIG. 3. (a) Analytical pressure P(σ ) and (b) the difference be-
tween P(σ ) and P(E ) for the different Gmax for the charge density and
the potential as function of � for fcc Al. The FD method and tetra-
hedron method with Blöchl’s correction are used for BZ sampling.
RaKmax = 10 and all the remaining input parameters are the same as
in Fig. 1.

is a change in the predicted lattice constant aσ
0 = 7.512 bohrs

(15 × 15 × 15) to 7.518 bohrs (24 × 24 × 24).
The convergence of the stress tensor with respect to the

value of the cutoff Gmax of the expansion of the charge density
and the potential in the interstitial is shown in Fig. 3. The
figure shows that P(σ ) is insensitive to the choice of Gmax.
Thus, the same value of Gmax can be used for the total energy
and stress calculations.

B. SrTiO3

Next, we considered SrTiO3 in the cubic perovskite struc-
ture with space group Pm3̄m. All states up to 3d , 2p, and 1s
are considered as the core states for Sr, Ti, and O, respectively.
All other states are treated as valence states and described
with LAPW+LO basis functions. Calculations are carried out
with Gmax = 20 Ry

1
2 , Lns

max equals 6, and the BZ is sampled
on a tetrahedron mesh with ten intervals in each direction.
The convergence of the stress tensor according to the different
values of RaKmax is presented in Fig. 4. Calculated pressure
P(σ ) from the negative trace of the stress tensor is shown in
Fig. 4(a) and its difference with the pressure P(E ) is shown in
Fig. 4(b). The lattice parameters resulting from the stress ten-
sor are 7.273, 7.286, 7.292, and 7.295 bohrs for RaKmax = 7.5,
8, 8.5, and 9, respectively. This value is fairly close to the
7.295 bohrs predicted from total energy, with the exception of
RaKmax = 7.5. This indicates that RaKmax = 8 is sufficient to
obtain the lattice parameter with a precision 0.01 bohrs.

Figure 5 shows the convergence of the stress tensor with
respect to three different k meshes 8 × 8 × 8, 10 × 10 × 10,

FIG. 4. (a) Analytical pressure P(σ ) and (b) the difference be-
tween P(σ ) and P(E ) for the four different values of RaKmax as a
function of � for SrTiO3.

and 15 × 15 × 15 with RaKmax = 8.5. Since SrTiO3 is an in-
sulator, a smaller k mesh should be sufficient in calculation,
which can also be seen in Fig. 5. Figure 5(b) indicates that the
difference P(E ) − P(σ ) between the trace of the stress tensor
and the energy-based pressure estimate P(E ) remains the same

FIG. 5. (a) Analytical pressure P(σ ) and (b) the difference be-
tween P(σ ) and P(E ) for the three different k meshes as a function of
� for SrTiO3. RaKmax = 8.5 and all the remaining input parameters
are the same as in Fig. 4.
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TABLE III. Comparison of the equilibrium lattice parameter a0

(in bohrs) and the bulk modulus (in kbars) obtained from the total
energy and directly from the stress tensor for different compounds.

Elements a(σ )
0 a(E )

0 B(σ ) B(E )

NaCl 10.331 10.334 324 323
LaN 9.880 9.894 1209 1226
TiN 7.900 7.904 3182 3192
NbC 8.395 8.398 3254 3265
MgS 10.590 10.578 621 616
AlAs 10.654 10.659 768 763
SrTiO3 7.295 7.295 2004 2007

for all selected k meshes. Table III compares the structural
parameters of several cubic compounds obtained from P(E ) =
0 and P(σ ) = 0, and very good overall agreement has been
found.

C. ZnO

Calculations for ZnO in the hexagonal wurtzite structure
are carried out with sphere sizes of 1.95 and 1.68 bohrs for
Zn and O, respectively. For Zn all states up to 3s and for
O the 1s states are considered as core states. We choose
a cutoff of Gmax = 20 Ry

1
2 in the expansion of the charge

density and the potential. The RaKmax value is 9.5, the k-point
grid is 12 × 12 × 6, Lns

max = 6, and the exchange-correlation
energy and potential are calculated using the LDA. Our in-
vestigation starts with a total energy calculation for a unit cell
based on the experimental lattice parameters. We performed
a two-dimensional (2D) optimization of a and c, using either
the calculated total energies or the stress tensor elements σ11

and σ33. The first and second rows of Table IV offer a com-
parison of these values with their corresponding counterparts
predicted from the stress tensor formalism.

In the total energy calculation, both the core charge density
and the potential are considered to be spherically symmetric
and only the lm = 00 term in a lattice harmonic expansion
contributes. On the other hand, in our stress tensor formalism
when calculating the core correction Eq. (21), the potential Veff

can have nonspherical components, which are described by
higher angular momentum quantum numbers. However, in the
final expression Eq. (E3), due to the presence of Gaunt num-
ber G−m,t,t ′

l,1,1 and Kronecker deltas δ1,l+sδ−t ′,m+t , only lm = 00
and 2m components of the potential are allowed to be nonzero,
such that we are left with V c

tot = V c
00 + V c

2m, in which the term

TABLE IV. Comparison of the equilibrium lattice parameters a0

and c0 of ZnO obtained from a fifth-order polynomial fit to the total
energy and directly from the stress tensor with (V c

tot) and without (V c
00)

inclusion of the nonspherical components (l = 2) in the potential
when the core correction is calculated using Eq. (G6).

a0 (bohrs) c0 (bohrs)

Energy 6.056 9.763
Stress with V c

tot 6.057 9.762
Stress with V c

00 6.030 9.849

TABLE V. Comparison of σ33 (in kbars) calculated using
Eqs. (25) and (18) for silicon in the diamond structure with seven
different nonvolume conserving tetragonal deformations. The super-
scripts (E ) and (σ ) correspond to the energy and stress.

ε33 σ
(E )
33 σ

(σ )
33

−0.020 33.12 34.28
−0.013 21.95 22.63
−0.007 10.90 11.17
0.000 0.00 0.00
0.007 −10.74 −10.99
0.013 −21.29 −21.70
0.020 −31.65 −32.16

with lm = 00 is the main contribution and the lm = 2m com-
ponent acts as an additional correction, which may or may
not be zero. For instance, in highly (cubic) symmetric crystal
structure there are no lm = 2m terms in a lattice harmonic
expansion, but in even in slightly lower symmetric crystal
structures such as a hexagonal system, it was found that these
contributions can become quite significant and neglecting this
term would lead to substantial errors in the predicted lattice
parameters a and c, as can be verified by comparing the
second and third rows of Table IV.

In passing we note that similar observations can be made
for the core correction of the force calculation, where the
l = 1 contribution appears in the potential upon displacing
the atoms. In contrary to our present approach, the authors
in Ref. [17] assumed that the potential in the core correction
is only spherically symmetric.

D. Accuracy of individual stress tensor components

So far we have validated the trace of the stress tensor as
well as the individual diagonal compounds at zero strain in
terms of the lattice parameters. To validate the accuracy of the
individual components of the stress tensor at finite strain, our
strategy is to extract them from total energy calculations of
various strained systems and compare these values with those
obtained from our analytical stress. In the following we take a
cubic silicon structure at the equilibrium volume (pressure =
0 and a0 = 10.209) and keep the lattice parameters a0 and
b0 = a0 = 10.209 fixed while varying the c lattice parameter.
Using a family of such tetragonal but volume nonconserving
deformations, the stress component σ33 [denoted as σ

(E )
33 in

Table V] is calculated numerically by fitting total energies
with a fourth-order polynomial as a function of strain ε33 =
c
c0

− 1, and ε33 = 0 and c0 correspond to the equilibrium state
at hydrostatic pressure zero. Now it is easy to see that the
identity

σ33 = 1

�0

∂E (ε33)

∂ε33
(25)

holds. Therefore, differentiating the above fourth-order poly-
nomial fit, we readily obtain the stress values σ

(E )
33 recorded

in Table V. On the other hand, a stress component σ33 ≡ σ
(σ )
33

can be calculated directly from Eq. (18). The input settings
for these calculation were RaKmax = 9.0, Gmax = 20 for the
charge density and the potential, k mesh = (12 × 12 × 12),
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and c is calculated as c = (1 + ε33)c0. A comparison of σ
(E )
33

and σ
(σ )
33 in Table V suggests that the calculated stress is also

satisfactory for nonhydrostatic conditions. The table shows
a small discrepancy between σ

(σ )
33 and σ

(E )
33 , but similar cal-

culations for different materials show that these numerical
differences are within acceptable limits.

IV. SURVEY OF PREVIOUS ATTEMPTS IN LITERATURE

In chronological order, previous works on the stress tensor
in the LAPW method are (A) Thonhauser et al. [17] which
summarizes his 2001 Ph.D. thesis [18], (B) the two papers
by Nagasako and Oguchi [19,20], and most recently (C) the
diploma thesis of Klüppelberg [21].

A. The implementation by Thonhauser et al.

A first attempt to implement the stress tensor in the LAPW
method dates back to the work of Thonhauser et al. [18]
and was implemented in the WIEN97 code [24]. However, in
Ref. [17] only results for Al and Si subject to hydrostatic
pressure were shown, whereas the functionality and useful-
ness of this formalism for low symmetric noncubic materials
remained unclear. Unfortunately, in Ref. [17] the final equa-
tions that have been implemented are not explicitly stated.
Therefore we can only conjecture that our present formalism
probably differs from Thonhauser’s by the treatment of the
electrostatic part of the stress tensor. Moreover, Ref. [17]
uses a spherically symmetric potential for the core correction,
whereas in our derivation [Eq. (21)] the potential can have
nonspherical components. In addition, in contrast to Ref. [18],
our formalism does not include the so-called discontinuity
correction. Furthermore, an integration in the valence correc-
tion [the first term of Eq. (12) in this paper], is calculated in
Ref. [18] over the whole unit cell, but using Eq. (13) we only
need to calculate this inside the atomic spheres.

B. The implementation by Nagasako and Oguchi

In their two papers published in 2011 and 2013, Nagasako
and Oguchi present a stress tensor calculation based on a
modified version of the LAPW method proposed by Soler
and Williams [22,23]. In Refs. [19,20] they provide a rigorous
mathematical formalism for both local and semilocal func-
tionals [31,32], respectively, and test their implementation for
many different elements with different cutoff parameters and
also for some compounds. The results are in good agreement
with numerical results calculated directly from total energies.
Regrettably, their implementation cannot easily be transferred
to the standard LAPW method, since Soler-Williams ba-
sis functions are constructed in a related but nevertheless
distinctly different way. In the Soler and Williams LAPW
method, the plane waves are augmented only for the chemi-
cally important l (l � lmax : lmax = 2 or 3) inside the spherical
region and the charge density and potential are formulated
differently, which leads to a number of differences in the final
expressions.

C. The diploma thesis of Klüppelberg

In his 2012 diploma thesis [21], Klüppelberg gave a very
elegant mathematical derivation of the stress tensor and also
discussed an implementation into the FLEUR code [33], which
is based on the standard LAPW method. In particular, we
would like to mention that this work contains a number of
quite ingenious mathematical tricks, and fully tries to lay out
the electrostatic part of the stress tensor. Tragically, as is hon-
estly and in great detail documented in Klüppelberg’s thesis,
even for the hydrostatic component of the stress tensor the
numerical tests showed a large disagreement of the resulting
implementation with results of the so-called simple pressure
formula and both differ from the results obtained directly
from total energy fits. Our first attempt was to work with
the formalism of Ref. [21], but this resulted in a huge error
whose origin still remains unclear as of today. Our formalism
differs from that presented in Ref. [21] by the treatment of
the electrostatic part of the stress tensor and the absence of a
so-called discontinuity correction.

V. DISCUSSION

In this paper we presented the stress tensor formalism in
the all-electron full potential LAPW plus local orbital (LO)
method. With this formalism, the core calculation can be
fully relativistic, but the valence calculation is limited to
the nonrelativistic limit. Substantial convergence tests were
carried out and the calculations for metals, semiconductors,
low symmetric crystal structure, and many compounds were
presented. The accuracy of the stress tensor was validated by
comparing the lattice parameters predicted from the stress ten-
sor formalism and from total energy calculations. In addition,
the accuracy of the individual components of the stress tensor
was also tested in the nonhydrostatic case.
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APPENDIX A: STRAIN DERIVATIVE
OF VECTORS AND VOLUME

When strain is applied to a solid, a vector V changes as
V → V [ε] = (1 ± ε)V , the sign ± being positive for a the
real space vector and negative for a reciprocal one. The unit
cell volume changes as � → �[ε] = det(1 + ε)�. When cal-
culating the stress, the strain derivative of these quantities at
vanishing strain is calculated as

dV [ε]

dεαβ

∣∣∣∣
ε=0

= ±V

2
(V̂ α̂eβ + V̂ β êα ) = ±V αV β

V
, (A1)

d�[ε]

dεαβ

∣∣∣∣
ε=0

= δαβ�, (A2)

where d
dεαβ

det(1 + ε)|ε=0 = δαβ , V = |V |, and V α is the
Cartesian component of vector V in the direction α = 1, 2, 3.
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APPENDIX B: STRAIN DERIVATIVE OF INTEGRALS OVER THE UNIT CELL VOLUME

The total energy given in Eq. (4) contains the integration of the charge density times the potential over the unit cell volume.
To perform the stress tensor calculation, this definition must be carried over to the strained system, differentiated with respect
to the strain, and subsequently evaluated at zero strain. From such a derivative we obtain two contributions: (i) one that results
from the variation of the unit cell volume and (ii) another one that results from the actual strain variation of the integrand. To
clarify the discussion, consider a generic integral

∫
�

d3rF (r) of an arbitrary function F (r) over the unit cell. The generic function
F (r), in practice, may refer to the charge density times a potential or some other physical quantity. Under application of strain it
changes to

∫
�[ε] d3rεF [ε](rε ). Differentiation of this integral with respect to a strain component εαβ gives

d

dεαβ

∣∣∣∣
ε=0

∫
�[ε]

d3rεF [ε](rε ) = d

dεαβ

∣∣∣∣
ε=0

det(1 + ε)
∫

�

d3rF [ε](r[ε]) = δαβ

∫
�

d3rF (r) +
∫

�

d3r
dF [ε](r[ε])

dεαβ

∣∣∣∣
ε=0

. (B1)

In general,
dF [ε](r[ε])

dεαβ
|ε=0 may depend on ε both explicitly via linear response and implicitly via its smeared argument r[ε], which

implies that

dF [ε](r[ε])

dεαβ

∣∣∣∣
ε=0

=
dF [ε](r)

dεαβ

∣∣∣∣
ε=0

+
dr[ε]

dεαβ

∣∣∣∣
ε=0

· ∇F (r), (B2)

where
dr[ε]

dεαβ
= r

2 (̂rα̂eβ + r̂β êα ) = r̂rα̂rβ . If we substitute Eq. (B2) into (B1), we arrive at

d

dεαβ

∣∣∣∣
ε=0

∫
�[ε]

d3rεF [ε](rε ) = δαβ

∫
�

d3rF (r) +
∫

�

d3r
dF [ε](r)

dεαβ

∣∣∣∣
ε=0

+ 1

2

∫
�

d3r(rβ∂α + rα∂β )F (r). (B3)

APPENDIX C: PARTIAL DERIVATIVE OF THE WAVE
FUNCTION

Spatial partial derivatives of the wave function ψv
vk(r) in

the LAPW basis representation [Eq. (2)] are required to com-
pute the second line of Eq. (14).

(1) In the interstitial region, the LAPW basis functions
Eq. (1) are plane waves, and thus

∂αψv IS
vk (r) =

∑
K

cvkK ∂α

1√
�

ei(k+K )·r

=
∑

K

cvkK i(k + K )α
1√
�

ei(k+K )·r. (C1)

(2) To compute the gradient components ∂αψ
vRa
vk (r) in the

atomic spheres, where the valence wave function is repre-
sented by the spherical harmonics expansion [Eq. (1)], we
need the derivatives

∂αYlm(r̂a) = 1

r

∑
s=±1

1∑
t=−1

cst
α (l, m)Yl+s,m+t (r̂a), (C2)

∂αulλ(ra) = r̂aαu′
lλ(ra), (C3)

where cst
α (l, m) is calculated as follows,

cst
α (l, m) =

∮
S

dsr∂αYlm(r̂)Y ∗
l+s,m+t (r̂), (C4)

Abbreviating ulλ(ra, Ea
lλ) and Ylm(r̂a) by the shorthand no-

tations ulλ(ra) and Ylm, respectively, we have

∂α (ulλ(ra)Ylm) = r̂aαu′
lλ(ra)Ylm

+ulλ(ra)

r

∑
s=±1

1∑
t=−1

cst
α (l, m)Yl+s,m+t . (C5)

The unit vector component r̂aα along the Cartesian direc-
tion α can be expanded as

r̂aα =
1∑

t=−1

cαtY1t (r̂), (C6)

where cαt can be obtained using the orthogonality property of
spherical harmonics as follows,

cαt =
∮

S
dsr̂αY ∗

1t (r̂), (C7)

and the product of two spherical harmonics is expanded into
Gaunt numbers times another spherical harmonics, i.e.,

Y1tYlm =
∑
s,ν

Gν,t,m
s,1,l Ys,ν . (C8)

In summary, the partial derivative of the wave function
inside the atomic sphere is

∂αψ
vRa
vk (r) =

∑
K

cvkK

[∑
t=−1

cαt u
′
lλ(r)

∑
s,ν

Gν,t,m
s,1,l Ysν (r̂a)

+ ulλ(r)

r

∑
s=±1

1∑
t=−1

cst
α (l, m)Yl+s,m+t (r̂a)

]
.

(C9)

The mathematical steps provided in this Appendix are used
to simplify the valence kinetic stress tensor σ val,kin

αα of Eq. (18).

APPENDIX D: STRAIN VARIATION OF THE
BASIS FUNCTION

The strain variation of the basis function is required to
calculate the valence correction stress σ val,corr

αβ of Eq. (18). In
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the discussion following Eq. (13), we have argued that cal-
culating the valence correction requires only to calculate the

strain variation of φk[ε]K[ε][ε](r[ε])
√

�[ε] inside the atomic

spheres. Indeed, expanding the strained version of the LAPW
basis functions restricted to the interstitial region, we see that√

�[ε]φIS
k[ε]K[ε][ε](r[ε]) = ei(k+K )[ε]·r[ε]

=
√

�φIS
kK (r) + O(ε2), (D1)

as claimed. Thus, in the interstitial region
d

dεαβ
φIS

k[ε]K[ε][ε](r[ε])
√

�[ε] = O(ε) and does not contribute

to the valence correction stress. It remains to calculate the

first-order strain variation of
√

�[ε]φk[ε]K[ε][ε](r[ε]) in the

atomic spheres. In the deformed system, a basis function
inside the atomic sphere region as defined in Eq. (1) becomes

φk[ε]K[ε][ε](r[ε]) =
∑
lmλ

a
ak[ε]K[ε]

lmλ
ulλ[ε](ra[ε])Ylm(r̂a[ε]).

(D2)

Here, the index λ (= 0, 1) is introduced to provide a compact
notation including both the radial part and the energy deriva-
tive part of the basis function Eq. (1). All terms with [ε] are
meant to be defined in the strained system. Furthermore,

d

dεαβ

[√
�[ε]φk[ε]K[ε][ε](r[ε])

]
ε=0

=
∑
lmλ

[
d

dεαβ

√
�[ε]a

ak[ε]K[ε]

lmλ

]
ε=0

ua
lλ(ra)Ylm (̂ra)

+
√

�
∑
lmλ

aakK
lmλ

[
d

dεαβ

ua
lλ(ra[ε])

]
ε=0

Ylm (̂ra) +
√

�
∑
lmλ

aakK
lmλ ua

lλ(ra)

[
d

dεαβ

Ylm (̂ra[ε])

]
ε=0

. (D3)

In order to simplify this expression further, we repeatedly
make use of the following relations:

(1) For the strain variation of spherical harmonics we use
the general formula

dYlm(V̂ [ε])

dεαβ

= ±1

2

∑
s=±

1∑
t=−1

[
cst
β (l, m)V̂ α

+ cst
α (l, m)V̂ β

]
Yl+s,m+t (V̂ ), (D4)

where the positive and negative sign applies to a real space
vector and reciprocal space vector, respectively.

(2) Similarly, the strain variation of the spherical Bessel
function, which is necessary to calculate the strain variation

of the matching coefficient a
ak[ε]K[ε]

lmλ
, is

d jl (|V [ε]|Ra)

dεαβ

= ± j′l (|V |Ra)V V̂ αV̂ β. (D5)

In addition, we resort to the frozen augmentation approx-
imation, according to which the explicit strain dependency
in ua

lλ[ε](ra[ε]) via the linear response is discarded while
keeping only an implicit dependency via ra[ε]. Effectively,
ulλ[ε](ra[ε]) is therefore replaced by ulλ(ra[ε]):

dulλ(ra[ε])

dεαβ

= u′
lλ(ra)rar̂aα r̂aβ. (D6)

Armed with these relations, we may tackle the numerical
evaluation of the different terms that contribute in Eq. (D3).
The necessary quantities to evaluate the strain variation of the
basis function such as the variation of the reciprocal lattice

vector, the unit cell volume, the spherical harmonics, and the
spherical Bessel function are already given explicitly.

APPENDIX E: CORE CORRECTION STRESS TENSOR

The contribution of the core correction to the stress tensor
as given in Eq. (21) is

σ core,corr
αβ = − 1

2�

∑
a∈�

∫
Ra

d3rρa
c (r)(rβ∂α + rα∂β )Veff(r).

(E1)

To simplify the notation we replace Veff(r) by V (r), the po-
tential expand in terms of spherical harmonics, ∂α replace by
r̂α

∂
∂r , expand the unit vector r̂α as given in Eq. (C6), and the

angular derivative of the spherical harmonics is computed as
in Eq. (C5). Thus

rβ∂αV (r)

=
∑
l,m

(
rV ′

l,m(r)
1∑

t,t ′=−1

cαt cβt ′Y1t ′ (r̂)Y1t (r̂)Yl,m(r̂)

+Vl,m(r)
∑
s=±1

1∑
t,t ′=−1

cst
α (l, m)cβt ′Y1t ′ (r̂)Yl+s,m+t (r̂)

)
.

(E2)

The prime in V ′
l,m(r) denotes the radial derivative and the loop

over l and s has to be such that l + s is always positive. To get
the final expression of the core correction σ core,corr

αβ , we replace
the product of two spherical harmonics in Eq. (E2) by a Gaunt
number times spherical harmonic according to Eq. (C8), in-
terchange α and β in the expression of rβ∂αV (r), substituting
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Eq. (E2) in Eq. (E1), and use ρa
c (r) = ρa

00(ra)Y00(r̂),

�σ core,corr
αβ

=
∑
l,m

1∑
t,t ′=−1

(
I1cαt cβt ′

(−1)m

4π
G−m,t,t ′

l,1,1

+ I2

∑
s=±1

cst
β (l, m)cαt ′ +cst

α (l, m)cβt ′

2

(−1)t ′

4π
δ1,l+sδ−t ′,m+t

)
,

(E3)

with

I1 = −
∫ Ra

0
r3

adra

√
4πρ∗

00(ra)
dVlm(ra)

dra
, (E4)

I2 = −
∫ Ra

0
dra

√
4πr2

aρ
∗
00(ra)Vlm(ra). (E5)

Recall that for a Gaunt number G−m,t,t ′
l,1,1 to be nonzero, the

indices [l, 1, 1] are required to satisfy the triangle rule, their
sum needs to be even, and m + t + t ′ must be zero [34].

APPENDIX F: VARIATION OF THE COULOMB
POTENTIAL

The Coulomb potential is evaluated using Weinert’s
method [27]. According to this method the interstitial poten-
tial is obtained using the real interstitial charge density and a
pseudocharge density, which reproduces the current multipole
moments inside the spheres and is zero in the interstitial. The
interstitial potential as given in Ref. [27] is

V I
C (r) =

∑
K �=0

4π

K2 [̃ρa(K ) + ρI (K )]eiK·r, (F1)

where ρI (K ) and ρ̃a(K ) are the Fourier components of the in-
terstitial charge density and the smooth pseudocharge density,
respectively. In the strained environment,

ρI [ε](K[ε]) = 1

�[ε]

∫
�[ε]

d3rερI [ε](rε )e−iK[ε]·rε . (F2)

The physically strained electronic charge density ρI [ε](rε )
is replaced by the “smeared” charge density ρI ((1 − ε)r[ε]),

ρI [ε](K[ε]) = 1

�[ε]

∫
�[ε]

d3rερI ((1 − ε)r[ε])e−iK[ε]·rε

= 1

�

∫
�

d3rρI ((1 − ε)(1 + ε)r)e−iK·r

= ρI (K ), (F3)

where r[ε] = (1 + ε)r, K[ε] = (1 − ε)K, and K[ε] · r[ε] =
K · r. A concept similar to the one used for the plane wave
charge density is used for the pseudocharge density ρ̃a:

ρ̃a[ε](K[ε]) = ρ̃a(K ). (F4)

With the help of Eqs. (F3) and (F4), the interstitial
Coulomb potential in the deformed system is written as

VC[ε](K[ε]) = 4π

K[ε]2
[̃ρa[ε](K[ε]) + ρI [ε](K[ε])]

= 4π

K[ε]2
[̃ρa(K ) + ρI (K )] (F5)

For our calculations, the strain derivative of Eq. (F5) is
also required. Since the Fourier components of the plane wave
charge density and the pseudocharge density are independent
of strain, their derivatives do not contribute to the stress.
Therefore,

d

dεαβ

VC[ε](K[ε])

∣∣∣∣
ε=0

= 4π

K2 2K̂αK̂β [̃ρa(K ) + ρI (K )]

= 2K̂αK̂βVC (K ), (F6)

where we made use of
dK[ε]

dεαβ
= − K̂αK̂β

K and K̂α = Kα

K , and
VC (K ) is given in Eq. (F1). This formula is used to evaluate the
Coulomb part of the electrostatic stress tensor in the interstitial
region—the interstitial part of the second line of Eq. (16).

APPENDIX G: FINAL FORMULAS

In this Appendix we present the explicit expressions of
Eqs. (19)–(23) that we implemented in the WIEN2K package:

σ val,kin
αβ = 1

�

{
−
∑
υk

nυk

∑
KK ′

c∗
vkKcvkK ′ (k + K ′)α (k + K ′)β�(K − K ′) + 1

2

∑
υk

nυk

∑
a

∑
LL′

∑
λλ′

Aavk∗
L′λ′ Aavk

Lλ

×
{ ∑

t,t ′=−1

(cαt cβt ′ + cβt cαt ′ )
∑
s,ν

Gν,t,m
s,1,l Gm′,t ′,ν

l ′,1,s

∫ Ra

0
r2

adraul ′λ′ (r)u′′
lλ(r)

+
∑

t,t ′=−1

∑
s,ν

∑
s′=±1

Gν,t,m
s,1,l

[
cαt c

s′t ′
β (s, ν) + cβt c

s′t ′
α (s, ν)

]
δl ′,s+s′δm′,ν+t ′

∫ Ra

0
radraul ′λ′ (r)u′

lλ(r)

+
∑
s=±1

1∑
t,t ′=−1

[
cst
α (l, m)cβt ′ + cst

β (l, m)cαt ′
]
Gm′,t ′,m+t

l ′,1,l+s

∫ Ra

0
r2

adraul ′λ′ (r)

[
u′

lλ(r)

r
− ulλ(r)

r2

]

+
∑

s,s′=±1

1∑
t,t ′=−1

[
cst
α (l, m)cs′t ′

β (l + s, m + t ) + cst
β (l, m)cs′t ′

α (l + s, m + t )
]
δl ′,l+s+s′δm′,m+t+t ′

∫ Ra

0
draul ′λ′ (r)ulλ(r)

}}
,

(G1)
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where Aavk
Lλ =∑K cvkKaakK

lmλ and L is a shorthand for the double index (l, m);

σ val,corr
αβ = 2

�

∑
a

∑
vk

nvk Re

{∑
Lλλ′

Davk∗
Lλ (α, β )Aavk

Lλ′

[(
Ea

l − εvk
)
δλλ′
∥∥ua

lλ′
∥∥2 + δλ′1δλ,0

]
+
∑
Lλ

∑
L′λ′

Aavk∗
Lλ Aavk

L′λ′
∑

t,,t ′=−1

cαt cβt ′
∑
s,ν

Gν,t,t ′
s,1,1Gm,m′,ν

l,l ′,s

[(
Ea

l ′ − εvvk

)
Jaλλ′

ll ′ + δλ′1Jaλ0
ll ′
]

+1

2

∑
s=±1

1∑
t,t ′=−1

[
cαt ′cst

β (l, m) + cβt ′cst
α (l, m)

]∑
L′λ′

Aavk∗
Lλ Aavk

L′λ′Gm,t ′,m+t
l,1,l+s

{(
Ea

l ′ − εvvk

)
δλ,λ′

∥∥ua
lλ′
∥∥2 + δλ′1δλ,0

}

+
Lns

max∑
L′′>0

∑
Lλ

∑
L′λ′

Davk∗
Lλ (α, β )Aavk

L′λ′Gm,m′′,m′
l,l ′′,l ′ V a λλ′

l,L′′,l ′

+
Lns

max∑
L′′>0

∑
Lλ

∑
L′λ′

Aavk∗
Lλ Aavk

L′λ′
∑

t,,t ′=−1

∑
sν

∑
s′ν ′

cαt cβt ′Gν,t,t ′
s,1,1Gν ′,m′′,m′

s′,l ′′,l ′ Gm,ν,ν ′
l,s,s′ W a λλ′

l,L′′,l ′

+1

2

∑
s=±1

1∑
t,t ′=−1

[
cαt ′cst

β (l, m) + cβt ′cst
α (l, m)

]∑
Lλ

∑
L′λ′

Aavk∗
Lλ Aavk

L′λ′

Lns
max∑

L′′>0

∑
s,ν

Gν,m′′,m′
s,l ′′,l ′ Gν,t ′,m+t

s,1,l+s V a λλ′
l,L′′,l ′

}
, (G2)

where Davk
Lλ (α, β ) contains the stress variation of the matching coefficients and is expressed as

Davk
lmλ(α, β ) =

∑
K

cvkK dakK
lmλ (α, β ), (G3)

with (
dakK

lm0 (α, β )

dakK
lm1 (α, β )

)
≡ 1√

�

d

dεαβ

[√
�[ε]

(
a

ak[ε]K[ε]

lm

b
ak[ε]K[ε]

lm

)]
ε=0

, (G4)

and integrals Jaλλ′
ll ′ , V a λλ′

l,L′′,l ′ , and W a λλ′
l,L′′,l ′ are

Jaλλ′
ll ′ =

∫ Ra

0
r3

adraua′
lλ(ra)ua

l ′λ′ (ra),

V a λλ′
l,L′′,l ′ =

∫ Ra

0
r2

adra ua
lλ(ra)V eff

L′′ (ra)ua
l ′λ′ (ra),

W a λλ′
l,L′′,l ′ =

∫ Ra

0
r3

adra ua′
lλ(ra)V eff

L′′ (ra)ua′
l ′λ′ (ra),

σ es
αβ = 1

2

∑
K

∑
K ′ �=0

ρ∗(K )
[−δαβVC (K ′) + 2K̂

′
αK̂

′
βVC (K ′)

]
�(K − K ′)

− 1

2�

∑
a

1∑
t,t ′=−1

cαt cβt ′

∫ Ra

0
d3rρ(r)VC (r)Y1t (r̂)Y1t ′ (r̂) + 1

2�

∑
a

Za

1∑
t,t ′=−1

cαt cβt ′VM (τa)Y1t (τ̂a)Y1t ′ (τ̂a), (G5)

where �(K ) is the Fourier transform of the step function in the interstitial region;

σ core
αβ = − 1

�

∑
a

∑
l,m

1∑
t,,t ′=−1

(
cαt cβt ′

(−1)m

4π
G−m,t,t ′

l,1,1

∫ Ra

0
r3

adra

√
4πρ∗

00(ra)
dVlm(ra)

dra

+
∑
s=±1

cst
β (l, m)cαt ′ + cst

α (l, m)cβt ′

2

(−1)t ′

4π
δ1,l+sδ−t ′,m+t

∫ Ra

0
dra

√
4πr2

aρ
∗
00(ra)Vlm(ra)

)
, (G6)

σ xc
αβ = δαβ

�

∫
�

d3rρ(r)[εxc(ρ(r)) − μxc(ρ(r))]. (G7)
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