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Probing phonon softening in ferroelectrics by scanning probe microwave spectroscopy
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Microwave measurements have recently been successfully applied to measure ferroelectric materials on the
nanoscale, including detection of polarization switching and ferroelectric domain walls. Here we discuss the
question of whether scanning probe microscopy operating at microwave frequency can identify the changes
associated with the soft phonon dynamics in a ferroic. The analytical expressions for the electric potential,
complex impedance, and dielectric losses are derived and analyzed, since these physical quantities are linked
to experimentally measurable properties of the ferroic. As a ferroic we consider virtual or proper ferroelectric
with an optic phonon mode that softens at a Curie point. We also consider a decay mechanism linked to the
conductance of the ferroic, thus manifesting itself as the dielectric loss in the material. Our key finding is that the
influence of the soft phonon dispersion on the surface potential distribution, complex impedance, and dielectric
losses are evidently strong in the vicinity (∼10–30 K) of the Curie temperature. Furthermore, we quantified
how the spatial distribution and frequency spectra of the complex impedance and the dielectric losses react
on the dynamics of the soft phonons near the Curie point. These results set the stage for characterization of
polar phase transitions with nanoscale microwave measurements, providing a complementary approach to well
established electromechanical measurements for fundamental understanding of ferroelectric properties as well
as their applications in telecommunication and computing.
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I. INTRODUCTION

Experimental and theoretical studies of the lattice dy-
namics in ferroics provide key fundamental insight into
ferroelectric properties and their advanced applications. Since
the lattice phase transition leads to the instability of specific
phonon vibration modes, static displacements of atoms at the
phase transition correspond to frozen displacements of the
soft phonon modes [1,2]. Basic experimental methods, which
contain information about the soft phonon modes and spatial
modulation of the order parameter in ferroics are dielectric
measurements [3], inelastic neutron scattering [4–6], x-ray
[7–9], Raman [10], and Brillouin [11] scatterings, and hyper-
sound spectroscopic measurements [11].

Since no reliable microscopy techniques with frequencies
up to THz (soft phonon range) and with high (nanoscale and
below) resolution exist, it is important to study the frequency
range by available probing methods. Note that THz mi-
croscopy has been well studied, but it is a near-field scanning
optical microscopy (NSOM) method, thus there is a light-in
and a light-out mechanism, and the tip acts as an antenna
[12,13]. However, NSOM resolution has not yet reached the
submicrometer range. A nanoscale resolution can be reached
in different types of scanning probe atomic force microscopy,
such as Kelvin probe and piezoresponse force microscopy
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(PFM), which are of particular importance for local probing
the surface potential, elastic displacement [14–16], and polar-
ization dynamics [17] of various ferroelectrics. However, the
PFM excitation frequency range is 10 KHz–10 MHz, which
is too low for the local probing of soft optical phonons in
ferroelectrics in the THz range.

On the other hand, microwave scanning probe microscopy,
where the tip is a leaky resonator [18], covers the range
up to a few GHz (see topical reviews [19–21] and the
monograph [22]). Nanoscale probing of the material elec-
trodynamic properties at microwave frequencies is of great
interest for materials science, condensed matter physics,
and device engineering [21]. Microwave microscopy can be
of use for versatile applications [19], e.g., for study the
electrophysical properties of materials, such as the electric
conductivity, dielectric permittivity, and dielectric losses at the
radio-frequency range. In addition to the nanoscale mapping
of permittivity and conductivity, microwave microscopy is
used for precise measurements of semiconducting and photo-
sensitive materials, ferroelectric domains and domain walls,
acoustic-wave systems, and quantum materials with strong
electron correlations [21,23].

Important for this work is that the microwave probing
provides nanoscale insights of the ferroelectric domain walls
(FDWs) microwave conductance [24,25] and the reversal pro-
cess of a ferroelectric spontaneous polarization by an electric
field. The applications of microwave microscopy for ferro-
electrics can be found in modern nanoelectronics, in particular
for probing of information processing devices [26], such as
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FeRAM memory cells and different logic units, where it is
important to control the electric conductivity of the studied
material. Moreover, the giant microwave conductivity of a
“nominally silent” FDW [27] can open unexplored perspec-
tives for their use in nanoelectronic devices based on the
FDWs, such as memories, transistors, and rectifiers. The scan-
ning microwave impedance microscopy (sMIM) that spatially
resolves the ferroelectric DWs in a GHz range [26,28] can
open a new avenue to implement the FDWs in radio-frequency
nanodevices.

Proper ferroelectrics remain tunable in the microwave
range (which can be used for 5G networking [29–31]), but
due to the collective response of polarizability, rather than to
direct excitation of soft phonons. Following [19], there is a
soft mode possible on the wall due to its vibration, although
this phenomenon likewise constitutes collective response of
polarization but in a lower-dimensional volume. Therefore,
it is intriguing to consider mechanisms by which microwave
measurements can probe phonon properties directly.

It is important to note that the image formation in the mi-
crowave scanning probe microscopy can be considered within
a classical continuous medium approach, which offers possi-
bilities for analytical calculations in various ferroics within,
e.g., decoupling approximation [32–34], well elaborated for
classical ferroelectrics [35]. In this work we focus on calculat-
ing the electric potential, whose properties define the response
of the microwave scanning probe microscopy. We consider a
ferroic (virtual or proper ferroelectric) with an optical phonon
mode that is softened at Curie temperature. The problem
statement is described in Sec. II. The analytical solution for
the potential is derived and analyzed in Sec. III. In Sec. IV
we studied the properties of the surface potential, namely
in Sec. IV A we considered the potential itself, in Sec. IV B
we evaluated and analyzed the complex impedance frequency
spectra, and in Sec. IV C we calculate and analyze the dielec-
tric losses in the ferroic, and their link to the conductance of
the material. Here we did not consider the losses associated
with the possible motion of the FDWs in ferroelectrics near
the Curie temperature TC, since the motion is critically slowed
down around TC, so the losses can be regarded negligibly
small at GHz frequency. Since the domain structure is absent
for improper ferroelectrics and paraelectrics, our results are
even more valid for these materials. The surface potential,
impedance, and losses are linked to experimentally measur-
able properties of a given ferroic. In Sec. V we summarize
how the spatial distribution and frequency spectra of the
calculated properties can help to determine the behavior of
the soft phonon mode near the Curie point. Also, we have
found certain spectrum peculiarities of the surface potential,
impedance, and losses near the Curie temperature, which can
be useful for the analysis of the microwave spectroscopy
data.

II. PROBLEM STATEMENT

Let us study the question whether the scanning probe
microscope (SPM) can register any changes of the electric
potential and complex dielectric permittivity associated with
electric charges redistribution at the ferroic surface. These
phenomena are related to the oscillations of the tip effective

FIG. 1. An oscillating effective charge Q(t ) is suspended above
an ambient-ferroic boundary at a distance d from it.

charge at a microwave frequency (0.5–50) GHz and for dif-
ferent temperatures. There are many effective charge models
[36,37], and any axially symmetric conducting tip can be
modeled more rigorously by a set of image charges Qi at
distances di [38].

So, let us consider an oscillating effective charge Q(t ) sus-
pended at the distance d from the boundary between the media
“1” and “2” (see Fig. 1). Of course, the charge redistribution
has both vertical and lateral components, but hereafter we
consider only the vertical one. The frequency of the charge
oscillations (which varies from hundreds of MHz to tens of
GHz) is still much smaller than the optical frequencies. The
distance d is typically smaller than several nm.

The medium 1 is an isotropic dielectric (air or vacuum)
without any dispersion, and the medium 2 is a ferroic, such
as a proper or incipient ferroelectric, paraelectric, or a ferro-
electric relaxor with an anisotropic dispersion of soft optic
phonons. Their tensors of relative dielectric permittivity are
shown below:

ε
(1)
i j

∼=

⎡
⎢⎣

εe 0 0

0 εe 0

0 0 εe

⎤
⎥⎦,

ε
(2)
i j =

⎡
⎢⎣

ε⊥ 0 0

0 ε⊥ 0

0 0 ε‖(ω)

⎤
⎥⎦, (1a)

ε‖(ω) = χ∞
ω2

lo − ω2 − 2iγω

ω2
to − ω2 − 2iγω

,

The expression for ε‖(ω) corresponds to the model for the
Lorentzian oscillator with losses [39], where ω2

lo corresponds
to a longitudinal phonon mode; its frequency is of (0.2–2)
THz order of magnitude for most paraelectric and ferroelectric
materials [4,2,40,41], and is almost temperature independent.
The asymptotic value χ∞ ∼= (3–9) corresponds to the high-
frequency limit of dielectric permittivity, that, in fact is equal
to the background permittivity [42]. The frequency ωto is a
transverse soft optical phonon mode, which is temperature
dependent [43], as is shown below:

ω2
to

∼= ω2
f

{1 − T
TC

, T
TC

� 1,

T
TC

− 1, T
TC

� 1,
(1b)
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where TC is either virtual or real ferroelectric Curie tempera-
ture and T is the absolute temperature. Since the dispersion of
this mode is especially important in ferroics near the Curie
temperature [44–46], below we consider this temperature
range.

In order to relate the constants ω2
lo and ω2

f we use the

Lyddane-Sachs-Teller (LST) relation ω2
lo

ω2
to

= εst
χ∞

[47], where

χ∞ ∼= (3–10) [48] and εst
∼= ε f |1− T

TC
|−1 is a static relative

dielectric permittivity of a ferroelectric (or paraelectric) that
diverges at T → TC. We obtain that

ω f = ωlo

√
χ∞
ε f

. (1c)

Since 30 � ε f � 3000 for most incipient (like SrTiO3) and
proper (like BaTiO3, PbTiO3) ferroelectrics, and ferroelectric
relaxors systems (like PMN-PT), the inequality 0.03 � ω f

ωlo
�

0.5 is valid.
Meanwhile, γ is a decay factor related with several

mechanisms, such as Khalatnikov relaxation of polarization
(acoustic phonons) and different pinning effects [49]. The
order of magnitude of this value can be rather small or high,
which is determined by the relaxation times. The Khalatnikov
relaxation time typically varies in the range (10–9–10–6) s for
temperatures far from TC. Below we will regard that γ values
can vary in the range (109–106) Hz.

The primary goal of our work is to find the potential distri-
bution near the surface of the studied media. First, we need to
look at which equations the displacement field satisfies, and
determine the possibility to transfer to the Poisson equation
for the potential. The electric displacement satisfies the fol-
lowing equation system (2), which is the Maxwell equation
in a differential form combined with the response integral
[50]:

divD = Q(t ) δ(x)δ (y)δ(z − d ),

D(x, y, z, t ) = PS + ε0

∫ 0

−∞
ε(t − τ )E(x, y, z, τ )dτ, (2)

where the measurement protocol is Q(t ) = ∫∞
0 q(ω)eiωt dω,

and its spectral density q(ω) corresponds to a specific protocol
of the voltage applied to the SPM tip. We suppose that q(ω) is
nonzero in the frequency range ω < ωmax, where the maximal
frequency ωmax is much smaller than the optical frequency
ωopt. The spontaneous polarization PS exists in proper ferro-
electrics below the Curie temperature. Its value is proportional
to

√
T − TC for the proper ferroelectrics with the second-order

phase transition.

Hereinafter we consider either improper ferroelectrics and
quantum paraelectrics, where PS ≡ 0, or the second-order
proper ferroelectrics near the Curie temperature TC. At the
temperatures above TC, PS is absent. At the temperatures
slightly below TC the dynamics of PS becomes “sluggish” due
to the critical slowing down effect [51]. The effect is related
to the fact that the polarization relaxation time is inversely
proportional to |T − TC| in the framework of the Landau-
Khalatnikov model [49,52]. In other words, we regard that the
dynamics of spontaneous polarization PS (r) related to, e.g.,
the FDWs motion has characteristic relaxation times much
smaller than 1–100 μs, that is valid for proper ferroelectrics
due to the omnipresent lattice pinning and intrinsic defects
[17]. Hence, we assume that the “slow” dynamics of PS (r) is
insensitive to the “fast” GHz oscillations of the tip voltage.
The assumption becomes invalid far from the Curie tempera-
ture, when the “trembling” of the FDWs can be observed by a
microwave SPM operating at GHz frequencies [27].

The boundary conditions for problem (2) are

D(1)
z − D(2)

z

∣∣
z=0 = σS,

E (1)
x = E (2)

x

∣∣
z=0, (3)

E (1)
y = E (2)

y

∣∣
z=0.

Here σS is the density of a sluggish surface free charge,
which screens a polarization bound charge in order to prevent
the giant depolarization field caused by the bound charge
[53,54]. The nature of the screening charges is external elec-
trons, protons, or hydroxyl groups abundant in the medium 1
at normal ambient conditions and humidity of 30% or more,
or the internal band bending appearing in the ferroic medium
2 under the ultrahigh vacuum in the medium 1 [55]. As a
rule, the condition of complete screening, σS = −PS , is valid
with a high accuracy at electrically open ferroelectric surfaces
without special passive layers [17]. Below we regard that the
condition σS = −PS is held due to the presence of ambient
free charges σS (r), which completely screen the bound charge
PS (r) outside the ferroelectric.

III. APPROXIMATE ANALYTICAL SOLUTIONS

We can neglect the influence of magnetic fields and put
rot 
E = 0, because ωmax � ωopt, and introduce a scalar elec-
trostatic potential ϕ. After a Fourier transform on time t we
obtain the electrostatic problem with boundary conditions:

εe
ϕ(1)(ω, x, y, z) = − π

ε0
q(ω) δ(x)δ(y)δ(z − d ), z > 0,

ε⊥
⊥ϕ(2)(ω, x, y, z) + ε‖(ω)
∂2

∂z2
ϕ(2)(ω, x, y, z) = 0, z < 0,

ϕ(1)|z=0 = ϕ(2)|z=0,

εe
∂ϕ(1)

∂z

∣∣∣∣∣
z=0

= ε‖(ω)
∂ϕ(2)

∂z

∣∣∣∣∣
z=0

(4)
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The solution of Eq. (4) was found by the means of a Fourier transform from r space to k space [56]. For the upper half space
(Fig. 1), z > 0, the potential is

ϕ(1)(t, r, z) = 1

ε0εe
Re

[∫ ωmax

0

(
1√

(z − d )2 + r2
−

√
ε⊥ε‖(ω) − εe√
ε⊥ε‖(ω) + εe

1√
(z + d )2 + r2

)
q(ω)eiωt dω

]
. (5a)

Hereinafter a polar radius r2 = x2 + y2 is introduced due to the axial symmetry of the system, and the dispersion law for
ε‖(ω) is given by Eqs. (1). The potential in the lower half space (z < 0) of the ferroic volume is equal to

ϕ(2)(t, r, z) = 1

ε0
Re

⎡
⎣∫ ωmax

0

⎛
⎝ 2

εe + √
ε⊥ε‖(ω)

1√
r2 + (d − z

√
ε⊥/ε‖(ω))

2

⎞
⎠q(ω)eiωt dω

⎤
⎦. (5b)

Note that the convergency condition of integrals (5)
is Re [

√
ε⊥

ε‖(ω) ] > 0. The surface potential ϕ(1)(t, r, 0) =
ϕ(2)(t, r, 0), since the electric potential is continuous at the
ferroic-ambient interface. Below we will use the designation
ϕ(t, r, 0) for the surface potential.

We also note that the first term in Eq. (5a), proportional
to 1√

(z−d )2+r2
, is related to the presence of charge, while the

second term, proportional to 1√
(z+d )2+r2

, corresponds to its

dynamic image. The only term in Eq. (5b), proportional to
1√

r2+(d−z
√

ε⊥/ε‖(ω))
2
, is related with the image charge dynam-

ics. According to Eqs. (5), to probe a pronounced dispersion
by the SPM tip, we need a ferroic material with a small χ∞,
high decay γ , and significant difference between the longitu-
dinal and transverse optical phonon frequencies, ω2

lo−ω2
to.

The following dimensionless parameters are introduced
hereafter:

ω̃m = ωmax

ωlo
, ω̃ = ω

ωlo
, γ̃ = γ

ωlo
,

ω̃to = ωto

ωlo
= ω f

ωlo

√
θ, (6a)

θ =
∣∣∣∣T − TC

TC

∣∣∣∣, x′ = x

d
, y′ = y

d
,

r′ = r

d
, z′ = z

d
, (6b)

Note that the deviation θ , proportional to the absolute value
|T − TC|, is always positive, and so below we consider the
temperatures T higher and lower the Curie temperature TC.

Since the soft phonon frequency ωlo ∼ (0.5–2)1012 Hz,
the microwave frequency ωmax ∼ (0.5–50) 109 Hz and the
decay factor γ ∼ (109–106) Hz, the dimensionless parameters
γ̃ and ω̃m vary in the range 10−6 � γ̃ � 10−3 and 10−3 �
ω̃m � 10−1. Also, we consider the ratio and 0.03 � ω f

ωlo
� 0.5

for the reasons discussed above, and regard that the relative
deviation from real or virtual Curie temperature TC is within
10%, corresponding to the range (10–60) K. So, the relative
deviation θ from real or virtual Curie temperature is the range
0 � θ � 0.1. One can consider a wider range of temperature
deviations, and it is found that the most peculiar changes in
the curved shape are concentrated around 10%. But results
presented below are valid only for small θ , for which we
can expect that the response of the domain structure is still
negligible due to the proximity to the Curie temperature.

IV. RESULTS AND DISCUSSION

A. Surface potential properties

We have studied the dependence of the surface potential
Fourier image ϕS (ω, r, 0) on the frequency ω of the charge
modulation. We have considered the measurement protocol
Q(t ) a harmonic function, and the corresponding transfer (or
measurement) function to be equal to q(ω) = q0δ(ω − ω0),
where ω0 is a constant value in the GHz range. In particular,
below we analyze the spatial distribution and the temperature
dependence of the potential.

As one can see from Fig. 2, the spectrum of the sur-
face potential strongly depends on the temperature in the
vicinity of Curie temperature, θ = 0. Indeed, as is shown
in Fig. 2(a), there occurs an antiresonance in the form of a
seagull-shape minimum on the frequency dependence. The
minimum is caused by the soft optical phonon dynamics and
its frequency position depends on the temperature deviation
θ as ω̃ = ω̃to(θ ) = ω f

ωlo

√
θ . This minimum corresponds to the

peculiarity on the frequency dependence of the real part of
dielectric permittivity, which is shown on the inset. When
the temperature approaches the Curie point, the antiresonance
minimum shifts towards lower frequencies proportionally to√

θ and disappears completely at the Curie point θ = 0. This
effect can be used in various experiments, for example in order
to measure the soft phonon mode frequencies and determine
the Curie point of a given material.

Note that Fig. 2(a) is plotted for a negligibly small decay
value, γ̃ = 10−6. The natural tendency is that the minima
of the surface potential become much more diffuse for a
higher decay, and the potential is significantly smaller. From
Fig. 2(b), plotted for a much higher decay value, γ̃ = 10−3,
the minima flatten out, but are still pronounced and corre-
spond well to the sharp maxima of the dielectric permittivity
imaginary part. Because γ̃ � 1, the minima position still cor-
responds to the frequency value ω̃ = ω f

ωlo

√
θ and shift towards

lower frequencies with θ decrease. Actually, the surface po-
tential minimum moves within the dimensionless frequency
range 0.015 � ω̃ � 0.035 under the temperature variation in
the range 0.01 � θ � 0.05. Note that the corresponding ω0

range (10–40) GHz is now in the upper range of microwave
measurements.

The spatial distribution of the surface potential has a pro-
nounced maximum in the position under the tip apex (r = 0),
and it decays rapidly with the distance from this position [see
Fig. 2(c)]. Note that the potential changes significantly even
with small temperature changes in the range close to the Curie
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FIG. 2. The frequency spectrum of the surface potential ϕ(ω̃) under the tip apex (r′ = 0) calculated for dimensionless decay constants
γ̃ = 10−6 (a) and γ̃ = 10−3 (b), deviation θ from Curie temperature ranging from θ = 0.1 (red curves) to θ = 0 (violet curves) with a step
of 0.01. (c) The surface potential distribution vs the distance x′ from the tip apex calculated for the harmonic excitation with frequency
ω̃0 = 0.001, γ̃ � 10−3 and θ ranging from 0.1 (red curve) to 0 (violet curve) with a step of 0.01. (d) The surface potential vs the θ calculated
for the harmonic excitation with frequency ω̃0 = 0.001, γ̃ � 10−3 and distance x′ ranging from 0.5 (violet curve) to 10 (red curve) with a step
of 0.5. Insets in (a) and (b) show real and imaginary parts of the relative dielectric permittivity ε‖(ω) calculated for γ̃ = 10−6 and γ̃ = 10−3,
respectively. The ratio

ω f

ωlo
= 0.17 and χ∞ = 3.

point. Indeed, with the temperature increase the maximum
flattens out and is virtually zero at the Curie temperature. The
decay coefficient does not influence the spatial distribution
significantly, if it is changed in physically reasonable limits
10−6 � γ̃ � 10−3. Within the actual range of γ̃ the temper-
ature dependance of the surface potential is monotonic, it
decreases with θ decrease reaching minimum in the Curie
point, θ = 0, and also decreases with the distance x′ [see
Fig. 2(d)].

B. Capacitance of the SPM junction

To study the fingerprints of the soft phonon dynamics in
the behavior of the nearly ideally insulating ferroic near Curie
temperature by the microwave microscopy, one needs to cal-
culate the effective capacitance of the system. We consider
the case when the voltage U is applied between the tip and the

substrate; and the tip apex is almost touching the surface of
a thick ferroic film. As we modeled the tip by an effective
charge Q at distance d from the ferroic surface, we need
to relate the parameters of the charge with the tip geome-
try and the applied voltage. The proportionality coefficient
gives us the effective capacitance. There are several models
of an effective charge, described in detail in Ref. [37] and
summarized in Table I therein. The most well known are
sphere-plane, disk-plane, effective point charge, and capaci-
tance models. The choice of the specific model depends on
the spatial region, where we want to model the probe field
with the highest accuracy. Since we are interested in the local
microwave probing with minimal influence from the stray
fields [19], the most suitable is the disk-plane model of the tip,
which reproduces the electric field of the conductive flattened
apex, represented by the disk of radius R0 that touches the
surface. The total charge is Q = CtU . For a thick film with a
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FIG. 3. The dependence of the complex impedance Z (ω) real (a),(c) and imaginary (b),(d) parts on the frequency ω̃ calculated for decay
constants γ̃ = 10−6 (a),(b) and γ̃ = 10−3 (c),(d) and ten dimensionless deviations θ from the Curie temperature ranging from θ = 0.1 (red
curves) to θ = 0 (violet curves) with a step of 0.01. The ratio

ω f

ωlo
= 0.17 and χ∞ = 3.

thickness of h  R0 the capacitance Ct and effective distance
d are [37]

Ct ≈ 4ε0(εe + √
ε⊥ε‖(ω))R0, d ≈ 2

π
R0. (7)

Within the disk-plane model framework the field structure
is adequately described in the most part of the piezore-
sponse volume, since φ(r � R0, 0) ≈ U and φ(r  R0) ∼
Q/r. However, in the considered case ε‖(ω) is a complex
value, and so the effective capacitance is also complex.
Note that the “dielectric” factor, εe + √

ε⊥ε‖(ω), is present
in the surface potential given by the expression ϕ(t, r, 0) =
1
ε0

Re[
∫ ωmax

0 ( 2
εe+

√
ε⊥ε‖(ω)

1√
r2+d2 )q(ω)eiωt dω] [see the comment

to Eqs. (5)].
Below we analyze the spectral properties of the complex

impedance Z (ω) = 1
ωCt

, namely its real and imaginary parts:

Re[Z (ω)] = 1

4ε0R0ω
Re

[
1

εe + √
ε⊥ε‖(ω)

]
,

Im[Z (ω)] = 1

4ε0R0ω
Im

[
1

εe + √
ε⊥ε‖(ω)

]
, (8)

It is evident that the complex impedance is proportional to
the surface potential (5), measured under the tip in the point
r′ = 0.

The frequency dependence of the real and imaginary parts
of the complex impedance Z (ω) are shown in Fig. 3 for
different temperature values. The real part, Re[Z (ω)], has
a pronounced seagull-shape minimum, corresponding to the
soft phonon frequency, as shown in Fig. 3(a) for a relatively
small decay coefficient γ̃ . This minimum moves to lower
frequencies and disappears completely when the temperature
tends to the Curie point, θ = 0.

The minimum shape becomes smoother for high decay
constants [see Fig. 3(b)]. Since γ̃ � 1 in the actual range of
material parameters, the frequency position of the Re[Z (ω)]
minimum is the same as for the surface potential shown in
Figs. 2(a) and 2(b). The minimum is related to soft optical
phonons; it corresponds to the frequency value ω̃ = ω f

ωlo

√
θ

and shifts towards lower frequencies with a θ decrease in
the range 0 � θ � 0.05. It seems very important for experi-
mental observation of the Re[Z (ω)] minima that its frequency
position 0.015 � ω̃ � 0.035 corresponds to the (10–40)-GHz
range potentially “reachable” in microwave spectroscopy ex-
periments.
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FIG. 4. The dependence of the dielectric losses spectral density ρE (ω̃, r′, z) on the dimensionless frequency ω̃ (a),(c), on the distance (b),
and the temperature deviation θ (d) calculated for decay constants γ̃ = 10−6 (a),(b) and γ̃ = 10−3 (c),(d), and ten θ values ranging from 0.1
(red curves) to 0 (violet curves) with a step of 0.01 (a)–(c), and different distance r′ ranging from 0.5 to 5 (d). All the calculations were done for
the surface distribution, z = 0. The dimensionless radius r′ is equal to unity in the plots (a) and (c). The modulation frequency is ω̃0 = 0.001
for panels (b) and (d). The inset in the plot (a) shows the spectrum ρE (ω̃) at the Curie temperature θ = 0. The inset in the plot (b) shows the
spectrum ρE (ω̃) in {x, y} section near the Curie temperature, θ = 0.05. Note that the scaling factors are 108, 105, 1012, and 109 for the plots
(a)–(d), respectively. The ratio

ω f

ωlo
= 0.17 and χ∞ = 3.

The imaginary part, Im[Z (ω)], shown in Fig. 3(b) for
small decay coefficient γ̃ , has a sharp falling step at the
position of Re[Z (ω)] minimum, ω̃ = ω f

ωlo

√
θ . The step shifts

towards lower frequencies with |θ | decrease. After falling
down from the step, Im[Z (ω)] monotonically decreases with
an increase of the external field frequency and then satu-
rates at high frequencies. With the increase of the decay
constant the step diffuses and the transition between the sat-
uration mode and the decrease becomes much smoother [see
Fig. 3(d)], and in both cases the temperature increase shortens
the saturation part of Im[Z (ω)]. It is notable that the step dis-
appears completely at the Curie point [see the violet curve in
Fig. 3(d)].

C. Dielectric losses

Let us estimate the dielectric losses in the media, because
they are important for the experimental studies as it is shown
in Ref. [19]. This physical value quantifies the dissipation of

the electromagnetic (EM) energy due to dipolar relaxation or
the excitation of phonon modes. The practically important part
is that the dielectric loss, defined by the imaginary part of
the dielectric permittivity, is related with the conductivity of a
material. The conductivity can be measured via an equivalent
circuit. The general formula for the power of the losses, as
stated in the textbook [57], is shown below:

dE
dt

= −ε0

∫∫∫
V


E ∂ 
D
∂t

dV. (9)

As one can see, the formula (9) is an expression for the time
derivative of the EM energy in the media. The total energy
per unit length can be written as follows, in the form of an
integration on time:

E = 
x
∫ +∞

−∞
dt

∫∫ +∞

−∞
ρQdydz. (10)

174105-7



YELISIEIEV, MAKSYMOVYCH, AND MOROZOVSKA PHYSICAL REVIEW B 104, 174105 (2021)

Here ρQ = −ε0 
E ∂ 
D
∂t is the integrand in Eq. (9). As it is

derived in the Supplemental Material [see Eqs. (S.40)–(S.42)
in Ref. [56]], expression (10) can be rewritten as follows:

E =
∫∫∫

V
ρE dV ,

ρE = − 1

2 π

∫ +∞

0
ω| 
∇ψ (2) (ω, r, z)|2Im[ ε‖(ω)]dω, (11)

where the Fourier image of the potential has the following
form:

ψ (2) (ω, r, z)

=
⎛
⎝ 2

εe + √
ε⊥ε‖(ω)

1√
r2 + (d − z

√
ε⊥/ε‖(ω))

2

⎞
⎠q(ω).

(12)

Using this expression, the expression for ρE (ω, r, z) can be
transformed to the expression

ρE (ω, r, z) = −4ε0
ωIm[ε‖(ω)] |q(ω)|2
|εe + √

ε⊥ε‖(ω)|2

× r2 + |d − z
√

ε⊥/ε‖(ω)|2|ε⊥/ε‖(ω)|
|r2 + (d − z

√
ε⊥/ε‖(ω))

2|3
. (13)

As one can see, expression (13) gives the spatial distri-
bution of the spectral density of the dielectric losses, which
is proportional to Im[ ε‖(ω)] ∼ γ . The surface distribution
obtained from this formula (z = 0) is important for the mi-
croscopy mapping of the conductivity.

The spectrum of the dielectric losses, shown in Fig. 4(a),
has a very sharp resonance peak, which corresponds to the
soft phonon frequency of the ferroic. The peak moves to lower
frequencies with the temperature deviation θ , and the absolute
value of the losses increases with θ increase. At the Curie
point the resonance disappears completely, and is replaced
with a monotonous decrease of the losses value, as can be
seen from the inset in Fig. 4(a).

With the increase of the decay constant γ , the peaks
become much lower and wider, and their absolute value de-
creases with the temperature [compare Fig. 4(c) with Fig. 4(a)
allowing for the three-order difference in the scaling factors].
Because the physically reasonable range of decay constant is
γ̃ � 1, the frequency position of the ρE (ω, r, z) peak is the
same as for the surface potential and impedance peculiarities
shown in Figs. 2 and 3, respectively. As it should be, the
peak of ρE of is related with soft optical phonons; it corre-
sponds to the frequency value ω̃ = ω f

ωlo

√
θ and shifts towards

lower frequencies with θ decrease. It seems very important
for experimental observation of the maximal dielectric losses
that the peak frequency position 0.015 � ω̃ � 0.035 corre-
sponds to the (10–40)-GHz range potentially “reachable” in
microwave spectroscopy experiments.

The spatial distribution, which can be mapped on the ex-
periment, shows a well-defined minimum located at a certain
distance from the tip of the probe [see Fig. 4(c)]. The absolute
value of the losses at this maximum increases with the tem-
perature [see Fig. 4(d)]. The inset [see Fig. 4(c)] shows that

the mapping shows a defined “ring” of maximum loss values
around the tip.

V. CONCLUSION

The analytical solution for the electric potential, complex
impedance, and dielectric losses of a given ferroic (virtual
or proper ferroelectric) is derived and analyzed, since these
physical quantities are experimentally measurable by a SPM
operating at a GHz frequency. We consider the ferroic to be
an incipient or a proper ferroelectric with an optic phonon
mode that is softened at the Curie point and included a decay
mechanism that is linked to its conductance. Our analysis
proves that the influence of the soft phonon dispersion on the
surface potential distribution, complex impedance, and dielec-
tric losses frequency spectra is especially strong in the 10%
vicinity of the Curie temperature. The result can be useful for
the analysis of the microwave spectroscopy data, specifically
as follows:

(a) A pronounced phonon dispersion can be probed by the
SPM tip in a ferroic material with a small high-frequency
dielectric permittivity (∼3 or less), high decay constant and
significant difference between the longitudinal and transverse
optical phonon frequencies.

(b) Because the reasonable values of the decay constant
are relatively small, the frequency position of the surface
potential, complex impedance, and dielectric losses features,
such as seagull-type minima, steps, and peaks, is the same
as for all these features. All the features are related with soft
optical phonons dynamics and shift towards lower frequencies
when the temperature approaches the Curie point.

(c) Since the frequency position of the dielectric losses and
complex impedance features correspond to the (10–40)-GHz
range they are potentially “observable” in microwave spec-
troscopy experiments, and so our theoretical predictions can
be verified experimentally.

(d) However, here we did not consider the losses associated
with the possible motion of FDWs in a proper ferroelectric, as
the motion was regarded as too sluggish near the Curie tem-
perature in comparison with fast oscillations the tip voltage
at GHz frequency. Obtained results are even more valid for
improper ferroelectrics and paraelectrics, where the domain
walls are absent per se. For these cases the losses spectral
density is proportional to the decay factor γ that is linked to
the material conductance, γ ∼ Im[ ε‖(ω)]. The conclusion is
invalid far below the Curie temperature, when the response
of the FDWs can be observed by a MIM operating at GHz
frequencies [27].
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