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A wide spectrum of disordered many-body systems that are inherent structures (i.e., local minima of potential
energy landscape) was recently discovered to possess a novel hidden long-range order known as hyperuniformity,
yet the mechanisms associated with the emergence of disordered hyperuniformity in such systems are not
well understood. Here, we address this important fundamental problem by linking together the concepts of
topological defects, inherent structures, and hyperuniformity. We consider representative examples of disordered
inherent structures that are topological variants of crystals obtained by continuously introducing into the
crystalline state randomly distributed topological defects such as dislocations and disclinations. Using large-scale
numerical simulations and analysis based on a continuum theory, we show that the topological defects and the
associated transformation pathways linking the disordered inherent structures to the crystalline state preserve
hyperuniformity of the latter, as long as the displacements induced by the defects are sufficiently localized (i.e.,
the volume integrals of the displacements and squared displacements caused by individual defect are finite) and
the displacement-displacement correlation matrix of the system is diagonalized and isotropic. Our results provide
insights to the discovery, design, and generation of novel disordered hyperuniform materials.
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I. INTRODUCTION

Very recently, it was discovered that a wide spectrum
of disordered many-body systems can possess a remarkable
property called “hyperuniformity.” Disordered hyperuniform
(DHU) systems are exotic states of matter [1,2] that lie be-
tween a perfect crystal and liquid. These systems are similar
to liquids or glasses in that they are statistically isotropic
and possess no Bragg peaks, and yet they completely sup-
press large-scale normalized density fluctuations like crystals
and in this sense possess a hidden long-range order [1–3].
Specifically, the static structure factor S(k) vanishes for DHU
systems in the infinite-wavelength (or zero-wave-number)
limit, i.e., limk→0 S(k) = 0, where k is the wave number [1,2].
Here, S(k) is defined as S(k) ≡ 1 + ρh̃(k), where h̃(k) is
the Fourier transform of the total correlation function h(r) =
g2(r) − 1, g2(r) is the pair correlation function, and ρ is the
number density of the system. Note that this definition im-
plies that the forward scattering contribution to the diffraction
pattern is omitted. Equivalently, the local number variance
σ 2

N (R) associated with a spherical observation window of ra-
dius R grows more slowly than the window volume for DHU
systems in the large-R limit [1,2]. The small-k scaling be-
havior of S(k) ∼ kα dictates the large-R asymptotic behavior
of σ 2

N (R), based on which all DHU systems can be catego-
rized into three classes: σ 2

N (R) ∼ Rd−1 for α > 1 (class I),
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σ 2
N (R) ∼ Rd−1 ln(R) for α = 1 (class II), and σ 2

N (R) ∼ Rd−α

for 0 < α < 1 (class III) [2].
DHU states have been discovered in a wide spectrum

of equilibrium and nonequilibrium physical, biological, and
chemical systems, and appear to endow such systems with
novel physical properties [4–30]; see Ref. [2] for a thorough
overview. While it is well known that effective long-range
interactions are required to drive an equilibrium many-particle
system to a hyperuniform state, this condition is not necessary
to achieve hyperuniformity in systems out of equilibrium [2].
Among the wide spectrum of hyperuniform nonequilibrium
systems discovered previously, many fall into the category of
inherent structures, e.g., maximally random-jammed (MRJ)
hard-particle packings [4–7,31], avian photoreceptor patterns
[19], and the inherent structures associated with the k-space
overlap potentials [32]. It is also noteworthy that certain in-
herent structures are found to be nonhyperuniform [32], e.g.,
the inherent structures associated with the Lennard-Jones and
steeply repulsive potentials [32,33].

Despite the ubiquitous nature of disordered hyperuniform
inherent structures, the mechanisms associated with the emer-
gence of disordered hyperuniformity in many such systems
are still not well understood. In this work, we link the con-
cepts of topological defects and inherent structures to our
fundamental understanding of the emergence of hyperuni-
formity. In particular, we consider a representative class of
disordered inherent structures in two-dimensional Euclidean
space R2 which can be viewed as defected states of a perfect
triangular lattice crystal [34,35] obtained by continuously in-
troducing topological defects such as bound dislocations, free
dislocations, and disclinations. Using large-scale numerical
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FIG. 1. Illustration of the formation of inherent structures containing bound dislocations (top panel), free dislocations (middle panel),
and disclinations with associated dislocations (bottom panel) through a series of topological transformations (i.e., rearrangement of bonding
network) and subsequent structural relaxation in a triangular lattice. Vertices with seven bonds are highlighted with yellow circles, and vertices
with five bonds are highlighted with green circles.

simulations and continuum theory analysis, we demonstrate
that the class-I hyperuniformity of the original crystal is
preserved as long as the displacements induced by each in-
dividual defect decay sufficiently fast from the source (i.e.,
the volume integrals of the displacements and squared dis-
placements caused by individual defect are finite) and the
displacement-displacement correlation matrix of the system
is diagonalized and isotropic.

The rest of the paper is organized as follows: in Sec II,
we describe the procedures to generate disordered inherent
structures via continuous topological transformations from the
reference triangular lattice crystal state in R2. In Sec. III, we
employ various statistical descriptors to characterize the large-
scale structural features, in particular hyperuniformity of the
resulting inherent structures. In Sec. IV, we derive continuum
theory to explain the class-I hyperuniformity of the inherent
structures. In Sec. V, we provide concluding remarks.

II. REALIZATIONS OF DISORDERED INHERENT
STRUCTURES CONTAINING RANDOMLY DISTRIBUTED

TOPOLOGICAL DEFECTS

A. Dislocations and disclinations induced by topological
transformations

To introduce bound dislocations (i.e., a pair of dislocations
that are next to each other) into the triangular lattice, we first
randomly pick a bond in the lattice. Note that any bond in the
triangular lattice is also the short diagonal of a rhombus. Next,
we break this chosen bond and connect the two vertices asso-
ciated with the long diagonal of the corresponding rhombus
with a new bond, resulting in a pair of dislocations next to one
another. If the vertices associated with the old and new bonds
all possess six bonds before the transformation, then the trans-

formation would lead to two five-coordinated vertices and
two seven-coordinated vertices; otherwise, we would obtain
higher-order defected structures. Here we impose the con-
straint that the vertices after the transformation should each
possess at leave five bonds to ensure local structural stability.
The process of introducing a single pair of bound dislocations
is illustrated in the top panel of Fig. 1. We quantify the amount
of bound dislocations by the defect concentration p in this
context defined as p ≡ Nop,1/Nb, where Nop,1 is the number of
topological transformations described in this paragraph, and
Nb is the number of bonds in the triangular lattice. Note that a
single topological transformation described in this paragraph
would introduce a pair of dislocations, in the absence of other
topological defects.

To introduce free dislocations, we start from bound dis-
locations with the additional constraint that the initial bound
dislocations should consist of two five-coordinated vertices
and two seven-coordinated vertices, and randomly pick a five-
coordinated vertex and a seven-coordinated vertex that are
part of the bound dislocations. We then let these two defected
vertices “glide” in the lattice by continuously breaking exist-
ing bonds and forming new bonds. Note that the direction that
the defected vertices can glide is fixed once the two vertices
are picked given the local bonding constraints. To form free
dislocations and minimize the spatial correlations of the free
dislocations, we let the defects glide for at least one step;
beyond that, the defects have 1/2 of probability to stop and
1/2 of probability to continue gliding at each lattice site. If
the gliding defects stop before hitting any “road block,” i.e.,
vertices that are not six coordinated, then we count this as one
topological transformation in the context of free dislocations;
otherwise, we restore the structure before this trial and start
another attempt to insert a free dislocation. The process of
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introducing a single pair of free dislocations is illustrated in
the middle panel of Fig. 1. We also experiment with other
stopping rules, and find that the details of different stopping
rules do not affect the large-scale structural features of the re-
sulting structures, which is the focus of this work. We quantify
the amount of free dislocations by the defect concentration
p in this context defined as p ≡ Nop,2/Nb, where Nop,2 is
the number of topological transformations described in this
paragraph, and Nb is the number of bonds in the triangular
lattice. Note that similar to the case of bound dislocations, a
single topological transformation described in this paragraph
would introduce a pair of dislocations (each consisting of a
five-coordinated vertex and a seven-coordinated vertex), in the
absence of other topological defects.

To introduce disclinations, we start from a free dislocation
and break the bond between the seven-coordinated vertex and
one of its six-coordinated neighbors and connect the long
diagonal of the corresponding rhombus with a new bond. This
six-coordinated neighbor should have two six-coordinated
neighbors that are not a neighbor of the five-coordinated ver-
tex. This bond-breaking and bond-forming process creates an
isolated five-coordinated vertex, and another five-coordinated
vertex surrounded by two seven-coordinated vertices. We then
let one of the two seven-coordinated vertices and its neigh-
boring five-coordinated vertex glide away in the same way
as that in the case of free dislocations. If these steps can be
completed, then we count this as a topological transformation
in the context of disclinations, which would create an isolated
fivefold disclination, an isolated sevenfold disclination, and
two free dislocations (each consisting of a five-coordinated
vertex and a seven-coordinated vertex), in the absence of
other topological defects (such a topological transformation
is illustrated in the bottom panel of Fig. 1). Otherwise, we
restore the structure before this trial and start another attempt
to insert a disclination. Note that the disclinations are accom-
panied by free dislocations, which is consistent with previous
observations [36,37] that disclinations typically arise with
free dislocations. We quantify the amount of disclinations
by the defect concentration q defined as q ≡ Nop,3/Nb, where
Nop,3 is the number of topological transformations described
in this paragraph, and Nb is the number of bonds in the
triangular lattice. It is noteworthy that structures containing
disclinations at q should be compared to structures containing
bound and free dislocations at p = 3

2 q for a fair comparison
at the same effective defect concentration, given the number
of five-coordinated and seven-coordinated vertices that each
case generates in the absence of other topological defects.

B. Inherent structures

To obtain the inherent structures, we allow the transformed
structures to undergo elastic relaxation by perturbing the posi-
tions of the vertices in a way that drives the bond lengths in the
network towards values associated with the triangular lattice
through Monte Carlo simulations. In particular, this involves
local minimization of a harmonic energy E defined as follows:

E =
∑
bonds

kb(bi − b0)2, (1)

where bi is the bond length associated with bond i, and b0 = 1
is the side length of a triangle in a triangular lattice. We note
that the harmonic energy is a good approximation of particle
interactions for many physical systems at low temperatures.
Since we are looking at local energy minima, the choice of the
spring constant kb does not affect the obtained structure and,
without loss of generality, we set kb to unity. Specifically, in
our Monte Carlo simulations, we perform a sufficiently large
number of trial moves that each involves randomly picking
a vertex in the system and slightly perturbing the position of
that vertex; we accept all trial moves that decrease E of the
system, which effectively leads to local minimization of E .

We investigate inherent structures containing the afore-
mentioned three types of topological defects for a wide range
of p (or q), as shown in Fig. 2. In the cases of free dislocations
and disclinations, we generate structures up to values close
to saturation, i.e., more topological defects can no longer
be inserted into the system after a sufficiently large number
of attempts (e.g., 10N attempts, where N is the number of
vertices in the lattice). In the case of bound dislocations, we
stop at p = 0.17 since increasing p beyond that sometimes
leads to unphysical local bonding networks (e.g., bonds that
cross each other).

III. STRUCTURAL CHARACTERIZATION AND
HYPERUNIFORMITY

We generate configurations with N = 10 800 particles and
look at various statistics including pair statistics such as g2(r),
S(k), and σ 2

N (R) [1,2], and bond-orientational statistics such
as the bond-orientational order metric Q6 and correlation
function C6(r) that have been routinely used to study the
two-dimensional (2D) melting process [36–38]. To compute
the statistics accurately, we average over 10 configurations at
each p (or q).

Specifically, the pair correlation function g2(r) is propor-
tional to the probability density function of finding two centers
separated by distance r [39], and in practice is computed via
the relation

g2(r) = 〈N (r)〉
ρ2πr�r

, (2)

where 〈N (r)〉 is the average number of particle centers that fall
into the circular ring at distance r from a central particle center
(arbitrarily selected and averaged over all particle centers in
the system), 2πr�r is the area of the circular ring, and ρ is
the number density of the system [31,39]. The static structure
factor S(k) is the Fourier counterpart and, for computational
purposes, S(k) is the angular-averaged version of S(k), which
can be obtained directly from the particle positions r j , i.e.,

S(k) = 1

N

∣∣∣∣∣
N∑

j=1

exp(ik · r j )

∣∣∣∣∣
2

(k �= 0), (3)

where N is the total number of points in the system [3,6,31].
The trivial forward scattering contribution (k = 0) in Eq. (3)
is omitted, which makes Eq. (3) completely consistent with
the aforementioned definition of S(k) in the ergodic infinite-
system limit [2]. To compute σ 2

N (R), we randomly place
circular observation windows with radius R in the system,
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FIG. 2. Left column: Illustration of representative particle configurations associated with inherent structures containing bound dislocations
(top), free dislocations (middle), and disclinations (bottom). Right column, top section: Representative inherent structures containing primarily
bound dislocations at defect concentration p = 0.02, 0.06, 0.10, and 0.17, respectively. Right column, bottom-left section: Representative
inherent structures containing primarily free dislocations at defect concentration p = 0.02 and 0.04, respectively. Right column, bottom-right
section: Representative inherent structures containing disclinations at defect concentration q = 0.01 and 0.015, respectively. Vertices with
more than six bonds are highlighted in yellow, and vertices with less than six bonds are highlighted in green.

and count the number of particles, N (R), that fall into the
observation window, which is a random variable. The vari-
ance associated with N (R) is denoted by σ 2

N (R) ≡ 〈N (R)2〉 −
〈N (R)〉2, which measure density fluctuations of particles
within a window of radius R. In this work, we sample 100 000
windows at each window radius R to obtain σ 2

N (R).
On the other hand, the order metric Q6 is defined as

Q6 ≡ |〈�6〉|, (4)

where

�6(ri ) = 1

ni

ni∑
j=1

e6θi j , (5)

〈·〉 denotes the ensemble average, ni is the number of neigh-
bors of vertex i located at ri, and θi j is the polar angle
associated with the vector from vertex i to the jth bonded
neighbor of vertex i. Here we define neighbors as pairs of ver-
tices connected by a bond. The bond-orientational correlation
function C6(r) is defined as

C6(r) ≡ 〈�6(ri )�
∗
6 (r j )〉 | r = |ri − r j |, (6)

where �∗
6 is the complex conjugate of �6. In practice, to

calculate C6(r), for each pair of particles located at ri and r j ,
we compute �6(ri )�∗

6 (r j ), and bin the results according to
the distance r = |ri − r j |. We note that Q6 = 1 and C6(r) = 1
for a perfect triangular network, while for an isotropic fluid
phase, Q6 ≈ 0 and C6(r) decays with an exponential envelope
at large r [36,37].

In Figs. 3 and 4, we present various pair and bond-
orientational statistics associated with the inherent structures
containing the aforementioned three types of topological

defects, respectively. Interestingly, these inherent structures
share many structural similarities, despite the different de-
fect types. In particular, these inherent structures preserve the
class-I hyperuniformity of the triangular lattice, as manifested
by the fact that S(k) essentially decreases to zero with an
approximately quadratic scaling as k approaches zero and
σ 2

N (R) increases linearly as R increases at large R. Both h(r)
and C6(r) decay to their respective long-range values over a
short length scale, and the long-range value of |g2(r) − 1|,
the magnitudes of the Bragg peaks in S(k), and Q6 decrease
rapidly as p or q increases, indicating the loss of large-scale
structural order as topological defects are introduced into the
system. Here we note that the absence of Bragg peaks alone
does not guarantee that the underlying structure is truly amor-
phous since long-range order can be hidden at the two-body
level, but still can be present in higher-order correlations,
as explicitly demonstrated by Klatt et al. in the context of
random, uncorrelated displacements of particles on a lattice
[40]. There are also clear wiggles in S(k) at large k and
significant oscillations in g2(r), which are manifestations of
the remaining short-range structures in the defected networks.
Moreover, we note that at comparable defect concentrations,
disclinations degrade the translational and orientational order
of the triangular lattice the most, followed by free dislocations
and bound dislocations, as evidenced by g2(r), C6(r), and
Q6. It is not surprising that the impact of bound dislocations
are much more localized than that of free dislocations and
disclinations.

It is noteworthy that in colloidal systems during 2D melt-
ing, as free dislocations begin to emerge, the systems start to
enter the hexatic phase regime, and the h(r) and C6(r) typi-
cally show an exponential and an algebraic decay, respectively
[36,37]; on the other hand, the emergence of isolated disclina-
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FIG. 3. Pair statistics associated with inherent structures containing primarily bound dislocations (top panel), inherent structures containing
primarily free dislocations (middle panel), and inherent structures containing disclinations (bottom panel) at different defect concentrations p
or q with N = 10 800 particles. Left to right, Column 1: Log-log plot of structure factor S(k). Here we also include the plot for the S(k) of the
corresponding perfect triangular lattice as a reference, which is strictly zero for k < K , where K is the location of the first peak. Column 2:
Local number variance σ 2

N (R). Column 3: Log-log plot of |g2(r) − 1|. Column 4: Small-wave-number scaling exponent α of S(k), extracted as
the slope of linear fittings of ln S(k) vs ln k for k < 0.5.

tions typically leads the systems to transition into isotropic
liquids, which essentially lose translational and orientational
order, i.e., h(r) and C6(r) both exhibit an exponential decay
as r increases [36,37]. These behaviors are distinctly different
from those of our inherent structures containing primarily
free dislocations or disclinations, and may be attributed to
the fact that in our systems, the free dislocations or discli-
nations are introduced in a mostly uncorrelated manner, while
during 2D melting, the free dislocations or disclinations arise
as a result of thermal excitation and possess certain degrees
of spatial correlation. Our results suggest that not only the
types of topological defects, but also the spatial correlation
of topological defects affect the structural behaviors of the de-
fected lattices. Moreover, contrary to our inherent structures,
those equilibrium configurations during 2D melting [36,37]
are generally not hyperuniform, highlighting the cloaking of
hyperuniformity by thermal fluctuations. In fact, our inher-
ent structures will surely lose (perfect) hyperuniformity if
thermalized, similar to other hyperuniform structures in gen-
eral [41]. In addition, we note that the inherent structures
containing topological defects such as dislocations and discli-
nations are distinctively different from other defected lattices
such as lattices with random vacancies or lattices with ran-

dom uncorrelated displacements [41,42], since lattices with
random vacancies are shown to be nonhyperuniform, while
the inherent structures associated with lattices with random
uncorrelated displacements are the corresponding perfect lat-
tices and thus ordered.

IV. CONTINUUM THEORY OF HYPERUNIFORMITY IN
INHERENT STRUCTURES CONTAINING

TOPOLOGICAL DEFECTS

In this section, we devise a continuum theory to explain
our observations from Sec. III of the impact of the topological
defects on hyperuniformity, i.e., how the topological trans-
formations involving dislocations and disclinations preserve
the class-I hyperuniformity of the original triangular-lattice
crystal. We note that the introduction of topological defects
preserves the total number of particles in the system, i.e., no
particles were removed or added. Therefore, the impacts on
the local number density fluctuations result from the pertur-
bation of particle positions at the core of the defects and the
associated elastic displacement field. Specifically, we assume
that the particle displacement (at low defect concentrations)
at position x is the linear superposition of the displacements
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FIG. 4. (a) Bond-orientational order correlation function C6(r)
and (b) order metric Q6 of inherent structures containing primarily
bound dislocations at different defect concentrations p with N =
10 800 particles. (c) Bond-orientational order correlation function
C6(r) and (d) order metric Q6 of inherent structures containing
primarily free dislocations at different defect concentrations p with
N = 10 800 particles. (e) Bond-orientational order correlation func-
tion C6(r) and (f) order metric Q6 of inherent structures containing
disclinations at different defect concentrations q with N = 10 800
particles.

introduced by different topological defects (i.e., strain
sources) at r1, . . . , rM , where M is the number of topological
defects, i.e.,

u(x) =
M∑

i=1

f (x − ri ), (7)

and where the f functions are the sources. Therefore, the
average displacement field 〈u(x)〉 is given by

〈u(x)〉 =
∫ M∑

i=1

f (x − ri )PM (rM )drM

=
∫

f (x − r1)ρ1s(r1)dr1

= ρs

∫
f (r)dr,

(8)

where PM (rM ) is the probability density function [1] associ-
ated with finding defects 1, 2, . . . , M at position r1, r2, . . . ,
rM , and ρms(rm)(m < M ) is the reduced generic density func-
tion [1] of the defects defined as

ρms(rm) = M!

(M − m)!

∫
· · ·

∫
PM (rM )drM−m, (9)

and because of statistical homogeneity, the one-point den-
sity function ρ1s(r1) is equal to the average defect density
ρs in the system. Similarly, the different components of
the displacement-displacement correlation �μν (r = y − x) ≡
〈uμ(x)uν (y)〉 − 〈uμ(x)〉〈uν (y)〉 are given by

�μν (r) =
∫ M∑

i=1

M∑
j �=i

fμ(x − ri ) fν (y − r j )PM (rM )drM

+
∫ M∑

i=1

fμ(x − ri ) fν (y − ri )PM (rM )drM

−
∫

ρ2
s fμ(x − r1) fν (y − r2)dr1dr2

=
∫

ρ2
s hs(r2 − r1) fμ(x − r1) fν (y − r2)dr1dr2

+
∫

ρs fμ(x − r1) fν (y − r1)dr1, (10)

where hs(r) ≡ g2s(r) − 1 = [ρ2s(r) − ρ2
s ]/ρ2

s is the total cor-
relation function of the topological defects. If the topological
defects are randomly introduced into the system, then hs(r) =
0, which gives

�μν (r) =
∫

ρs fμ(x − r1) fν (y − r1)dr1

=
∫

ρs fμ(r1) fν (r1 + r)dr1.

(11)

In the Fourier space, this corresponds to

�̃μν (k) = ρs f̃μ(k) f̃ ∗
ν (k) = ρs f̃μ(k) f̃ν (−k), (12)

where �̃, f̃ are the Fourier transforms of � and f , respectively,
and f̃∗ is the complex conjugate of f̃ . Here we emphasize that
although the topological defects are randomly distributed, the
displacements of each lattice site caused by each individual
topological defect are correlated, which leads to overall cor-
related displacement fields in our systems. This differentiates
our systems from the perturbed lattice models with uncorre-
lated displacement fields studied in previous works [40,41].

Next, we derive the expression for the structure factor
S(k) of triangular lattice affected by displacement fields
u. Previously, it was shown [41] in general that when
the displacement field has a finite variance 〈|u|2〉 and the
displacement-displacement correlation matrix is isotropic and
diagonalized, i.e., �μν (r) = δμν�(r), the structure factor
S(k) of a displaced hyperuniform point pattern at small |k|
is approximated by

S(k) ≈ {|k|2�(0) + [1 − |k|2�(0)]S0(k)}

+ ρ0|k|2
[
�̃(k) +

∫
d (r)h0(r)�(r)e−ik·r

]
,

(13)
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where S0(k) and h0(r) are the structure factor and total
correlation function of the original point patterns. In the
cases where the original point patterns are crystals, we can
use the properties of crystals to simplify Eq. (13). In partic-
ular, the structure factor S0(k) = 0 holds for |k| < K , where
K is the wave number associated with the first Bragg peaks,
and the pair correlation function g20(r) = h0(r) + 1 is simply
a collection of δ functions at lattice sites and zero otherwise.
By Taylor expanding the second line of Eq. (13) at small
k and invoking the continuum approximation, we obtain the
following expression:

S(k) ≈ k2�(0) + ρ0k2�̃(0)

= ρsk
2
∫

f 2
1 (r)dr + ρ0ρsk

2| f̃1(0)|2

= ρsk
2
∫

f 2
2 (r)dr + ρ0ρsk

2| f̃2(0)|2.

(14)

FIG. 5. Displacement field u in an inherent structure containing
a single pair of bound dislocations. (a) Spatial distribution of normal-
ized |u(r)|/|u(r)|max. (b) Decay of |u(r)| as a function of the distance
r from the core of the topological defect, i.e., the center of the old
broken bond (the same as the center of the new formed bond), and
the red solid line is an exponential fit (note that the vertical axis is a
logarithmic scale).

Interestingly, Eq. (14) suggests that as long as the volume
integrals of f (r) and |f (r)|2 are finite, the structure factor S(k)
of the triangular lattice affected by the displacement fields
generated by the collection of randomly distributed source
functions f scales as S(k) ∼ k2, which indicates that such
displacement fields preserve the class-I hyperuniformity of the
original crystals.

We then test our continuum theory against our numerical
simulations of representative inherent structures. In Fig. 5(a),
we first visualize the magnitude of the displacement field u
in an inherent structure containing a single pair of bound

FIG. 6. (a) Visualization of spatial distribution of the vector dis-
placement field u(r) and (b) plot of the displacement-displacement
correlation matrix �(r) in an inherent structure containing primarily
bound dislocations at p = 0.17. (c) Visualization of spatial distri-
bution of the vector displacement field u(r) and (d) plot of the
displacement-displacement correlation matrix �(r) in an inherent
structure containing primarily free dislocations at p = 0.04. (e) Vi-
sualization of spatial distribution of the vector displacement field
u(r) and (f) plot of the displacement-displacement correlation matrix
�(r) in an inherent structure containing disclinations at q = 0.015.
The visualizations are using representative portions of configurations
with N = 1200 particles, while the correlation matrices are com-
puted using configurations with N = 10 800 particles.
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dislocations. Clearly, the displacement field concentrates
around the center of the topological defect, i.e., the center
of the old broken bond (which is the same as the center
of the new formed bond). We further compute the decay of
|u(r)| as a function of the distance r from the core of the
topological defect, which appears to decay exponentially, as
shown in Fig. 5(b), although we note that |u(r)| appears to
be anisotropic around the core, as shown in Fig. 5(a). The
exponential decay clearly suggests that the volume integrals
of the source f and |f |2 should be finite in this case.

We then look at the cases where substantial amounts
of topological defects are affecting the structures. Specif-
ically, in Fig. 6, we show the spatial distribution of the
vector displacement field u(r) and compute the correspond-
ing displacement-displacement correlation matrices �(r) for
three representative examples: an inherent structure contain-
ing primarily bound dislocations at p = 0.17, an inherent
structure containing primarily free dislocations at p = 0.04,
and an inherent structure containing disclinations at q =
0.015. All three fields in the visualizations appear to be ap-
proximately isotropic on large scales, suggesting finite �̃(0)
and thus finite volume integrals of f (r); on the other hand, we
observe that �12 ≈ 0, �11(r) ≈ �22(r), and �11(0) or �22(0)
are finite, which indicates that �μν (r) = δμν�(r) and volume
integrals of |f (r)|2 are finite, satisfying the assumptions in our
theory. Next, we proceed to investigate whether the numer-
ically determined small-k behavior of S(k) of our inherent
structures matches the prediction by our theory. The scaling
exponent α in S(k) ∼ kα at small k shown in Fig. 3 is extracted
as the slope of linear fittings of ln S(k) vs ln k for k < 0.5. As
mentioned above, the unit length is set as the side length of
a triangle in a perfect triangular lattice. Indeed, at low defect
concentrations, α oscillates around 2, matching the quadratic
scaling predicted by our theory; however, at very small or
large defect concentrations (relative to saturation), the expo-
nent α slightly deviates from 2. The deviation at very small
defect concentrations can be attributed to the fact that at these
defect concentrations, the systems are not entirely homoge-
neous, which degrades the accuracy of our continuum-theory
prediction; on the other hand, at large defect concentrations,
the topological defects begin to interact with each other and
modify the inherent structures accordingly, which is not taken
into account in our continuum theory.

V. CONCLUSIONS AND DISCUSSION

In this work, using representative numerical examples and
theoretical analysis, we demonstrate that disordered inherent
structures that are topological variants of crystals preserve the
class-I hyperuniformity of the crystals as long as the topologi-
cal defects are randomly introduced, the displacement fields
generated by individual topological defects are sufficiently
localized (i.e., the volume integrals of the displacements and

squared displacements caused by individual defect are finite),
and the displacement-displacement correlation matrix of the
system is diagonalized and isotropic on large length scales.
These results are universal, regardless of the exact defect
types and concentrations. Moreover, the inherent structures
containing dislocations and disclinations studied in this work
are quite different from the equilibrium structures containing
the same type of topological defects in colloidal systems dur-
ing 2D melting [36,37], suggesting that not only the types of
defects, but also the spatial correlations of defects are key to
understanding the impact of defects on the structural features
of crystalline systems. Our numerical results and theoretical
analysis uncover the mechanisms underlying the emergence
of disordered hyperuniformity in a wide spectrum of disor-
dered structures, and provide insights to the discovery, design,
and generation of novel disordered hyperuniform materials.

It is noteworthy that topological defects such as dis-
locations and disclinations appear as point defects in two
dimensions, while in three dimensions they are known to
appear as line defects. Given this difference, it would be
interesting to explore the impact of topological defects on
the large-scale structural features of crystals in three di-
mensions, and the potential findings may shed light on the
emergence of hyperuniformity in certain disordered inherent
structures. For example, there were theories [35] suggesting
that MRJ packings (or random close packings as termed by
many experimentalists) might be considered as disordered
topological variants of the tetrahedral particle packings, just
as Frank-Kasper phases [35,43,44] are considered as ordered
topological variants.

In addition, we note that here we have investigated the
introduction of topological defects into the triangular lattice,
but given the duality of the triangular lattice and honeycomb
lattice, the duals of the various inherent structures obtained
in this work are similar to the network structures obtained
previously [45] that are topologically transformed from the
honeycomb lattice through the introduction of Stone-Wales
(SW) defects, which are relevant to amorphous graphene and
other 2D materials [45]. However, previously it was demon-
strated that as the SW defect concentration reaches a certain
critical value, the corresponding systems change from class-I
hyperuniformity to class-II hyperuniformity, which can be at-
tributed to the fact that in those systems, the bond angles were
also regulated because of the underlying chemical constraints
[45] and the additional coupling between defects likely mod-
ifies the behavior of large-scale density fluctuations and leads
to the change in the class of hyperuniformity at sufficiently
large defect concentrations.
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