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Additional orbital degrees of freedom in multiband quantum systems may offer more intriguing possi-
bilities for spin-orbit (SO) control. Here we explore the Rashba and Dresselhaus SO couplings in realistic
AlInAs/GaInAs triple wells subjected to top (VT) and back (VB) gate potentials, allowing for flexible triple-
occupancy control for electrons. By performing a self-consistent Poisson-Schrödinger calculation, we determine
all the relevant Rashba (Dresselhaus) SO terms of both intraband αν (βν) and interband ημν (�μν) types.
For a structurally symmetric triple well, we achieve a crossing of energy levels between the first and second
subbands and sequentially an anticrossing between the second and third subbands, accompanied with a double
band swapping, simply via adjusting VB. As a consequence, when VB varies, an emerging interchange of the
first-subband α1 (β1) and second-subband α2 (β2) SO terms, and of α2 (β2) and α3 (β3) respectively for the
second and third subbands, i.e., double SO interchange, occurs, greatly fascinating for selective SO control
among distinct subbands in spintronic devices. Further, near the two-band swapping points, across which electron
transfer among the three local wells (triple well) takes place, detailed interchanging features of nonlinear SO
control are also contrasting. Remarkably, in addition to Rashba terms, we also realize a wide-range control of
Dresselhaus couplings, which are usually immune to electrical manipulation. Regarding the interband Rashba
and Dresselhaus SO contributions, ημν and �μν exhibit either a resonant behavior or a steplike jump across
band-swapping points, depending on the parity and spatial distribution of electron wave functions. By varying
the barrier height of the two inner barriers in the triple-well configuration, dependence of relevant SO terms on
engineered structures, which are either structurally symmetric or asymmetric, is also discussed. Interestingly, in
the latter asymmetric case, we realize a seemingly symmetric configuration by adjusting VB, in which α1 and
α2 essentially vanish while α3 is nonzero, providing a handle for suppressing electron spin relaxation of chosen
subbands. Our results will stimulate more experiments probing unusual SO features in multiband and multiwell
quantum systems and act as a guide for more proposals designed for spintronic devices.
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I. INTRODUCTION

Control of spin is a prerequisite from fundamental physics
to quantum information technology and spintronic devices
[1,2]. The spin-orbit (SO) interaction couples electron spin
and momentum via an effective magnetic field, facilitating
coherent spin manipulation [3]. In 2D materials of transition
metal dichalcogenides, the SO coupling acts as a central in-
gredient giving rise to the intriguing property of spin-valley
locking [4–6]. Further, SO coupling can be essential for sev-
eral intriguing quantum states, e.g., topological insulators [7],
Majorana fermions [8,9], and Weyl semimetals [10]. Our re-
cent proposals of persistent skyrmion lattice [11], stretchable
spin helix [12], spin-helix symmetry breaking [13], and op-
posite SO control [14] also indicate the important role of SO
effects in semiconductor spintronic applications.

Semiconductors such as GaAs, InAs, and InSb offer
various strengths of SO couplings [12,15–18], and are
thus suitable for a broad range of spintronic applications,
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making this subject extraordinarily profound. Very recently,
we also explored in detail SO properties of wide-gap (e.g.,
GaN) semiconductors in the wurtzite phase, and obtained a
general effective Hamiltonian for electrons valid for quantum
wells, wires, and even dots [19]; Kammermeier et al., demon-
strated persistent spin textures and currents in SO-coupled
wurtzite nanowire-based quantum structures [20], further ex-
tending this field.

In semiconductor nanostructures, the SO effects usually
have two dominant contributions: the Rashba [21] and Dres-
selhaus [22] terms, arising from the breaking of the structural
and crystal inversion symmetries, respectively. The Rashba
coefficient can be tuned with the doping profile or by using
an external bias [16,23]. In contrast, the Dresselhaus SO term
mainly depends on quantum confinement [24,25]. The SO in-
teraction was usually studied in semiconductor quantum wells
with electrons only occupying the first subband (“single oc-
cupancy”), including the control of spin relaxation anisotropy
[26–28], persistent spin helix [24,29–32], and quantum geom-
etry associated SO features [25,33,34]. In addition, quantum
wells with two populated subbands (“double occupancy”)
have also drawn growing interest due to emerging novel SO
features arising from an additional orbital degree of freedom
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[18,35–39], such as unusual spin textures [37,40], intrinsic
spin-Hall effect [38], and crossed spin helices [11], as well as
the associated spin dynamics of diffusion and drift [41–43].

Recently, triple-well structures with three occupied sub-
bands, which are important in diverse fields of physics, e.g.,
quantum interference [44], Kerr nonlinearity [45], and optical
bistability and multistability [46], have also been attracting
intense attention in the field of spintronics. This is mainly be-
cause (i) a triple-well configuration favors flexible control of
triple occupancy for electrons, (ii) additional orbital degrees
of freedom may offer more intriguing SO features, and (iii)
charge transfer among the three (left, central, and right) local
wells provides more possibility for spintronic applications.
For instance, Ullah et al. revealed strong anisotropy of spin
relaxation time and long spin transport length (exceeding a
half millimeter) in GaAs triple wells [47–49]; Wiedmann et al.
demonstrated peculiar magnetointersubband oscillations [50]
and Santos et al. observed quantum-Hall gap collapses [51]
in the magnetoresistance measurements. Further, Cruiz and
Luiz proposed an efficient spin-filter device in a triple-well
system, where the injected electronic current that is initially
unpolarized could be divided into two spin-up and spin-down
polarized currents [52]. Also, very recently, Iijima and Akera
demonstrated gate-induced switching of the spin-relaxation
rate in a triple-well structure, achieving an efficient on:off ra-
tio of the current in spin-field-effect transistor [53]. However,
despite substantial efforts, detailed SO features in quantum
systems with flexible tuning of the electron occupancy of
three subbands, which may have more profound applications
in future spintronic devices, still remain obscure.

Here we aim to unveil Rashba and Dresselhaus SO features
of both intra- and interband types in triple wells, allowing for
flexible control of triple occupancy for electrons. We consider
realistic n-type AlInAs/GaInAs triple wells, which have rel-
atively strong SO strength (cf. GaAs) [33,54,55], formed by
embedding two inner barriers of heights δ2 and δ′

2 and sub-
jected to top (VT) and back (VB) gate potentials [Figs. 1(a) and
1(b)]. By performing a self-consistent Poisson-Schrödinger
calculation in the Hartree approximation, we determine all the
relevant Rashba (Dresselhaus) SO terms of both intraband αν

(βν) and interband ημν (�μν) kinds.
Interestingly, for a structurally symmetric well, we achieve

a band crossing and sequentially a band anticrossing, with
the former for the first and second subbands and the latter
for the second and third subbands, simply via adjusting VB

[Fig. 1(d)], indicating the emergence of double band swap-
ping. We find that the band swappings are accompanied by
spatial redistributions among the three (left, central, and right)
local wells, which constitute the triple-well configuration, for
electrons occupying the three subbands (Fig. 2). This follows
an intriguing interchange of the first-subband α1 (β1) and
second-subband α2 (β2) SO terms, and sequentially of α2 (β2)
and α3 (β3) respectively for the second and third subbands,
i.e., double SO interchange [Figs. 1(e) and 1(f)], greatly fas-
cinating for selective SO control among distinct subbands in
spintronic devices. Further, even near the two band-swapping
points, detailed interchanging features of nonlinear SO control
are also contrasting, because of distinct coupling strengths
between involved subbands determining the band crossing or
anticrossing. Remarkably, in addition to Rashba terms, we

FIG. 1. (a) Schematic diagram of AlInAs/GaInAs triple well,
with w, Lw, and Lb denoting the width of the overall well, three local
wells (Ga0.47In0.53As), and embedded inner barriers (AlxIn1−xAs),
respectively. The red regions inside the outer barriers (Al0.48In0.52As)
stand for doping layers with the doping density ρa and ρb. Top (VT)
and back (VB) gate potentials are adopted to adjust the well symmetry
and electron occupancy. (b) Schematic of the structural potential (Vw)
of the triple well in (a), where δ1 and δ2 (δ′

2) denote the outer and left
(right) inner band offsets, respectively. (c) Zero-bias self-consistent
potential V and wave function profiles ψν (ν = 1, 2, 3) of a sym-
metric triple well with δ2 = δ′

2 = 0.17 eV. The label “1+2” indicates
that electrons in the left and right local wells are predominantly in
states of both ψ1 and ψ2, while the label “3” means that electrons
in the central well are primarily in state ψ3. (d) Subband energy εν

vs VB, with the Fermi level pinned at εF = 189 meV. Black (empty)
circles indicate where the crossing between ε1 and ε2 or anticrossing
between ε2 and ε3 occurs. (e) Rashba αν and (f) Dresselhaus βν SO
coefficients as functions of VB, with the inset showing a blowup of
how SO coefficients vary with VB near the crossing point. In (d)–(f),
the top gate potential is held fixed at zero bias and, in (e) (and inset),
the black (solid) circle indicates that all αν’s of the three subbands
identically vanish at VB = 0.

also realize a wide-range control of Dresselhaus couplings,
which are usually immune to electrical manipulation, ensuring
triple-wells ideal candidates for a simultaneous control of
Rashba and Dresselhaus SO couplings via electrical means.
Regarding the interband Rashba and Dresselhaus SO contri-
butions, ημν and �μν exhibit either a resonant behavior or
a steplike jump across the band-swapping points (Fig. 3),
depending on the parity and spatial distribution of electron
wave functions.

By varying the barrier height of the two inner barri-
ers, which are embedded to form a triple well, dependence
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of SO couplings on engineered structures, which are ei-
ther structurally symmetric or asymmetric, is also discussed
(Figs. 4–6). Remarkably, in the latter asymmetric case,
through varying VB we realize a seemingly symmetric con-
figuration, in which α1 and α2 essentially vanish while α3 is
nonzero, providing a handle for suppressing spin relaxation of
electrons of given subbands in a selective manner [Fig. 7(a)].

Moreover, we also determine how the interplay of intra-
and interband SO terms affects the energy dispersion. We
observe that the two crossings between adjacent subbands for
the energy dispersion may remain or turn to avoided crossings,
depending on the relative signs of intraband SO terms (Fig. 8).
Finally, we also analyze the random Rashba field arising from
fluctuation of the concentration of dopant ions [56–58]. Our
results should stimulate more experiments probing unusual
SO features in multiband and multiwell quantum systems and
more proposals designed for spintronic applications and act as
a guide for more proposals designed for spintronic devices.

The rest of the paper is structured as follows. In Sec. II, we
derive the effective 2D Hamiltonian for electrons in quantum
wells with three occupied subbands and present the relevant
expressions for the intra- and interband SO interactions. In
Sec. III, we first introduce our system and relevant physical
parameters adopted, and further present our self-consistent
results and discussion. We summarize our main findings in
Sec. IV.

II. MODEL AND METHOD

Here we outline the derivation of an effective 2D Hamil-
tonian for electrons in multisubband quantum wells with both
Rashba and Dresselhaus SO interactions. More specifically,
we derive an effective 2D Hamiltonian for a three-subband
system and determine the relevant SO couplings.

A. From a 3D to an effective 2D Hamiltonian

The 3D Hamiltonian for electrons in the presence of both
the Rashba and Dresselhaus SO interactions for quantum
wells grown along the z||[001] direction reads [33,59],

H3D = − h̄2

2m∗
∂2

∂z2
+ V (z) + h̄2

(
k2

x + k2
y

)

2m∗ +H3D
R +H3D

D ,

(1)
where m∗ is the electron effective mass and kx,y the electron
momentum along the x||[100] and y||[010] directions. The
electron potential V = Vg + Vw + Vd + Ve, containing the ex-
ternal gate potential Vg with both top (VT) and back (VB) gate
contributions [Fig. 1(a)], the structural potential Vw arising
from the band offset at the well/barrier interfaces [Fig. 1(b)],
the doping potential Vd, and the electron Hartree potential
Ve [11,12,18,33]. Note that V is calculated self-consistently
within the (Poisson-Schrödinger) Hartree approximation. The
terms H3D

R and H3D
D describe the Rashba and Dresselhaus

SO interactions, respectively. The Rashba term reads H3D
R =

η(z)(kxσy − kyσx ), with η(z) = ηw∂zVw + ηH∂z(Vg + Vd + Ve )
determining the Rashba strength and σx,y,z the spin Pauli ma-
trices. The parameters ηw and ηH involve bulk quantities of
materials [18,33,34]. The Dresselhaus contribution has the
form H3D

D = γ [σxkx(k2
y − k2

z ) + c.c.] with γ the bulk Dres-
selhaus parameter and kz = −i∂z [22,59].

Now we are ready to define an effective three-subband 2D
model from the 3D Hamiltonian [Eq. (1)]. We first determine
(self-consistently) the spin-degenerate eigenvalues εkν =
Eν + h̄2k2/2m∗ and the corresponding eigenspinors |kνσ 〉 =
|kν〉 ⊗ |σ 〉, 〈r|kν〉 = exp(ik · r)ψν (z), of the well in the
absence of SO interaction. Here we have defined Eν (ψν), ν =
1, 2, 3, as the νth quantized energy level (wave function) and
σ =↑,↓ as the electron spin component along the z direction.
Then the effective 2D Rashba-Dresselhaus model with three
subbands in the coordinate system [x||(100), y||(010)] under
the basis set {|k1 ↑〉, |k1 ↓〉, |k2 ↑〉, |k2 ↓〉, |k3 ↑〉, |k3 ↓〉}
reads H2D = H2D

0 +H2D
R +H2D

D , with H2D
0 , H2D

R , and H2D
D

the spin-independent part and the Rashba and Dresselhaus SO
contributions, respectively,

H2D
0 =

⎛
⎝

εk1 0 0
0 εk2 0
0 0 εk3

⎞
⎠ ⊗ 1, (2)

H2D
R =

⎛
⎝

α1 η12 η13

η12 α2 η23

η13 η23 α3

⎞
⎠ ⊗ (σykx − σxky), (3)

H2D
D =

⎛
⎝

β1 �12 �13

�12 β2 �23

�13 �23 β3

⎞
⎠ ⊗ (σyky − σxkx ), (4)

where 1 denotes the 3 × 3 matrix in both spin and orbital
(subband) subspaces and αν (βν) is the Rashba (Dresselhaus)
intraband coupling for the νth subband with ν = 1, 2, 3. Here
Eqs. (3) and (4) also account for the SO-induced interband
couplings between subbands μ and ν via the parameters ημν

(Rashba) and �μν (Dresselhaus) with μ 	= ν. Note that here
there are 12 SO coefficients (αv , βν , ημν , �μν) in total, while
it is straightforward to determine (at least numerically) how
these SO terms affect the energy dispersion; see, for instance,
Fig. 8 for the three-level Rashba SO dispersion. Also, we
have derived an effective 2D Hamiltonian solely for electrons
with the explict form (and symmetry) for all Rashba and
Dresselhaus terms of both intra- and interband types. This is
clearly beyond directly solving the original 8 × 8 Kane model,
from which, although one obtains more precise spin-splitting
energy, different kinds of SO contributions may be mixed
together.

B. Rashba and Dresselhaus SO coefficients

In Eqs. (3) and (4), the Rashba SO coefficients can be cast
as the expectation values 〈. . .〉 of the weighted derivatives of
the potential contributions,

ηνν ′ = 〈ψν |ηw∂zVw + ηH∂z(Vg + Vd + Ve)|ψν ′ 〉, (5)

and the Dresselhaus SO strength reads

�νν ′ = γ 〈ψν |k2
z |ψν ′ 〉, (6)

where we have defined the intraband Rashba αν ≡ ηνν and
Dresselhaus βν ≡ �νν , as well as the interband Rashba ημν

and Dresselhaus �μν , μ 	= ν. Note that the intraband Rashba
term αν can be written in terms of several constituent
contributions, i.e., αν = α

g
ν + αd

ν + αe
ν + αw

ν , with α
g
ν =

ηH〈ψν |∂zVg|ψν〉 the gate contribution, αd
ν = ηH〈ψν |∂zVd|ψν〉

the doping contribution, αe
ν = ηH〈ψν |∂zVe|ψν〉 the electron
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Hartree contribution, and αw
ν = ηw〈ψν |∂zVw|ψν〉 the struc-

tural contribution. Similarly, the interband Rashba term ημν =
η

g
μν + ηd

μν + ηe
μν + ηw

μν . For convenience, we also use α
g+d
ν =

α
g
ν + αd

ν and η
g+d
μν = η

g
μν + ηd

μν . Even though αν and ημν com-
prise seemingly independent contributions, we note that each
of them depends on the total potential V via the self-consistent
wave function.

III. RESULTS AND DISCUSSION

We first introduce our system and relevant parameters
adopted. Then, we show our self-consistent calculations on
the Rashba and Dresselhaus SO couplings of both intra- and
interband terms for our triple wells with either structurally
symmetric or asymmetric configurations. The random Rashba
SO effect arising from fluctuations of the concentration of
dopant ions is also analyzed.

A. System

We consider the [001]-grown Ga0.47In0.53As wells, which
have relatively strong spin-orbit couplings (cf. GaAs)
[33,54,55], sandwiched between 48-nm Al0.48In0.52As barri-
ers, with two additional (inner) AlxIn1−xAs layers embedded
in the well region to form the triple-well configuration
[Fig. 1(a)], favoring flexible control of the electron occupancy
of three subbands. The overall width of the well is w = 48 nm,
comprising three local wells (Ga0.47In0.53As) of width Lw = 8
nm separated by two inner barriers (AlxIn1−xAs) of width
Lb = 12 nm. Two doping layers of width 1 nm sit 17 nm
away from either side of the well, with the doping density
ρa = ρb = 4 × 1018 cm−3, i.e., symmetric doping condition.
The temperature is T = 0.3 K and the Fermi level in our
simulation is pinned at εF = 189 meV. Two independent gate
potentials VT (top gate) and VB (back gate) are adopted for
adjusting the electron occupancy and the symmetry of the
system. Without lack of generality, we hold the top gate fixed
at zero bias, i.e., VT = 0 (reference point), and adjust VB to
explore the gate control of SO terms.

In Fig. 1(b), we show the structural potential profile Vw

(Sec. II) for our triple well illustrated in Fig. 1(a). We focus on
both structurally symmetric and asymmetric configurations.
In the former case, three cases of inner offsets are considered,
with δ2 = δ′

2 = 0.17, 0.34, and 0.52 eV, where the matching
of the left and right inner barrier heights, i.e., δ2 = δ′

2, ensures
that the system is structurally symmetric. Regarding the lat-
ter case, we consider δ2 = 0.34 eV and δ′

2 = 0.17 eV. For
realistic considerations, we follow Ref. [60] and determine
a mapping between the inner offset and concentration x of
the AlxIn1−xAs layer for the values of δ2 (δ′

2) considered in
Figs. 1–6, with δ2 = 0.17, 0.34, and 0.52 eV corresponding
to x equal to 0.07, 0.20, and 0.40, respectively. And, the
outer offset at the Ga0.47In0.53As/Al0.48In0.52As interfaces is
δ1 = 0.52 eV [18,60].

Below we analyze our calculated SO couplings for the
corresponding quantum systems introduced above. We first
focus on symmetric wells in which the left and right inner
barrier heights are matched.

B. Symmetric well: Intraband SO couplings

Before looking into gate controlled SO couplings, we first
examine our self-consistent outcome. In Fig. 1(c), we show
the zero-bias self-consistent potential V and wave function
profiles ψν (ν = 1, 2, 3) for our symmetric triple well with
the inner offsets of δ2 = δ′

2 = 0.17 eV. We observe that both
the first- and second-subband electrons are apt to reside in
the two outer wells, with no priority of the left or right one
(cf. ψ1 and ψ2), as indicated by the label “1+2,” since the
overall system is in the symmetric configuration. The large
overlap of spatial distributions between ψ1 and ψ2 implies that
the subband energy levels ε1 and ε2 are basically degenerate.
Physically, this follows from the fact that the left and right
local wells are largely separated by the two inner barriers and
the central well [Fig. 1(b)], which suppress the wave function
penetration and further quench the coupling of the two outer
wells. Regarding the third subband, its energy level ε3 is about
10 meV above ε2 of the second subband, and electrons are
preferably localized in the central well (see label “3” and ψ3),
in which the potential energy is higher than that in the left
and right wells primarily due to the presence of the electron
Hartree potential.

Now we switch on the back gate potential VB, which breaks
the structural inversion symmetry of the well, to explore how
the self-consistent outcome evolves for the system away from
the symmetric configuration. Figure 1(d) shows the subband
energy levels εν as a function of VB, with the Fermi level
pinned at εF = 189 meV [12]. Clearly, the potential energy
of the overall system including all the subband energy levels
shall be lifted up as VB increases. Since VB is applied on the
right of the structure [Figs. 1(a) and 1(b)], electrons confined
in the right well react more sensitively in energy increment
than those localized in the central and left (local) wells.

FIG. 2. Self-consistent potential V and wave function profiles ψν

for a symmetric triple well with δ2 = δ′
2 = 0.17 eV, at VB = −0.15

(a), 0.1 (b), 0.17 (c), and 0.2 eV (d). The top gate VT is held fixed at
zero bias. The labels “ν” (ν = 1, 2, 3) inside the well region mean
where electrons occupying the νth subband are localized and “3+2”
in (c) indicates that electrons confined in the central and right local
wells are in states of both ψ2 and ψ3.

165428-4



UNUSUAL SPIN-ORBIT CONTROL IN AlInAs/GaInAs … PHYSICAL REVIEW B 104, 165428 (2021)

This leads to a crossing of the energy levels ε1 and ε2 near
the symmetric configuration (across VB = 0), indicating the
essential degeneracy between the first and second subbands
aforementioned. Further, when the gate potential increases
to VB ≈ 0.17 eV, there is an emergent anticrossing between
energy levels ε2 and ε3 respectively for the second and third
subbands. The avoided crossing arises from the appreciable
coupling of the involved subbands, in contrast to the scenario
of the energy-level crossing at zero bias, as we will analyze
in detail later on. Despite the distinction of the crossing and
anticrossing of energy levels, either of the cases reflects the
occurrence of band swapping. Namely, we achieve the in-
triguing double band swapping simply by just adjusting VB.
These self-consistent features of triple wells are helpful in
understanding our calculated SO couplings.

Figures 1(e) and 1(f) show the gate dependence of in-
traband Rashba (αν) and Dresselhaus (βν) SO couplings,
respectively, as functions of VB, for our symmetric triple
well with δ2 = δ′

2 = 0.17 eV. We observe an emerging dou-
ble interchange of the Rashba (Dresselhaus) SO coefficients
as VB varies, i.e., the SO interchange of the first-subband
α1 (β1) and second-subband α2 (β2) near the crossing point
(VB = 0) and further of the second-subband α2 (β2) and third-
subband α3 (β3) near the anticrossing point (VB ≈ 0.17 eV),
which is greatly fascinating for selective SO control among
distinct subbands in spintronic devices. The intriguing double-
interchanging feature of nonlinear SO control follows exactly
from our self-consistent outcome of the double band swapping
aforementioned.

Strictly speaking, we should emphasize that the Dressel-
haus SO terms β1 and β2 have already undertaken a double
interchange even near the crossing point (VB = 0), in contrast
to the Rashba SO contributions; cf. the insets in Figs. 1(e)
and 1(f). However, this is a minor effect with a variation
of only about 1%, allowing us to identify the actual dou-
ble interchange as an effective single SO interchange for
the Dresselhaus SO strength near VB = 0. In addition, it is
found that α3 maintains the usual linear behavior near the
crossing point, while α1 obeys the linear gate dependence
around the anticrossing point, similarly for the gate control
of β3 and β1 near the crossing and anticrossing points, re-
spectively. Note that, right at the crossing point, the system
is structurally symmetric, and hence αν for all the three sub-
bands identically vanishes, as indicated by the black (solid)
circle. Further, it is striking that here we also realize a wide-
range gate control of Dresselhaus SO terms, which usually
depend on quantum confinement while being immune to
electrical manipulation [12]. Thus a triple-well configuration
offers a promising candidate for a simultaneous control of
both Rashba and Dresselhaus SO terms through electrical
means.

Having the basic SO features analyzed above, we are now
ready to discuss more deeply the Rashba SO terms, which
also involve a sign reversal. From Fig. 1(e), it is found that
α1 and α2 maintain opposite signs. Further, α1 and α2 remain
essentially constant when VB > 0 and VB < 0, respectively,
providing a handle for independent control of SO terms of
distinct subbands, i.e., adjusting α1 while essentially holding
α2 fixed at a constant, or vice versa. Also, for the third sub-
band, the SO strength is much smaller than that of the first

and second subbands, and exhibits weak gate dependence,
within a broad range of VB considered. To clarify these fea-
tures, we have to reexamine our self-consistent outcome in
more detail, involving electrically controlled redistribution of
electrons occupying the three subbands among the three local
(left, central, and right) wells [Fig. 1(b)], as we discuss next.

In Figs. 2(a)–(d), we show our self-consistent potential and
wave function profiles for our symmetric triple well at VB =
−0.15, 0.1, 0.17, and 0.2 eV, respectively. This allows us to
analyze how the spatial distribution for electrons of the three
subbands that evolve among the left, central, and right wells
as VB varies. At zero bias, the overall system with δ2 = δ′

2
is structurally symmetric, and hence there is no priority for
electrons to be localized in the left or right well. This leads
to basically the same distribution of ψ1 or ψ2 in the left and
right wells [Fig. 1(c)], implying the essential degeneracy of
the first and second subbands [Fig. 1(d)]. On the other hand,
for ψ3 of the third subband, it is mainly confined in the central
well [Fig. 1(c)].

When VB deviates from zero bias, the intrinsic structural
inversion symmetry is broken and further the degeneracy as-
sociated with the right and left wells is lifted, with the right
well lower (higher) than the left one for Vg less (greater)
than zero; cf. Figs. 2(a) and 2(b) for VB = −0.15 and 0.1 eV,
respectively. Accordingly, when VB = −0.15 eV, electrons
occupying the first subband are opt to be localized in the right
well, while for the second subband electrons preferably reside
in the left one [Fig. 2(a)]. Clearly, the scenario is the opposite
when VB = 0.1 eV [Fig. 2(b)]; cf. ψ1 and ψ2 at VB = −0.15
and 0.1 eV. This indicates that the band swapping of the first
and second subbands near the symmetric configuration is ac-
companied with a distribution exchange of ψ1 and ψ2 between
the left and right wells. Thus a sign flip of α1 and α2 follows
since the local force fields (i.e., derivative of potential with
respect to z) in the left and right wells have opposite signs.
Moreover, the left well, which is far away from where the back
gate VB is applied as compared to the left and central wells, is
not sensitive to energy lifting as Vg increases, giving rise to
α1 and α2 remaining essentially constant when VB > 0 and
VB < 0, respectively. Further, because of the local symmetry
in the central well, α3 is relatively small and exhibits weak
gate dependence over a broad range of VB considered.

When VB further increases from 0.1 eV, the energy sep-
aration between the second and third subbands, with the
corresponding wave functions mostly confined in the right and
central wells, respectively, gradually quenches, as a result of
the right well reacting more sensitively in energy increments
than the central one with increasing VB. This leads to spatial
redistributions of the second- and third-subband electrons be-
tween the central and right wells. Specifically, as VB increases,
the second-subband electrons confined in the right well tend
to move to the central one, while for electrons occupying the
third subband the scenario is the opposite. At VB = 0.17 eV,
ψ2 and ψ3 are largely overlapped in the central and right wells
[Fig. 2(c)]. When VB increases to 0.2 eV, they are basically
separately localized in the central and right wells with a minor
overlap [Fig. 2(d)]. The band anticrossing between ε2 and ε3

arises from the considerable coupling between the adjacent
central and right wells. This is in contrast to the band crossing
between ε1 and ε2 at VB = 0, as the coupling between the
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two outer (left and right) wells, which are largely separated,
is much weaker. Therefore, detailed interchanging features of
nonlinear SO control near the crossing and anticrossing points
are also contrasting. In the latter case of considerable coupling
between adjacent local wells, the yielding SO interchange
spreads a broad gate range; cf. SO features near the crossing
and anticrossing points of Figs. 1(e) and 1(f).

Very recently, based on the idea of the charge transfer
among the three local wells, a gate-voltage-induced switching
of spin relaxation and an efficient on:off ratio of the current in
spin-field-effect transistor was proposed [53]. In this proposal,
the key is that the Rashba coefficient for electrons localized in
the central well due to the local symmetry is much weaker
than that in the right or left local wells, consistent with our
predictions; cf. α3 and α1 (or α2). Also, strong anisotropy of
the spin relaxation time and long spin transport length (ex-
ceeding a half millimeter) were revealed in GaAs triple wells
[47–49]. These all indicate that a triple-well configuration
favoring electron occupancy of three subbands offers more
possibilities for the SO control and spintronic applications.

C. Symmetric well: Interband SO couplings

Now we move to the gate controlled interband SO terms, as
shown in Figs. 3(a) and 3(b) for the Rashba (ημν) and Dressel-
haus (�μν) SO couplings, respectively. We first have a look at
the band-swapping mediated interband Rashba SO terms near
the crossing point (zero bias). We observe that η12 and η23 ex-
hibit maximal magnitudes at VB = 0, i.e., a resonant behavior
with VB near the symmetric configuration, as also highlighted
in the inset, in contrast to η13 and intraband terms αν which
identically vanish at zero bias. This is attributed to distinct
parities of relevant wave functions and their corresponding
spatial overlap. More specifically, since the wave functions
of both the first (ψ1) and third (ψ3) subbands have the even
parity, the gate dependence of η13 is expected to be similar
to that of intraband αν terms. Considering that the Rashba SO
terms involve the force fields [Eq. (5)], a vanishing η13 follows
at the crossing point for the well in the symmetric configu-
ration. As for η12 (η23), since the wave functions of ψ2 and
ψ1 (ψ3) are largely overlapped at VB = 0, a resonance for its
gate dependence across the symmetric configuration directly
occurs. Near the anticrossing point, which is away from the

FIG. 3. Interband Rashba ημν (a) and Dresselhaus �μν (b) SO
coefficients for the symmetric triple well of δ2 = δ′

2 = 0.17 eV, with
μ, ν = 1, 2, 3 and μ 	= ν, as functions of VB. In (a), the inset shows a
blowup of how ημν varies with VB near the crossing point, where the
magnitude of η23 is enhanced by a factor of seven for highlighting its
resonant behavior. The top gate potential is pinned at VT = 0.

symmetric configuration and involves the band swapping of
the second (ψ2) and third (ψ3) subbands, the interband Rashba
SO features are dominated by the overlap of associated wave
functions or the coupling of relevant local wells, instead of the
parity of wave function. As a result, η12 and η13 interchange
the values, while η23 displays the resonant feature with VB.

Regarding the interband Dresselhaus SO couplings, which
have nothing to do with the derivative of confining potentials
[Eq. (6)], we find that the interband term �13 between the first
and third subbands exhibits the maximal magnitude near the
symmetric configuration, while �12 (�23) between the second
and first (third) subbands identically vanishes because of dis-
tinct parities of the involved subbands. This is in stark contrast
to the interband Rashba SO terms; cf. ημν and �μν . On the
other hand, near the anticrossing point, the interchanging fea-
ture of Dresselahus SO terms is also dominated by the overlap
of associated wave functions or the coupling of relevant local
wells, similar to that of Rashba SO terms.

We should emphasize that the interband terms may have
various SO effects, including the avoided crossings of band
dispersion [37], intrinsic spin Hall effect [38,61], spin filtering
[62], and unusual zitterbewegung [63,64]. Also, an efficient
spin-filter device was proposed based on the triple-well struc-
ture [52]. Further, a rapid change of SO coefficients (both
intra- and interband terms) near the crossing or anticross-
ing points is in favor of realizing efficient switching of an
on-to-off state, which is greatly promising for spin-transistor
devices.

D. Symmetric well: Inner-barrier-height engineering

In the following, we focus on how the inner-barrier height
affects the aforementioned SO features for our symmetric
triple well with δ2 = δ′

2. In Fig. 4, we show the gate de-
pendence of intraband Rashba αν [(a)–(c)] and Dresselhaus
βν [(d)–(f)] for symmetric wells at several values of inner
barrier heights of δ2 = 0.17, 0.34, and 0.52 eV. The intra-
band Rashba SO coupling αν , which mainly depends on the
structural inversion asymmetry of the system, in general has
weak dependence on δ2. However, a striking feature is that
the gate range covering the interchanging feature of α2 and
α3 near the anticrossing point becomes greatly quenched as
δ2 increases; cf. α2 (α3) at δ2 = 0.17, 0.34, and 0.52 eV. This
indicates that the avoided crossing between the energy levels
of the second and third subbands [Fig. 1(d)] gradually turns
to crossing with increasing inner offsets, which suppress the
penetration of wave function and further quench the coupling
between the right and central wells, as indicated in the inset of
Fig. 4(a) for ψ1, ψ2, and ψ3. These wave functions are mostly
confined in the left, right, and central wells, respectively, and
are essentially spatially separated.

Since a larger inner-barrier height greatly suppresses the
wave-function penetration, the Dresselhaus SO terms, which
mainly depend on quantum confinement, have much stronger
dependence on δ2 than the Rashba ones; cf. αν and βν . This
offers a means for selective SO control between Rashba and
Dresselhaus terms by engineering the inner-barrier heights.
On the one hand, βν grows with increasing δ2; cf. dotted,
dashed, and dash-dotted curves; on the other hand, the gate
dependence of βν becomes suppressed for a larger δ2.
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FIG. 4. Rashba αν [(a)–(c)] and Dresselhaus βν [(e)–(f)] for sym-
metric triple wells at several values of left inner-barrier height δ2 =
0.17, 0.34, and 0.52 eV, as functions of VB. The right inner-barrier
height obeys δ′

2 = δ2 so that the overall system is symmetric at zero
bias [see Fig. 1(b)]. The top gate potential is pinned at VT = 0. In
(a), the inset shows the self-consistent potential V and wave function
profiles ψν at VB = 0.15 eV, with the labels “ν” (ν = 1, 2, 3) inside
the well region meaning where electrons occupying the νth subband
are localized. The black (solid) circle in (a)–(c) indicates that αν

vanishes at VB = 0.

Figure 5 shows the corresponding interband Rashba ημν

[(a)–(c)] and Dresselhaus �μν [(d)–(f)] SO couplings as func-
tions of VB for δ2 = 0.17, 0.34, and 0.52 eV, respectively.
Since the interband terms ημν and �μν strongly depend on
the overlap of the μth (ψμ) and νth (ψν) subband wave func-
tions, both of them in general decrease with increasing δ2.
To better appreciate that the inner barriers quench the overlap
of wave functions of distinct subbands, we show in the inset
of Fig. 5(d) ψ1 and ψ2 for our triple well with δ2 = 0.17
and 0.52 eV at VB = 0.15 eV. Clearly, there is almost no
overlap between ψ1 and ψ2 when δ2 = 0.52 eV. As a conse-
quence, either η12 or �12 remains essentially vanishing when
VB is nonzero. Note that, for all values of δ2’s, right in the
symmetric configuration at VB = 0, η12 exhibits a resonance;
following from that the states of the first (ψ1) and second (ψ2)
subbands are essentially degenerate. As opposed to η12, �12 is
vanishing at VB = 0 because of distinct parities of ψ1 and ψ2.

E. Asymmetric well: Unmatched left and right
inner barrier heights

In this section, we turn to an intrinsically asymmetric triple
well, in which the left inner-barrier height δ2 is not matched
with the right one δ′

2 [Fig. 1(b)]. In Fig. 6(a), we show the
zero-bias self-consistent potential V and wave function pro-
files ψν for an asymmetric well with δ2 = 0.34 eV and δ′

2 =
0.17 eV. Even at zero bias, we find that the wave functions

FIG. 5. Back gate VB dependence of interband Rashba ημν [(a)–
(c)] and Dresselhaus �μν [(e)–(f)] SO couplings for symmetric triple
wells at several values of inner-barrier height with δ2 = δ′

2 = 0.17,
0.34, and 0.52 eV, where the equal height for left (δ2) and right (δ′

2)
inner barriers ensures that the overall system is symmetric at zero
bias [see Fig. 1(b)]. In (d), the inset illustrates spatial distributions
of ψ1 and ψ2 for the triple well with δ2 = 0.1 and 0.52 eV at VB =
0.1 eV. The top gate is held fixed at VT = 0 in the whole gate range
of VB considered.

of the three subbands, ψ1, ψ2, and ψ3, are mostly localized
in the right, left, and central local wells, respectively, due to
the intrinsic asymmetry between the left and right local wells.
This is in stark contrast to the scenario for the symmetric
well at VB = 0, where either ψ1 or ψ2 has similar spatial
distributions in the left and right wells; cf. Figs. 1(c) and 6(a).
Interestingly, by tuning the back gate potential, we achieve a
seemingly symmetric configuration at VB ≈ 0.03 eV, as shown
in Fig. 6(b), in which ψ1 and ψ2 are largely overlapped in the
left and right local wells.

Figure 6(c) shows how the subband energy levels εν evolve
as VB varies. Similar to the case of the symmetric well, we
also achieve the double band swapping by varying VB, i.e., the
crossing between ε1 and ε2 and the anticrossing between ε2

and ε3. Note that, since the well is now intrinsically asym-
metric, the crossing point does not take place at zero bias, in
contrast to the symmetric well; cf. Figs. 2(b) and 6(b). Instead,
the crossing point occurs at VB ≈ 0.03 eV, corresponding to
our triple well in the seemingly symmetric configuration em-
phasized above.

In Figs. 7(a) and 7(b), we show the intraband Rashba αν

and Dresselhaus βν SO couplings as functions of VB. Due
to the occurrence of the double band swapping, αν and βν

also exhibit features of double SO interchange when VB is
adjusted. However, because of the shift of the crossing point
from zero bias, remarkably we observe that α1 and α2 essen-
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FIG. 6. Self-consistent potential V and wave function profiles
of ψν for an asymmetric triple well with δ2 = 0.34 eV and δ′

2 =
0.17 eV, which embraces intrinsic symmetric breaking due to un-
matched δ2 and δ′

2 [see Fig. 1(b)], at VB = 0 (a) and 0.03 eV (b). The
labels “ν” (ν = 1, 2, 3) inside the well region mean where electrons
occupying the νth subband are localized, and the label “1+2” indi-
cates that electrons in the left and right local wells are predominantly
in states of both ψ1 and ψ2. (c) Back gate VB dependence of the
energy levels εν . The Fermi level is pinned at εF = 189 meV, and
the black (empty) circles indicate where the crossing between ε1 and
ε2 or the anticrossing between ε2 and ε3 takes place. The top gate
potential VT is held fixed at zero bias.

FIG. 7. Intraband Rashba αν (a) and Dresselhuas βν (b) and
interband Rashba ημν (c) and Dresselhaus �μν (d) SO coefficients
for the asymmetric triple well with δ2 = 0.34 eV and δ′

2 = 0.17 eV
as functions of VB. In (a)–(d), the inset shows a blowup of the
corresponding SO coefficients near the crossing point VB ≈ 0.03 eV,
in contrast to the symmetric well with the crossing point taking place
at zero bias; cf. Figs. 1(d) and 6(c). The black (solid) circles in
(a) and the inset indicate that α1 and α2 essentially vanish while α3

is nonzero, for which the system is under a seemingly symmetric
configuration illustrated in Fig. 6(b).

tially vanish while α3 is nonzero [see black circles in Fig. 7(a)
and its inset], in contrast to the symmetric triple well, where
all αν’s of the three subbands are zero at the crossing point.
Here the essential vanishing of Rashba coefficients of the first
and second subbands arises from the compensated symmetry
breaking between the external gate potential and the intrinsic
unmatched left and right inner barrier heights.

Concerning the interband Rashba ημν and Dresselhaus �μν

SO couplings, the corresponding gate dependences are shown
in Figs. 7(c) and 7(d), respectively. Near band-swapping
points, ημν and �μν exhibit either a resonant behavior or a
steplike jump with VB, similar to symmetric wells.

F. Energy dispersion of three-subband spin branches

Figure 8 shows the energy dispersion of distinct spin
branches for the three occupied subbands with both
intra- and interband Rashba SO terms. We mainly focus on
the two crossings at kx > 0 between adjacent subbands when
the interband SO terms (ημν) are absent, i.e., between the first
subband (upper branch) and second subband (lower branch)
and between the second subband (upper branch) and the third
subband (lower branch), respectively; see black circles in
Fig. 8(a). We reveal that the interband terms may maintain
the two crossings or give rise to avoided crossings, depending
on the relative signs of the intraband SO constants. More
specifically, when all the α’s of intraband terms have the same
sign, both of the two crossings remain even for finite ημν ,
with the crossing points shifted; cf. Figs. 8(a) and 8(b). In-
terestingly, when the sign of α2 is reversed, the two crossings
simultaneously turn to avoided crossings; cf. Figs. 8(b) and
8(c). The underlying physics is attributed to the fact that the
Rashba interband terms only couple different branches with
the same spin. Similar features occur for the energy dispersion
of multiband Dresselhaus SO terms (not shown). We should
emphasize that the energy dispersion becomes more complex
in the presence of both Rashba and Dresselhaus SO terms for
the three-level system. More work is needed to dig into these
features as well as the corresponding hybridized spin textures
among distinct spin branches.

G. Random Rashba SO contribution

In general, the intraband Rashba SO coupling in systems
with no structural inversion symmetry vanishes. However, the
Rashba coupling vanishes only on average and electrons are
still subject to a spatially fluctuating Rashba field [56,58],
i.e., a random Rashba term, which arises from fluctuations of
the concentration of dopant ions [56–58,66,67]. The random
Rashba effect is usually small in GaAs-based wells [12,33],
while it may become important in InSb narrow-gap semicon-
ductors [33], in which a large SO constant may potentially
enhance the random Rashba contribution.

We follow Ref. [56] and evaluate the averaged random
Rashba SO strength

√
〈α2

R〉 = e2ξ
√

πnd/4πεRd , with the
subscript R indicating the random contribution. Here e is the
electron charge, ε denotes the dielectric constant, Rd refers to
the distance from the doping region to the well center, and
ξ = ηH − ηw [12,33]. As electrons of the three subbands see
the same doping conditions, fluctuations of the Rashba cou-
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crossings anti-crossings(b)(a) crossings (c)

FIG. 8. Energy dispersions along kx ‖ [100] of an AlInAs/GaInAs triple well with δ2 = 0.17 eV, for α1,2,3 	= 0, ημν = 0 (a), α1,2,3 > 0,
η 	= 0 (b), and α1,3 > 0, α2 < 0 (c). In (a), double crossings at kx > 0 [65] occur when different subbands are decoupled (i.e., ημν=0); see
black circles. The two crossings may remain when all α’s have the same sign or both of them turn to avoided crossings when the sign of α2 is
reversed. The SO constants are chosen at VB = 0.1 eV [see Fig. 1(e)] and scaled up by two orders for visibility.

plings are assumed the same in both subbands, i.e.,
√

〈α2
1,R〉 =√

〈α2
2,R〉 =

√
〈α2

3,R〉. For our triple wells, the areal doping
density reads nd ∼ ρd ld = 8 × 1011 cm−2, where ρd = 3 ×
818 cm−3 is the three-dimensional doping concentration and
ld = 1 nm stands for the length of doping layers. This yields
a variation of the Rashba SO couplings

√
〈α2

ν,R〉 ∼ 0.14 meV
nm. Although the random contribution is much weaker than
the usual contributions α1 and α2 that we calculated for the
first two subbands, it is comparable to α3 for the third sub-
band; see Fig. 1(e). Note that, although the random Rashba
effect will not change the general SO features driven by the
band crossing and anticrossing, it may play an important role
in SO related applications, e.g., the state of persistent spin
helix [24,29–31], in which the Rashba and Dresselhaus SO
strengths have compensated strengths. Depending on specific
applications, one can enhance (quench) the random Rashba
effect by increasing (decreasing) the doping concentration
and/or by setting the doping region near to (distant from) the
well region [Fig. 1(a)].

IV. CONCLUDING REMARKS

Considering current research interest in multisubband
quantum systems, we have explored the Rashba and Dressel-
haus SO couplings in AlInAs/GaInAs triple wells subjected
to top (VT) and back (VB) gate potentials, allowing for flexible
triple-occupancy control for electrons. By performing a self-
consistent Poisson-Schrödinger calculation, we determine all
the relevant Rashba (Dresselhaus) SO terms of both intraband
αν (βν) and interband ημν (�μν) kinds in both structurally
symmetric and asymmetric wells.

For a structurally symmetric triple well, we achieve ei-
ther the band crossing or anticrossing accompanied by a
double band swapping, simply via adjusting VB. As a direct
consequence, a double SO interchange occurs as VB varies,
which is greatly fascinating for selective SO control among
distinct subbands in spintronic devices. Further, even near
the two band-swapping points, across which electrons occu-
pying the three subbands are redistributed among the three
different (left, central, and right) local wells (triple well),

detailed interchanging features of nonlinear SO control are
also contrasting, following from distinct coupling strengths
between involved subbands. Regarding the interband Rashba
and Dresselhaus SO contributions, ημν and �μν exhibit either
a resonant behavior or a steplike jump across band-swapping
points, depending on the parity and spatial distribution of
electron wave functions. By varying the barrier height of the
two inner barriers embedded to form triple-well configuration,
which is either structurally symmetric or asymmetric, we find
that the Dresselhaus SO terms exhibit much stronger depen-
dence on the engineered structures than the Rashba ones.
Interestingly, in the structurally asymmetric well, we realize
an intriguing seemingly symmetric configuration by varying
VB, in which the intraband Rashba terms αν for the first and
second subbands vanish, while for the third subband it is
nonzero, offering a handle for suppressing SO-induced spin
relaxation mechanisms in subband controlled systems. Our
results should stimulate experiments probing unusual SO fea-
tures in multiband and multiwell quantum systems and act as a
guide for more proposals designed for spintronic applications.
Two final remarks: (i) throughout the work we hold the top
gate fixed at zero bias and only adjust the back; a dual-gate
manipulation may offer more flexible multiband SO control
[68,69]; (ii) the Rashba and Dresselhaus interband SO terms
may yield new features of spin textures due to the crossings
and anticrossings of six spin branches. More work is needed
to investigate these possibilities.
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