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Structure and energetics of the elbows in the Au(111) herringbone reconstruction
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We study the structure of the threading edge dislocations, or “elbows,” which are an essential component
of the well-known herringbone reconstruction of the (111) surface of Au. Previous work had shown that
these dislocations can be stabilized by long-range elastic relaxations into the bulk. However, the validity of
the harmonic spring model that had been used to estimate the energies of the dislocations is uncertain. To
enable a more refined model of the dislocation energetics, we have imaged the atomic structure of these
dislocations using scanning tunneling microscopy. We find that the harmonic spring model does not adequately
reproduce the observed structure. We are able to reproduce the structure, however, with a two-dimensional
Frenkel-Kontorova (FK) model that uses a pairwise Morse potential to describe the interactions between the
top layer Au atoms on a rigid substrate. The parameters of the potential were obtained by fitting the energy of
uniaxially compressed phases, or “stripes”, computed with density functional theory, as a function of surface Au
density. Within this model, the formation of the threading dislocations remains unfavorable. However, the large
forces on the substrate atoms near the threading-dislocation cores, render the assumption of a completely rigid
substrate questionable. Indeed, if the FK parameters are modified to account for the relaxation of just one more
atomic layer, threading dislocations can, in principle, become favorable, even without bulk elastic relaxations.
Additional evidence for a small elbow energy is that our computed change in the Au(111) surface stress tensor
caused by the (

√
3 × 22) reconstruction is considerably smaller than previous estimates.

DOI: 10.1103/PhysRevB.104.165425

I. INTRODUCTION

The uppermost atomic layers of surfaces and thin films
are often reconstructed to have densities different from the
bulk crystal. These density modifications can take the form
of well-defined misfit dislocations [1]. Such dislocations are
important, for example, because of their propensity to change
the chemical reactivity of the surface. Indeed, adsorption can
even rearrange the dislocations and change their topology and
so they are inherent to surface chemical reactivity [2]. Because
of their increased ability to enhance surface chemical reactiv-
ity, dislocations that locally modify the coordination of atoms
are of particular concern. On close-packed surfaces these are
“threading” dislocations [1], whose cores run vertically (or
“thread”) from the surface through the atomic layer(s) with
defective in-plane coordination towards the uppermost atomic
layer — often the second layer — that preserves the bulk’s
sixfold in-plane coordination. Although frequently observed
[3], current understanding of what determines structure, ener-
getics, and occurrence of these threading dislocations is still
rudimentary. The “elbow” dislocations of the much studied
[4–11] herringbone reconstruction of Au(111) are a case in
point. Figure 1 shows a schematic of the herringbone recon-
struction and its various components. Regions I and II are
uniaxially compressed in the direction perpendicular to the
respective dislocation lines (bright bands in Fig. 1), producing
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a (
√

3 × 22) cell with two atoms added to the 44 atoms of the
unreconstructed surface. These regions preserve the sixfold
coordination of each surface Au atom with its neighboring
surface atoms. Regions III and IV contain elbows, which sepa-
rate two of the three orientations of the uniaxially compressed
(
√

3 × 22) phase. An essential feature of the elbows are the
above-mentioned threading edge dislocations, whose cores
run vertically from the surface through the top atomic layer
towards the second layer, which in Au(111) is the uppermost
atomic layer with bulklike in-plane coordination. These elbow
cores can be thought of as endpoints of atom rows inserted
into the top layer, producing the Burgers circuits with nonzero
Burgers vectors marked blue in Fig. 1. Since the atoms in their
core regions are arranged in non-close-packed configurations,
such structures are expected to be energetically costly and the
reason for their existence is not immediately clear.

The structure of the (
√

3 × 22) phase in region I and II
is well understood. Atoms at the surface lower their energy
by being closer to each other than in the bulk, resulting in
a higher density of the surface layer compared to the unre-
constructed atom layers beneath. The additional surface atoms
are most easily accommodated in two-fold coordinated bridge
sites separating regions of fcc and hcp stacking, as shown in
Fig. 1. The stripes can be thought of as pairs of Shockley
partial dislocations [1]. The width of the hcp region depends
on the energy cost of the hcp sites compared to the fcc sites.
Since interatomic separations in the stripes are still compara-
tively large in the direction parallel to the stripes, the surface,
in principle, could lower its energy by contracting in this
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FIG. 1. Schematic of the herringbone reconstruction. Regions I
and II are two rotationally equivalent domains of the (

√
3 × 22)

striped, or soliton phase. Regions III and IV are two types of thread-
ing edge dislocations.

direction as well. However, to do so would require a fraction
of the top layer atoms to occupy very unfavorable sites on the
atom layer beneath.

Narasimhan and Vanderbilt [11] used a two-dimensional
(2D) Frenkel-Kontorova (FK) model to describe the atomic
structure of the elbows in regions Regions III and IV. In
their model, a harmonic spring potential is assumed between
top layer atoms on a rigid substrate. Because of the large
energy cost of the elbows in this 2D model, they proposed
that large bulk relaxations, which can occur underneath the
boundaries between regions of different surface stress, are
needed to stabilize the elbows of the herringbone reconstruc-
tion. These relaxations can lower the surface energy enough
to compensate for the energy cost of creating the defects at
the core of the threading edge dislocations. The herringbone
reconstruction could thus be understood as an example of
spontaneous stress-domain formation, with the lines connect-
ing the cores of the threading edge dislocations representing
the domain boundaries. However, the energetic model of the
dislocations (as warned in Ref. [11]) is potentially unreal-
istic, in that it assumes a simple spring interaction between
atoms. One thus might question the conclusion that substrate
relaxations are necessary to stabilize the threading disloca-
tions, especially because for some systems, models that do
not include substrate relaxations have predicted threading dis-
locations to represent the ground state. For example, Hamilton
and Foiles [12], using a strictly 2D model of strained Cu films
on Ru(0001), find that a trigon phase, composed of threading
dislocations in a triangular arrangement, is favored over the
striped phase. Thus threading dislocations can be stable even
without substrate relaxations; their stability will depend on the

exact FK parameters, motivating a refined calculation of their
values.

Another uncertainty is the validity of the FK model itself.
The FK model has provided many valuable insights into the
mechanisms of surface reconstructions because of its con-
ceptual simplicity (see, e.g., Ref. [13]). However, its crude
implementation of interatomic interactions can potentially
miss important physics. Of particular concern here is how
the substrate is assumed to apply a (corrugated) potential to
the top-layer atoms. The parameters describing this potential
are usually obtained by assuming that the atoms below the
top layer are fixed in their unreconstructed positions. This as-
sumption is only reasonable if top-layer atoms at the positions
predicted by the FK model exert forces on the underlying
substrate that would only cause negligible distortions in the
atom layer underneath the top layer. For the Shockley partial
dislocations in Fig. 1 this is reasonable (as we will show);
however, for the elbows the validity of this assumption is
uncertain, especially given the hypothesized importance to
their stability of long-ranged bulk elastic distortions.

To buttress the development of a robust model we have
examined the atomic structure of the cores of the thread-
ing dislocations with scanning tunneling microscopy (STM).
Two phenomena make these observations difficult. First, these
cores are well known sinks of impurity atoms [6]. Second,
they can be mobile as Au adatoms can rapidly exchange in
and out of them, even at room temperature. As reported below
we are able to overcome these challenges and, using scanning
tunneling microscopy, report on the detailed structure of one
of the two types of threading dislocation, significantly im-
proving on the early observations of Refs. [6,10]. We show,
indeed, that the simple spring model cannot reproduce the
observed structure, and develop a more refined model that can.
The refined model yields elbow energies that are lower than
that of the simple spring model, but still increase the energy.
However, we argue that if one considers substrate relaxations
in the layer below the surface layer, the elbow dislocation
energy decreases significantly: such relaxations (which cannot
be described by bulk elasticity theory) are needed to account
accurately for the stability of the herringbone reconstruction.

II. EXPERIMENT

Exceedingly small amounts of surface impurities, on the
order of 0.01 monolayers or less, can have a strong ef-
fect on structure and energetics of the herringbone if they
are mobile enough to migrate and attach to the threading-
dislocation cores [6]. As typically seen in early stages of
preparing the Au(111) surface, and systematically studied on
another herringbone system, Ag/Ru(0001) [2], trace amounts
of impurities that preferentially bind to the dislocation cores,
can prevent the formation of or destroy a well-ordered peri-
odic herringbone-reconstructed surface. To overcome these
impurity issues, we cleaned the Au sample extensively via
multiple cycles of ion bombardment (Ar+, 1 keV) and anneal-
ing to ≈800 ºC. Figure 2(a) shows a large-scale image of the
resulting well-ordered structure. Figure 2(b) shows an atomic-
resolution image of the threading dislocation core denoted IV
in Fig. 1. These images were acquired with a low temperature
STM (manufactured by CreaTec Fischer & Co. GmbH) at
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FIG. 2. (a) A large-scale STM image (155 nm × 127 nm) of
the herringbone reconstruction. Imaging parameters: sample bias
Vt = 0.7 V; tunneling current It = 500 pA (b) An atomic-resolution
image (16 nm × 16 nm) of the area surrounding region IV of the
reconstruction. Vt = −1.7 V; It = 300 pA.

liquid He temperature. At the chosen imaging parameters,
sample bias |Vt| � 0.5 V and tunneling current It � 500 pA,
the gap between STM tip and sample is large enough to avoid
tip-induced surface modifications, as evidenced by the lack
of image frizziness at the delicate dislocation core. Atomic
coordinates were extracted by manually estimating the centers
of the small surface protrusions. Distances were calibrated via
comparison with the spacing between atom rows along the
�3 direction parallel to the Shockley partial dislocation lines.

FIG. 3. (a) A schematic showing the atomic displacements we
have measured to characterize the dislocation shown in Fig. 2(b). The
small red circles represent the positions of the uppermost substrate
atoms. (b) Plots the x component of the displacement. The solid line
is a fit to a hyperbolic tangent. (c) Plots the y component.

To characterize the elbow structure quantitatively, we de-
termined the vector d separating neighboring Au atoms
through the dislocation core. A schematic of this vector is
shown in Fig. 3(a). Figures 3(b) and 3(c) plot the two compo-
nents of the displacement vector d as a function of distance
from the core. These results are the average of the measure-
ments from the two cores depicted in Fig. 2(b). Scan direction
and shape of the STM tip inevitably introduce some asym-
metry into the imaging process, causing a subtle difference in
appearance between the bottom left half and top right half of
Fig. 2(b). This small imaging artefact, however, does not seem
to have a significant effect on the measured displacements dx

and dy, which both exhibit the expected symmetry around the
dislocation core. To quantify the width w of the dislocation
core we fit dx to the form

dx =
(a

2

)
tanh

( n

w

)
,

where n counts the number of atoms from the dislocation core.
The fit gives w = 3.6 ± 0.5.
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Our goal is to construct a model that reproduces the mea-
sured structure including this value of the dislocation-core
width to enable an accurate estimate of the energy of the
elbows.

III. FRENKEL-KONTOROVA MODEL OF Au(111)

First we consider the 2D FK model of Au(111) used by
Narasimhan and Vanderbilt [11]. The energy in the FK model
is the sum of a substrate potential Vs and interaction U be-
tween Au atoms in the top layer:

E =
∑

i

[
Vs(ri ) + 1

2

∑
j

U (di j )

]
, (1)

where ri is the position of the i’th Au atom, and di j is the
distance between atoms i and j.

The substrate potential is taken to be the minimal sum of
Fourier components that gives the energy of a (1 × 1) layer
in the hcp sites, bridge sites, and atop sites to be eh, eb,
and et higher per atom than a (1 × 1) layer in the fcc sites,
respectively. This sum is

Vs(x, y) = V0 + (3eb + et )

4
− (eh − 2et )

9

[
2 cos (2πx) cos

(
2πy√

3

)
+ sin

(
4πy√

3

)]

+ (4eh − 9eb − et )

36
[cos(4πx) + 2 cos(2πx) cos(2π

√
3y)]

+ 2
√

3eh

9
sin

(
4πy√

3

)[
cos (2πx) − cos

(
2πy√

3

)]
. (2)

Here and below all distances are given in units of the Au
bulk nearest neighbor distance a = 2.884 Å. The offset V0 is
fixed by the requirement that adding one (1 × 1) layer in the
fcc sites increases the number of bulk layers by one. Defining
the zero of energy of Au atoms to be the energy per atom thus
requires that E (1 × 1) = 0 (and thus V0 = −3U (1) if U(r)
only connects nearest neighbor atoms).

Following the first-principles calculations of Takeuchi,
Chan, and Ho [14], Narasimhan and Vanderbilt took eh, eb,
and et to be 12.3, 42.2, and 187.7 meV, respectively. The
interactions between Au atoms in the surface layer are as-
sumed to be simple springs with an interaction of the form
U (d ) = k(d-b)2/2, connecting each atom to its six nearest
neighbors. To reproduce the experimentally observed struc-
ture of the striped phase, k was taken to be 10.173 eV; and b
was chosen to be 0.961997.

We have used this model to determine the predicted atom
positions in the dislocation elbows. We used a (14

√
3 × 102)

herringbone unit cell containing 2992 Au atoms, as depicted
in Fig. 1. To create the striped and herringbone phases, we
inserted rows of atoms into the (1 × 1) surface and relaxed the
atom positions using the conjugate gradient method. Figure 4
shows the resulting displacement vectors of the computed el-
bow structure. Fitting a hyperbolic tangent to dx yields a value
of w = 2.1 for the width of the dislocation core, significantly
smaller than the experimental result of 3.6 ± 0.5 in Fig. 3.
Furthermore, the variation of dy is qualitatively different from
the experimental result, as revealed by comparing Fig. 4(b)
with Fig. 3(c).

Using this 2D model, Narasimhan and Vanderbilt conclude
that the herringbone reconstruction is ∼0.97 eV per herring-
bone unit cell higher in energy than the striped phase because
of the presence of the two elbows (we have recomputed this
energy with our slightly different sized cell, and find an energy
difference of 0.93 eV), and thus argue that 3D stress domain
relaxations are necessary for the stability of the herringbone
structure.

However, the validity of this estimate of the elbow energy
is uncertain, given how poorly the spring model reproduces
the dislocation structure within the core of the herringbone
elbow threading edge dislocations, where each atom does not
obviously have six neighbors. Because of the large variety of
local atomic environments in the threading dislocation core,
creating a realistic model is a difficult problem. We approach

FIG. 4. Variation of the two components of the displacement
vector described in Fig. 3(a) for the harmonic FK model. The x
component is shown in (a), the y component in (b).
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this challenge by designing an interatomic potential for the
FK model that behaves more realistically in highly distorted
regions, guided by comparison with ab initio calculations of
several different surface configurations involving stretched
and compressed bonds. Assuming springs between widely
spaced atoms is clearly problematic because interatomic inter-
actions should eventually decrease with increasing separation.
Also, harmonic springs severely underestimate the energy cost
of moving atoms very close together, yielding unrealistically
dense regions at the dislocation cores. To construct a more
reasonable model, following Refs. [15,16], we have used a
Morse potential defined by

U (r) = −V0 + V0(1 − exp (−α(r − a0)/a0))2. (3)

To fit the parameters, we adopted the following strategy.
We computed the surface energy of uniaxially compressed
(striped) phases as a function of their density using den-
sity functional theory (DFT) as implemented in the VASP

code [17–19]. We used the exchange-correlation functional of
Perdew-Burke-Ernzerhof (PBE) [20]. Our calculations were
performed for slabs of seven (111) layers and at least 12 Å
of vacuum. Atoms in the bottom three layers were held fixed
at their bulk equilibrium positions. Dipole corrections were
applied to account for this asymmetry of the slab. Surface cell
sizes ranging from (

√
3 × 10) to (

√
3 × 30) were considered.

We used a (9 × 2 × 1) k-point and a 700 eV plane-wave
cutoff. Forces were relaxed to be less than 0.001 eV/Å. Con-
vergence with respect to all of these parameters was carefully
checked. In particular, the results are not sensitive to the exact
number of relaxed substrate layers: the difference in energy
between keeping the substrate fixed and relaxing three sub-
strate layers was small; around 1 meV or less per surface atom
in all of the studied cell dimensions [21].

First, we find that placing an (unstrained) top (1 × 1) layer
in hcp, bridge and atop sites yields energies that are 9.8
and 33.0 and 150.1 meV higher than a (1 × 1) layer in the
fcc sites (roughly consistent with the corresponding numbers
from Takeuchi, Chan and Ho cited above).

We then modeled the uniaxially compressed structures,
similar to the approach reported in Refs. [22–24]. The range of
periodicities, p, was chosen to capture the range of interatomic
distances near the threading edge dislocation core. The DFT
results are shown in Fig. 5. The surface energies are smaller
than that of the unreconstructed (1 × 1) phase, consistent
with the stability of reconstructed phase. The periodicity with
minimum surface energy is 17a, in rough agreement with the
experimental value of ∼22.5a at 300 K [4].

To determine the Morse potential parameters V0, α, and
a0 we calculated the relaxed energy as a function of p for a
discrete set of these parameters. Relaxations were performed
with the conjugate gradient method, starting from uniformly
compressed configurations. We created an interpolated func-
tional form for the relaxed energy as a function of V0, α, and
a0 using cubic splines. To determine the optimal values of V0,
α, and a0, this interpolated functional form was fitted using a
least-squares method to the corresponding energies computed
with DFT. As shown in Fig. 5, the fit is satisfactory and results
in V0 = 333.173 meV, α = 2.9794, and a0 = 0.9564. (We
find, not unexpectedly, a purely harmonic potential, cannot
reproduce this dependence).

FIG. 5. The surface energy of the uniaxially compressed phase as
a function of stripe periodicity p. The black points are results from
using density functional theory. The red points are the result of a fit
using the Morse potential described in the text. The surface energies
are given in units of energy per the (1 × 1) unit cell of the substrate.

As a further check on the ability of the 2D FK model with
the Morse interatomic potential to describe the surface, we
compared the structure of the uniaxially compressed phases
obtained from DFT to those from the FK model. The plots
in Fig. 6 reveal that the atom positions derived with the FK
model match those obtained from DFT very well.

Finally, we compare the structure of the elbow computed
using our FK model (Fig. 7) with that of the experiment
mentioned above and shown in Fig. 3. Our improved FK
model now reproduces atomic displacements accurately; the
hyperbolic tangent fit gives the elbow width w = 3.7, com-
pared to the experimental value of 3.6 ± 0.5. (We note that
the FK model does not reproduce well the surface stress. But
as previously pointed out in Ref. [11], this is not unexpected
because the surface stress necessarily involves processes that
distort the substrate, which FK models treat as rigid).

IV. ENERGIES INVOLVED IN THE HERRINGBONE
RECONSTRUCTION

After having demonstrated that our FK model can accu-
rately reproduce the DFT values for the atom positions and
energy of the stripe phase, as well as the dislocation-core
width measured with STM, we will now use this model, with
some confidence, to examine the energy of the full herring-
bone reconstruction, which is currently beyond the reach of
DFT due to the large unit cell size. To this aim, we computed
the sum of formation energy of the two sorts of threading edge
dislocations at the herringbone elbows. This sum is defined
as the difference between the energy of the herringbone unit
cell and the energy of an equal area of the striped phase. We
computed the total formation energy of a pair of the elbow
threading edge dislocations, i.e., one “III” type and one “IV”
type elbow (see Fig. 1), Eelbow, by comparing the energy of
our (14

√
3 × 102) herringbone cell containing 2992 Au atoms

with 2992 atoms in a stripe phase of the same density (i.e., one
with a (

√
3 × 21) cell). We find Eelbow is still large: 0.77 eV, al-

beit somewhat less than the value 0.93 eV determined with the
harmonic model. Of course the DFT PBE density functional
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FIG. 6. The displacements of the uniaxially compressed phase
computed using density functional theory (black) compared with the
predictions of the fitted Morse potential (red). �x is the x component
of the separation between adjacent atoms.

on which our estimate is based has well-known deficiencies
(such as underestimating the cohesive energy of Au by 20%
[25]). However, our result seems robust: varying V0, α and
(1−a0) by 10% never decreased the sum of the elbow energies
by more than 0.15 meV. Thus, despite the highly inaccurate
description of the dislocation core structure of Narasimhan
and Vanderbilt, these results support their conclusions that
substrate relaxations as described by stress domain theory
enable the herringbone reconstruction i f the 2D FK model
is an accurate description of the energetics of the top atomic
layer.

Stress domains are expected to form spontaneously when
surface relaxations caused by mismatches in surface stress
lower the energy by more than the cost of creating bound-
aries between the stress domains. In this case, the boundaries
consist of the lines along the y direction connecting the
cores of elbows of the same type, i.e., either those of re-
gion III or region IV in Fig. 1. The mismatch in surface
stress across the boundaries is proportional to the difference
between the components of the surface stress tensor in the
direction perpendicular (σ⊥ = σyy) and parallel (σ‖ = σxx) to

FIG. 7. The structure the 2D FK model predicts for the core of
the threading edge dislocation. (a) Comparison of the x component
of the separation between Au atoms along rows on either side of the
dislocation core with experiment. The fit to the hyperbolic tangent
gives w = 3.7. (b) y component.

the x axis in Fig. 6(a). To estimate the herringbone periodicity,
Narasimhan and Vanderbilt used various approximations to
estimate σ⊥ − σ‖ = 105 ± 20 meV/Å2. We have used DFT
to compute the surface stress as a function of the periodicity p
of the striped phase and plotted the result in Fig. 8. (The sur-
face stresses were determined by comparing the elastic stress
tensors of slabs with and without the surface reconstruction).
When p = 17, the equilibrium value of our DFT calculation,
σ⊥ − σ‖ is only 44 meV/Å2. Such a low value for the stress
difference has a significant consequence for the predictions
of stress-domain theory [11] for the equilibrium width of the
stress domains, i.e., the distance between elbows l0 along the

FIG. 8. The variation of the components of the surface stress
tensor computed with DFT as a function of stripe periodicity p.

165425-6



STRUCTURE AND ENERGETICS OF THE ELBOWS IN … PHYSICAL REVIEW B 104, 165425 (2021)

FIG. 9. Each point represents the position, computed with our
FK model, of an individual atom in the neighborhood of region IV
with respect to the atoms in the unreconstructed second layer (black
solid circles). The red and green points mark the positions of the
atoms connected by the arrows in Fig. 3(a); the red points represent
the lower row of atoms (i.e., those with smaller y), the green points,
the upper row.

x direction:

l0 = πad exp

[
1 + Eelbow

2ly

8π

3

μ

(σ⊥ − σ‖)2

]
,

where ly is the distance between elbows in the y direction
(14a

√
3 in our model), μ (203 meV/Å3) is given by a com-

bination of elastic constants as specified in Ref. [11] and ad

is the width of the domain walls (estimated by Narasimhan
and Vanderbilt to be 3a to 8a, consistent with our value of the
elbow width w = 3.7). Using the computed values for these
parameters, the predicted value of l0 would be in the range of
7000 to 19000 Å, much greater than the experimental value
of ∼150 Å. (The model of Narasimhan and Vanderbilt gives
a range of 140 to 980 Å). To correct this discrepancy would
require Eelbow to be 0.11 eV, much smaller than our FK-based
estimate of 0.77 eV. We now discuss possible reasons for this
discrepancy.

The improved FK model used here still has many un-
realistic features. One feature of particular concern is what
happens when surface atoms are displaced towards atop sites.
In the uniaxially compressed (

√
3 × 22) region, as inspection

of Fig. 1 shows, the surface atoms are approximately located
on a line connecting the fcc, bridge, and hcp sites, and dis-
placements towards the atop sites are small. This situation
is distinctly different for the elbow dislocations. The impor-
tance of the atop energy is seen graphically in Fig. 9, where
the (FK model-derived) positions of the surface atoms with
respect to the substrate atoms are plotted. (Only one elbow
type is shown; the other exhibits similar behavior). Clearly,

FIG. 10. The black points represent DFT energies of surface
atoms displaced along a line in the y direction connecting fcc, hcp,
bridge, and atop sites, when the positions of the substrate atoms are
fixed. The red points show the corresponding energy values when the
atoms beneath the substrate atoms are allowed to relax. The black
curve is the fit of Eq. (2) using the calculated values of the fcc, hcp,
bridge, and atop site energies. The red curve is the result of Eq. (2)
assuming an atop energy of 46 meV.

the atoms near the core are displaced towards the atop site;
thus, lowering the atop energy would decrease the dislocation
core energy.

Because of their displacements towards the atop sites, the
atoms in the elbow dislocation cores create forces in the y
direction on the substrate. The long-ranged elastic relaxations
of the substrate caused by such forces (as discussed above) can
lower the energy sufficiently to stabilize the elbows. However,
the existence of these forces also imply that the situation
envisioned by the FK model, surface atoms displaced on a
rigid substrate, might become unrealistic in the dislocation
cores: the forces will necessarily cause the substrate atoms to
be displaced vertically as well as laterally as surface atoms are
moved towards the atop sites. The parameters for the substrate
potential [Eq. (2)], et , eb, and eh, are DFT energies of highly
symmetric configurations which undergo only negligible lat-
eral displacements during relaxation, and might thus not be a
proper gauge of the energy cost of lateral displacements away
from high-symmetry sites. In fact, the uppermost substrate
atoms (directly below the surface atoms) might shift relatively
easily from fcc sites towards hcp sites, as they do for the
surface relaxations in the stripe phase, thus lowering the en-
ergy cost of shifting the atoms directly above them in the same
direction (which would be towards on top sites). To estimate
the importance of this effect, we recalculated the substrate
corrugation of Eq. (2) in DFT by allowing the uppermost
substrate atoms to relax. In Fig. 10, the result (red points)
is compared with the rigid substrate (black points) along a
line in the y direction connecting fcc, hcp, bridge, and atop
sites. Clearly the substrate relaxations lower considerably the
energy of displacing atoms towards the atop sites.

Given these shortcomings it is clear that our FK model has
overestimated Eelbow. This prompts us to explore the possibil-
ity mentioned in the Introduction, that the elbows could, in
principle, have negligible or even negative formation energies
within a FK model. To probe how much our model would need
to be modified to obtain a small formation energy, we varied
the atop site energy in the FK model. For each value of the
atop energy we refitted the parameters of the Morse potential
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FIG. 11. The formation energies of an elbow pair as a function
of the atop energy in the FK model. The dashed line is a guide to the
eye.

to the DFT results and recomputed the dislocation core forma-
tion energies. The result is shown in Fig. 11. The elbow for-
mation energies become small when the atop energy becomes
small. Presumably, a small atop energy (positive) can be over-
come by the energy gain (negative) due to biaxial relaxion in
the surface layer near the dislocation core, favoring elbowed
regions over striped regions, which are only uniaxially re-
laxed. Figure 11 shows that the dislocation formation energy
becomes negative when the atop energy is around 46 meV,
considerably smaller than the DFT estimate of 150 meV.

Indeed, as shown by the red curve in Fig. 10, the energy
cost of the displacements is reasonably described by Eq. (2)
with an energy of et = 46 meV, the value of the atop energy
needed to make the formation energy of the elbow dislocations
zero (see Fig. 11). The x and y displacements of the atom
positions through the elbow are relatively insensitive to the
choice of et : the fitted w merely changes from 3.7 to 3.9, still
consistent with experiment (w = 3.6).

Thus, by adjusting the FK substrate parameters to ac-
count for the relaxation of just one atom layer below the
surface layer, we arrive at a vanishing formation energy for
the herringbone elbows and a structure still consistent with
experiment. Because the atoms surrounding the elbow con-
strain the amount of second-layer relaxation, this procedure
overestimates the effect of subsurface relaxation. For exam-
ple, Fig. 3(a) shows that while the surface atoms in the
compressed region of the elbow are displaced (downwards
on the page) toward the atop sites of the subsurface atoms
(red circles), the less dense regions, on the page above the
elbow, are displaced in the opposite direction (albeit by much
smaller amounts, as shown in Fig. 9). Thus, a rigid shift of
the substrate atoms as envisioned by Fig. 10 would not lower
the energy everywhere. Mitigating this effect are relaxations
in deeper substrate layers. Evidently, determining the elbow
energy precisely would require a three-dimensional model
that can accurately reproduce the subsurface structure in a way
that goes beyond elasticity theory.

There are still compelling reasons to suspect that stress
domain theory is important for understanding the herringbone

reconstruction. The density of elbows is determined by a bal-
ance between their formation energy and the strength of the
interactions between them. As the formation energy becomes
small and the equilibrium distance between elbows becomes
large, this balance becomes delicate and requires accurate
knowledge of the interaction at long distances. The long-
range nature of the interactions in the stress domain theory
still provides a compelling source of the interactions. How-
ever, interactions caused by the strain fields of near-surface
relaxations discussed above and the distortions in the Shock-
ley partial arrangement caused by the elbows would need to
be considered as well.

V. CONCLUSION

We have shown that a 2D Frenkel-Kontorova model,
appropriately parametrized, can reproduce in detail the ex-
perimentally determined atomic structure of a dislocation at
an elbow in the herringbone reconstruction. Computing the
energy of the elbow dislocations within the 2D model turns
out to be quite subtle, because the forces that the surface
atoms in the elbow dislocation apply on substrate atoms will
necessarily cause significant subsurface displacements. These
displacements will clearly depend on atomistic details and
thus require more than bulk elasticity theory to be calculated
accurately.

This conclusion is reinforced by our DFT calculations of
the surface stress tensor of the

√
3 × p (stripe phase) Au(111)

reconstruction. The computed surface stress anisotropy, which
according to stress domain theory would lead to the formation
of the herringbone reconstruction, is a factor of 2 smaller than
previous estimates. As we have shown, to explain the observed
herringbone periodicity, this would require an elbow energy
roughly a factor of 10 smaller that the simple 2D FK models
would predict. Our results indicate that this sort of decrease
could be created by relaxations of the second atomic layer.

The possibility of a low formation energy of threading
dislocations, such as the one we find for the Au(111) herring-
bone elbows, can account for their ubiquity in other systems,
especially in heteroepitaxy. Our results suggest that caution is
warranted in using the 2D FK model to predict the formation
of these dislocation: Despite the success of the FK models in
reproducing the overall structure and phase diagrams of metal
thin film surface structures, their use to quantify subtle energy
balances can be problematic.
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