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Conductance of a dissipative quantum dot: Nonequilibrium crossover near a non-Fermi-liquid
quantum critical point
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We find the nonlinear conductance of a dissipative resonant level in the nonequilibrium steady state near its
quantum critical point. The system consists of a spin-polarized quantum dot connected to two resistive leads
that provide ohmic dissipation. We focus on the crossover from the strong-coupling, non-Fermi-liquid regime
to the weak-coupling, Fermi-liquid ground state, a crossover driven by the instability of the quantum critical
point to hybridization asymmetry or detuning of the level in the dot. We show that the crossover properties
are given by tunneling through an effective single barrier described by the boundary sine-Gordon model. The
nonlinear conductance is then obtained from thermodynamic Bethe ansatz results in the literature, which were
developed to treat tunneling in a Luttinger liquid. The current-voltage characteristics are thus found for any
value of the resistance of the leads. For the special case of lead resistance equal to the quantum resistance, we
find mappings onto, first, the two-channel Kondo model and, second, an effectively noninteracting model from
which the nonlinear conductance is found analytically. A key feature of the general crossover function is that the
nonequilibrium crossover driven by applied bias is different from the crossover driven by temperature—we find
that the nonequilibrium crossover is substantially sharper. Finally, we compare to experimental results for both
the bias and temperature crossovers: the agreement is excellent.
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I. INTRODUCTION AND SUMMARY

This work addresses nonequilibrium properties of corre-
lated electrons in a nanofabricated system, one in which
dissipation causes the correlations, making it an open quan-
tum system with a non-Markovian environment. Correlated
electronic systems exhibit a wide variety of poorly understood
phenomena and remain a major challenge in contemporary
physics [1–3]. Sudden qualitative changes in the ground state
as a function of tuning parameters, called quantum phase
transitions, often occur [4–6]. At the transition—the quantum
critical point (QCP)—novel correlated states are observed:
these are typically referred to as “non-Fermi liquids” in that
they do not follow the Fermi-liquid paradigm for normal
metallic states. A common feature of most systems is that
the correlations are produced by operators (interactions) that
cause frustration and act locally. A thorough understanding of
systems in which correlating operators act in a single local
region is, then, an essential foundation—such a system is
known as a quantum impurity problem. The ground states
and equilibrium properties of many quantum impurity prob-
lems have been studied, including ones with quantum phase
transitions and associated QCP [6,7]. Perhaps the best known
are the Kondo problems (original, multichannel, and multi-
impurity); indeed, the Kondo model has inspired a myriad

*zhanggu217@gmail.com
†eduardo.novais@ufabc.edu.br
‡baranger@phy.duke.edu

of different physical problems and fundamental advances in
theoretical physics [7–10]. While the original isotropic anti-
ferromagnetic Kondo problem and related Anderson model
do not have a quantum phase transition (the ground state is
always a Fermi liquid), the two-channel Kondo (2CK) model,
for instance, does have a transition and associated QCP caused
by quantum frustration. In nanoscale systems, such correlated
electron physics, as well as nonequilibrium phenomena and
dissipation, all arise naturally and under conditions that can
be controlled.

The confinement of electrons to nanoscale objects en-
hances electron-electron interaction effects. Indeed, many
confined nanoscale structures are inherently strongly cor-
related many-body problems and exhibit counterintuitive
properties. The astonishing development in the construction
and characterization of low-dimensional quantum systems
over the last few decades has lead to exquisite control over
their parameters. As a result, the use of strongly correlated
nanoscale structures in nanoelectronics and spintronics is be-
ing pursued, which requires a fundamental understanding of
the interplay between transport properties and interactions.
Furthermore, the degree of control and quality of fabrication
in nanosystems gives rise to the possibility of engineered
interactions, making quantum simulation possible (see, e.g.,
Refs. [11–16]). As there are typically only a single or a few
active regions in nanoscale systems—which is where interac-
tions occur—they are natural quantum impurity problems.

Nonequilibrium phenomena readily occur in nanoscale
systems: a modest voltage applied to a nanoscale de-
vice results in a large field. Indeed, measurements of
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FIG. 1. The setup of the dissipative resonant level (DRL) model:
two leads, source (S), and drain (D), couple to a quantum dot (QD)
with hopping strengths tS and tD, respectively. The dissipative envi-
ronment is represented by an ohmic impedance R. Bias V is applied
between the two leads, and the quantum dot energy level is tuned by
the backgate voltage Vgate.

nonequilibrium current-voltage relations (I-V curves) are
ubiquitous [17]. Rapid time-dependent phenomena, such as
a quantum quench protocol in which system parameters are
suddenly changed, are harder to study in nanoscale systems,
but the recent hybrid microwave-nanoscale systems raise pos-
sibilities in this direction. More generally, nonequilibrium
many-body phenomena have attracted increasing attention
over the last decade but, compared to equilibrium or ground
state phenomena, are much less well understood [4,18–22].
Here, we focus on the nonequilibrium nonlinear I-V curve of
our nanoscale system.

Dissipation also occurs very naturally in nanoscale systems
as typically they are surrounded by many other degrees of
freedom, referred to as a bath or environment. Dissipation
and decoherence are usually to be avoided or at least mini-
mized. This is, however, not always the case, for dissipation is
known to trigger boundary quantum phase transitions through
the reduction of possible obstructions [23,24]. Our system is
indeed one in which dissipation is a key part of the quantum
impurity: it is an open many-body quantum system, a topic
of great current interest [25,26], with an environment that is
inherently non-Markovian.

The system we study is a quantum dot connected to re-
sistive leads through tunable tunnel barriers as sketched in
Fig. 1. The resistance of the leads, denoted R, creates an
ohmic dissipative environment [23,27], and the quantum dot
serves as the quantum impurity. The most remarkable feature
of this system is the existence of a frustration-induced non-
Fermi-liquid QCP: it occurs when both (i) a level in the dot
is resonant with the leads and (ii) the dot is symmetrically
coupled to them. Both of these properties can be fine-tuned
using gate voltages, enabling experimental access to the QCP.
At the QCP, which is of the 2CK type [23], the conductance
through the dot becomes perfect (e2/h at zero temperature)
while otherwise it tends to zero. We previously presented
several scaling relations, including non-Fermi-liquid scaling
measured as a function of temperature T for negligible bias
(i.e., in the equilibrium regime) [23,28], as well as nonequilib-
rium scaling at the QCP [29]. The presence of an interacting
QCP suggests viewing the problem through the lens of the

renormalization group (RG) [30]: below we discuss scaling,
relevant/irrelevant operators, and RG flows.

Related systems have been studied with similar methods,
and we make extensive use of previous literature. First, there
is a close connection between the system studied here and res-
onant tunneling (through a double barrier) in a Luttinger liquid
(LL), i.e., an interacting one-dimensional (1D) system. While
there is nothing explicitly 1D in our system, quantum impurity
problems are all effectively 1D because of the local nature
of the interaction operators. Indeed, tunneling in a resistive
environment has been viewed as a quantum simulation of
tunneling in a LL with repulsive interactions [12,21,23,28,31–
38]. In linear response, resonant peaks of perfect conductance
in a LL have been extensively studied theoretically [39–48].
There is a 2CK-like QCP separating weak-tunneling regimes
dominated by one of the tunneling barriers, either source or
drain [40,42,45].

Nonlinear I-V characteristics have been used to study the
interplay between nonequilibrium and many-body effects in a
variety of nanosystems [49–54]. Experimental systems stud-
ied include the Kondo effect in quantum dots, tunneling into
edge channels, and dissipative tunneling. Theoretically, in the
scaling regime in which I ∝ V α , the exponent α has been
frequently deduced from the scaling dimension of the leading
operators at the QCP (see, for example, Refs. [55,56]). For
resonant tunneling in a LL, for instance, the scaling power-law
was obtained in this way in early work [39,40]. A few full cal-
culations beyond the scaling exponent exist in the literature.
First, approximate numerical treatments have been employed
[57–62], though not of the model we study. Second, analytical
I-V curves have been obtained for the crossover from a QCP
to a Fermi liquid state for the two-impurity, two-channel, and
topological Kondo models [63–65]. These latter are particu-
larly relevant here and are discussed further below.

The main result presented here is the calculation of the
nonequilibrium nonlinear I-V curve of this dissipative reso-
nant level (DRL) model when the system is tuned very near
to but not exactly at the QCP. In this case, the renormaliza-
tion flow is first toward the full-conductance quantum critical
point (strong-coupling) but then veers away and ultimately
approaches the single barrier, low-conductance cut-wire fixed
point (weak-coupling), as illustrated in Fig. 2. That is, we
focus on the crossover from the strong-coupling to weak-
coupling behavior.

Crossover denotes the regime connecting two physically
distinct fixed points [6,66]. The properties of the system first
reflect being in the neighborhood of one fixed point (unstable)
and then at lower energy scales—reached by decreasing the
temperature or bias—come to reflect a second (stable) fixed
point. Examples of crossover behavior in nanoscale physics
include the connection between the strong and weak coupling
fixed points in a Luttinger liquid [67], the non-Fermi-liquid
and Fermi-liquid fixed points in a 2CK model [68], and the
free spin and screened spin fixed points in a spin boson
model. In the crossover regime, fluctuations in the system,
both quantum and thermal, strongly influence the many-body
interactions. An interesting aspect of crossover phenomena is
that they are less universal: different ways of introducing a
low energy scale, such as temperature versus bias, can yield
different results. For the simpler problem of tunneling through
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FIG. 2. (a) Schematic RG flow of the system with three fixed
points marked in red. Coupling strength near the decoupled-level
fixed point (with Hamiltonian given in Appendix A) increases with
the RG flow, driving the system towards the strong coupling regime
(indicated by the blue arrow) described by Eq. (10). Although the
system being close to the quantum critical point, in this regime, the
system asymmetry or detuning becomes important. At lower energy
scales, the system enters the crossover regime (the red arrow), and
flows towards the cut-wire fixed point at which the conductance
vanishes. All three fixed points can be distinguished by their impu-
rity entropy. (b) The corresponding flow in the phase diagram. The
system begins to enter the crossover regime near the quantum critical
boundary.

a single barrier in a LL, different crossover behavior as a
function of T or V has been connected [69] to different third-
order interaction contributions to the RG flow. For a resonant
system, however, treatment of this topic is still absent.

We find the I-V curve by showing how our system in
the crossover regime connects to the problem of tunneling
through a single barrier. Indeed, from the physical two barrier
system, an effective single barrier problem emerges at low en-
ergy in which left-moving particles tunnel into right-moving
ones and vice versa. We then use results for tunneling through
a single barrier in the presence of dissipation or interactions
[54,70,71]—in particular those of Fendley et al. [72–76]—to
find the I-V curve. This is plotted and compared to experimen-
tal measurements (see Sec. IV A): the agreement is excellent.

We emphasize that the strength of the dissipation is arbi-
trary, as is necessary to compare to experiment (for which
R ≈ 0.75h/e2). On the other hand, for a special value, R =
h/e2, the effective single barrier problem is noninteracting. In
that case, in contrast, analytic expressions for the I-V curve
are obtained [Eq. (13)]. This special case is similar to the
previous work done for the two-impurity, two-channel, and
topological Kondo models [63–65] in which exact nonequi-
librium crossover results were obtained for several interacting
quantum impurity models by finding mappings to effectively
noninteracting single-barrier problems. In our case, no such
mapping is known for R �= h/e2, forcing us to treat the inter-
acting problem.

Very recently, exact results for the interacting single-barrier
problem have been obtained for several special values of
the dissipation [77], using an approach quite different from
that in Ref. [74] on which our work is based. The exten-
sive comparison to experiment is impressive [12]. However,
in the interacting single barrier problem, the quantum phase
transition occurs when the interaction is tuned to zero [39],
implying that there is no quantum critical state but rather a

Fermi liquid. The crossover studied [12] is therefore from a
Fermi liquid to the low energy interacting state. In contrast,
the system here has an interacting QCP: there is first RG flow
toward a strong-coupling point and then away from it. This
allows us to study the crossover from one interacting problem
to another, which is the typical scenario for a quantum phase
transition.

A key feature of our result, I (V, T ), is that the dependence
on the applied bias V and temperature T is different. At first
sight, through the lens of RG, this seems counterintuitive:
both V and T introduce a low energy cutoff on the RG flow,
suggesting that the dependence may be similar. Indeed, in
the asymptotic regimes, when parameters are such that one
samples the behavior near only one fixed point (either one),
properties are controlled by the scaling dimension of the lead-
ing operator near that point and so the dependence on V or
T is identical. However, there is no reason that the crossover
function connecting these two asymptotic regimes should be
the same [12,39,69]. We calculate both crossover functions
and show, in good agreement with experiment, that in the
nonequilibrium case (bias dependence at T = 0) the transition
from one asymptotic behavior to the other is substantially
sharper.

The organization of the paper is as follows. We start in
Sec. II by presenting the physical system, the initial weak
link model, and the main features of the RG flow. Sec. III
contains the key derivation of the effective description near
the full-transmission (strong-coupling) quantum critical point.
In Sec. IV, the I-V curves are calculated and compared to
experiment. In addition, theoretical results for the special case
R = h/e2 are given. In Sec. V, we discuss our physical under-
standing of the difference between the bias and temperature
crossovers and the connection between the DRL and 2CK
models. Conclusions are presented in Sec. VI. Four appen-
dices contain some details: the initial system Hamiltonian
and bosonization for weak links (Appendix A), the mapping
to the noninteracting problem for R = h/e2 (Appendix B),
alternative plotting of the R = h/e2 results (Appendix C), and
the explicit mapping to the 2CK model (Appendix D).

II. THE SYSTEM: WEAK LINK MODEL AND
RENORMALIZATION

The system sketched in Fig. 1 has been implemented
using a carbon nanotube quantum dot contacted by Cr/Au
electrodes connected to Cr resistors to provide dissipation
[23,28,29]. The energy level spacing in the dot is large, and
a magnetic field is applied in order to spin-polarize the top
level in the dot. The resistance of the leads creates an ohmic
dissipative environment [27]. In Fig. 1, tS and tD denote
the tunneling amplitudes between the dot and the two leads
(source and drain). Experimentally, these two parameters are
tunable through side gates. The occupation number of the dot
can also be tuned through the effect of the gate voltage Vgate on
the energy of the top level in the dot. Finally, the source-drain
bias driving the nonequilibrium steady state is denoted V .

The strength of the dot-lead coupling (tS and tD) is small
experimentally: the system is in the weak link limit, which
is equivalent to a large tunneling barrier, and close to the
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(unstable) decoupled-level fixed point. The properties of the
system in equilibrium are well established; we summarize
them here and refer the reader to Appendix A for more detail
and explanation.

First, how does the environment enter the problem? The
dissipative environment is characterized by an electromag-
netic impedance which in our case is simply a resistance, R,
because the spectrum is ohmic. By dividing by the quantum
resistance h/e2, we introduce the dimensionless resistance to
characterize the environment, r ≡ Re2/h. It is natural then that
the environment is connected to the charge of the tunneling
electron. When the electron tunnels, the charge on the capaci-
tor formed by the tunnel junction shifts. This sudden change in
charge excites the electromagnetic environment. The dot-lead
tunneling amplitude is therefore accompanied by a charge
shift operator, which makes the tunneling contribution to the
Hamiltonian not quadratic. Thus effective interactions are
generated among the electrons, mediated by the environment.

We include only one level in the quantum dot and assume
the leads are noninteracting, which renders the problem math-
ematically one dimensional [8,71]. The explicit connection
between tunneling in the presence of an environment and
LL physics is made through the relation g = 1/(1 + r) be-
tween the LL interaction parameter g and our dimensionless
resistance r [23,34,37,78,79]. The interaction of the tunneling
electrons with the environment causes a renormalization of the
system parameters because of the effective electron-electron
interaction. RG flow occurs as quantum fluctuations in the
environment on lower and lower energy scales are taken into
account [30]. Experimentally, RG flows are related to changes
in observed properties as a function of temperature (or applied
bias in the nonequilibrium case) and have been measured in a
few cases [80–83].

In the results reported here, we focus on the regime r � 1
in order to avoid situations in which the charge on the dot is
localized [84]. We assume that the junctions between the dot
and the leads have the same capacitance, though the tunneling
amplitude can differ (they are electrically symmetric but not
necessarily quantum mechanically symmetric). This means
that the environmental effect of a tunneling event from the
source lead is the same as that to the drain.

Previous work has shown that if the system is tuned such
that it is both on resonance and symmetric in tunneling,
tS = tD, then renormalization causes the effective tunneling
between the dot and the leads to grow (barriers get smaller)
[23,28,78]. The system is described by an RG fixed point in
which the dot is strongly hybridized with both leads and the
source-drain transmission probability is unity, its maximum
possible value. We refer to this as the full-transmission or
“strong-coupling” fixed point.

In contrast, if the system is either off resonance or
asymmetric in dot-leads tunneling, then the modes of the en-
vironment suppress tunneling, as one would normally expect
of a dissipative environment. Renormalization (in most cases)
causes an initially off-resonance level in the dot to become
more off resonance, eventually becoming either completely
filled or completely empty. Likewise an initial asymmetry
tS �= tD grows such that the dot is incorporated into one of
the leads while the link to the other lead is cut. The RG flow
ends at a zero transmission (zero conductance) fixed point

corresponding to a cut wire—two disconnected, semi-infinite
1D wires [85].

Here we suppose that the system is tuned very close to but
not exactly at the resonant-symmetric condition. There is a
small detuning from resonance and/or a small asymmetry in
the dot-leads tunneling. The RG flow, shown schematically
in Fig. 2, is then initially toward the full-transmission strong-
coupling quantum critical point, where the renormalized level
width is larger than the renormalized detuning. Once in the
vicinity of the strong-coupling point, however, the small en-
ergies associated with the detuning come into play. There is a
second stage of renormalization in which the flow is from the
full-transmission to the cut-wire fixed point. The main goal
of this paper is to describe transport through the quantum dot
during this crossover from strong to weak coupling.

III. EFFECTIVE DESCRIPTION NEAR FULL
TRANSMISSION (STRONG COUPLING)

To carry out our program, we need a model of the sys-
tem near the full-transmission fixed point. Because the link
between the dot and leads strengthens according to the initial
RG equations that apply near the decoupled-level fixed point
(see Appendix A), it is reasonable to assume that the initial
weak-link model connects to the case of two small barriers
in a 1D wire. Indeed, the constraint that the fixed point must
be conformally invariant implies a certain universality and so
freedom to choose a convenient starting point for the strong-
coupling description [56,86,87].

We therefore start with 1D noninteracting fermions de-
scribed by right- and left-moving fields ψR(x) and ψL(x) with
Fermi velocity set to one and add a static potential barrier con-
sisting of two δ-functions at x = ±�/2. The most important
effect of the potential on the fermions is to backscatter them.
Thus for the coupling between the dot and leads, we use

HT =
∑
±

A′
±[ψ†

L (±�/2)ψR(±�/2) + H.c.], (1)

where A′
± are assumed to be small.

The possibility of detuning from resonance is realized
through the voltage applied to the gate (see Fig. 1), which
couples to the density of fermions between the barriers:

Hgate = ε(Vgate)
∫ +�/2

−�/2
dx[ψ†

L (x)ψL (x) + ψ
†
R(x)ψR(x)], (2)

where the coefficient ε is controlled by the gate voltage with
ε = 0 when the quantum dot is tuned to resonance, which
we take to be Vgate = 0. We have retained only smoothly
varying terms in the density, assuming the potential produced
by Vgate is smoothed by the RG flow. A small rapidly varying
2kF component in the density would cause Vgate-dependent
backscattering that could be included in the barrier term (1).

ε incorporates the energy level of the quantum dot [denoted
εd(Vgate) in Appendix A], but the exact relation between ε and
Vgate is not known because it is the result of the renormaliza-
tion process which we cannot follow exactly. The perturbative
RG equations near the decoupled-level fixed point show that
the effective detuning from resonance increases during renor-
malization (see Appendix A). Nevertheless, we assume that
the initial detuning is so small that the RG flow approaches
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the strong-coupling point and thus ε is small. Since experi-
mentally the conductance approaches unity, the renormalized
detuning remains smaller than the renormalized width of the
level.

We proceed via phenomenological bosonization in the
standard way [39,70,71], choosing the conventions of
Ref. [39]:

ψ
†
L/R(x, t ) = e±ikF x F√

2πa0
ei

√
π[φ(x,t )±θ (x,t )] (3)

where ± in the exponent corresponds to left- or right-moving
particles, L/R. φ(x) and θ (x) are conjugate bosonic operators
that represent the fluctuations in the density and phase of
the fermions. They obey the standard commutation relation
[φ(x′), ∂xθ (x)] = iπδ(x′ − x). a0 is a regularization scale for
short distance or time, and F is a Klein factor that can be
simply carried along in the present problem, giving rise to no
additional phase, and so we do not discuss it further. For the
moment the fields are noninteracting—we add the environ-
ment as well as the applied bias below.

The free fermionic Hamiltonian, H0, becomes simply that
for free bosons. The density of fermions appearing in Hgate is
related to the bosonic fields by

ρL/R(x) = 1

2
√

π
[±∂xφ(x) + ∂xθ (x)] + kF

2π
. (4)

Thus, in bosonic form [88], the three parts of the Hamiltonian
introduced above are

H0 = 1

2

∫ ∞

−∞
dx[(∂xθ )2 + (∂xφ)2], (5a)

HT =
∑
±

A± cos[2
√

πθ (±�/2) ± kF �], (5b)

Hgate = ε(Vgate)

(
kF �

π
+ 1√

π
[θ (�/2) + θ (−�/2)]

)
. (5c)

Note that the 2kF backscattering in HT takes the form
cos(2

√
πθ ) in the bosonic picture. In fact, the fermionic

backscattering Eq. (1) yields forward scattering of the bosons
in addition. This can be treated exactly by redefining the field
θ (x) [89], which we assume is already done. However, Hgate

in (5c) itself corresponds to forward scattering caused by a
potential. Thus it can be absorbed by a transformation of the
fields as well; in particular, consider adding to θ (x) a linear
ramp between the barriers:

θ̃ (x) ≡ θ (x) + x
ε√
π


(x + �/2)
(−x + �/2)

− �

2

ε√
π


(−x − �/2) + �

2

ε√
π


(x − �/2), (6)

where 
(x) is a step function at the origin. Hgate is thus
absorbed into the (∂x θ̃ )2 term in H0, yielding

H0 = 1

2

∫ ∞

−∞
dx [(∂xθ )2 + (∂xφ)2], (7a)

HT =
∑
±

A± cos[2
√

πθ (±�/2) ± kF � ∓ ε�] (7b)

where we have dropped the tilde on θ for clarity [90].
It is convenient to form the sum and difference fields, often

referred to as “charge” and “flavor”. These are defined on a
semi-infinite 1D line, x > 0, by

θc/ f (x) ≡ [θ (x) ± θ (−x)]/2. (8)

The two main advantages to using θc and θ f are that, first, their
fluctuations are uncorrelated [74], and, second, HT assumes a
particularly convenient form. We find

H0 = 1

2

∫ ∞

0
dx{(∂xθ f )2+(∂xφc)2 + (∂xθc)2+(∂xφ f )2}, (9a)

HT = A cos[2
√

πθc(0)] cos[2
√

πθ f (�/2) + ξ ] (9b)

+B sin[2
√

πθc(0)] sin[2
√

πθ f (�/2) + ξ ], (9c)

with ξ = ξ (kF , �, ε) = kF � − ε�, (9d)

where A∝ (A+ + A−) while B∝ (A+ − A−) is the asymmetry
between the two barriers. (Because θc is slowly varying and
nearly constant near x = 0, its argument is shifted from �/2
to zero; on the other hand, this cannot be done for θ f because
θ f (0) = 0 by definition).

The applied bias consists of a potential drop between
particles coming from the source reservoir and those com-
ing from the drain. The dissipative environment introduces
potential fluctuations on top of this bias. The incorporation
of both of these effects into the effective Hamiltonian near
full transmission (strong coupling) is explained in detail in
Ref. [29]. Here we briefly recall some important points in
the derivation and then proceed by using the result. Near
the full transmission fixed point, the potential drops from
right-moving to left-moving particles (assuming right-moving
particles come from the source as in Ref. [29]). Writing this
in terms of fermions and then converting to the bosonic fields,
one finds that the potential bias and fluctuations couple to θc.
The applied bias can be incorporated into the barrier term
HT using a time-dependent gauge transformation. Upon in-
tegrating out the quadratic environment, the field θc becomes
interacting. Indeed, one finds LL interactions with the same
relation between g and r as in the initial weak-link regime,
namely g = 1/(1 + r). The upshot is that the effective Hamil-
tonian near the full-transmission (strong-coupling) fixed
point is

H eff = 1

2

∫ ∞

0
dx

[
(∂xθ f )2 + (∂xφc)2 (10a)

+ (1 + r)(∂xθ
′
c)2 + 1

1 + r
(∂xφ

′
f )2

]
(10b)

+A cos[2
√

πθ ′
c(0) + eV t] cos[2

√
πθ f (�/2) + ξ ]

(10c)

+B sin[2
√

πθ ′
c(0) + eV t] sin[2

√
πθ f (�/2) + ξ ].

(10d)
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As a reminder, the bias-induced phase shift eV t in Eq. (10)
becomes dissipation independent after the inclusion of
the resistance at the wire-reservoir boundaries (see, e.g.,
Refs. [48,91–94] in the context of LL’s).

We emphasize that the modes represented by fields θ f and
φc are free while those represented by θ ′

c and φ′
f are interact-

ing. The coupling between these two sets of modes is given
by the barrier terms, (10c)–(10d). Recalling that a bosonic op-
erator of the form cos(2

√
πθ ) corresponds to backscattering

of the underlying fermions, we see that this coupling involves
the simultaneous backscattering of both modes.

The resonance condition for a single-level dot is
ξ (kF , �, ε) = π/2 (or kF � = π/2 if ε = 0), implying from
the last term in (4) that, as expected, the average number of
electrons in the dot is 1/2. Since we consider tuning very close
to resonance, we have |ξ−π/2| 
 1.

Renormalization of the system under these conditions pro-
ceeds in two stages (see Fig. 2). This is best understood by
finding the temporal correlations of the barrier terms (10c)
and (10d) in the interaction picture, taking (10a) and (10b)
as H0. Because the correlations of θ ′

c and θ f factorize and
〈sin[2

√
πθ ′

c(0, τ )] cos[2
√

πθ ′
c(0, 0)]〉 = 0, there is no cross

correlation between the operators in (10c) and (10d). To find
the correlations of θ f (�/2), we first use Eq. (8) to express
the operators in terms of the noninteracting 1D field θ (x) and
then evaluate using standard methods [95]. The result for large
imaginary time τ is

A2〈cos[2
√

πθ f (�/2, τ ) + ξ ] cos[2
√

πθ f (�/2, 0) + ξ ]〉

= c1A2

[
(1 + cos 2ξ ) − 1

τ 2
(1 − cos 2ξ )

�2

2

]
, (11a)

B2〈sin[2
√

πθ f (�/2, τ ) + ξ ] sin[2
√

πθ f (�/2, 0) + ξ ]〉

= c1B2

[
(1 − cos 2ξ ) − 1

τ 2
(1 + cos 2ξ )

�2

2

]
, (11b)

where c1 is a cutoff dependent constant (here, c1 =
2π

√
�2 + a2

0/a0).
The first stage of renormalization is flow toward the full-

transmission (strong-coupling) fixed point. If the system is
tuned to be exactly symmetric and on resonance, then B = 0
and ξ = π/2. In this case, only the 1/τ 2 term in (11a) is
nonzero, implying that the fluctuations of θ f extend down to
the lowest energy scales with scaling dimension one. When
combined with the independent fluctuations of θ ′

c [which have
scaling dimension 1/(1 + r) from the interactions in (10b)],
the scaling dimension is 1 + 1/(1 + r)>1. Hence the barrier
terms are irrelevant and the magnitude of A decreases under
RG. The RG flow is directly into the full-transmission fixed
point [96], which is the QCP of this system, and there is
no second renormalization stage. The QCP is therefore char-
acterized by the bosonic Hamiltonian Eqs. (10a) and (10b);
because it is quadratic and spatially uniform, the transmission
is unity. This case is discussed in detail in Ref. [29] where
the nonequilibrium current-voltage relation is calculated at the
QCP and shown to be in excellent agreement with experiment.

In our case, the system is tuned very near but not exactly to
the QCP: either B �=0 or ξ �=π/2. The correlation function of
θ f drops as 1/τ 2 initially, but it eventually saturates at a con-

stant value. Low-energy fluctuations (long time) therefore do
not occur—the field θ f is frozen. Though the RG flow starts out
directed at the QCP because of the initial 1/τ 2 decay, when it
reaches this low energy scale, the scaling dimension of the
barrier terms comes only from the θ ′

c factors, 1/(1 + r)<1.
Thus the barrier terms become RG relevant and their strength
begins to grow—both A and B (if nonzero). The flow turns
away from the full-transmission fixed point, exits the vicinity
of the QCP, and moves toward a stable large-barrier (weak-
coupling) fixed point. This is the crossover.

In two limiting cases, the physical picture of this second
stage is simple. For a symmetric system detuned from reso-
nance (B = 0 but ξ �=π/2), the barriers become large and so
Coulomb blockade effects set in, ensuring that the level on the
quantum dot is either completely empty or full. Electrons tra-
verse the dot through co-tunneling, which is a single coherent
tunneling process [78,97]. Such a “single barrier” process is
indeed known to be RG relevant [70,71].

For an asymmetric system tuned to resonance (B �=0 but
ξ = π/2), the barriers become more and more unequal as B
grows. The level in the dot is incorporated into one of the leads
as that barrier gets smaller, but the other barrier completely
dominates the conduction [40]. As in the other limiting case,
the system becomes a “single barrier” problem.

In both cases, the ground state at the fixed point is that the
system is simply cut in two, leading to zero transmission. In
the absence of transmission, the dissipation becomes discon-
nected, and we have arrived at the cut-wire fixed point where
the impurity entropy vanishes.

Because the field θ f (�/2) is effectively frozen during the
second state of renormalization, to describe the physics of the
crossover regime which is our main interest here, we remove
θ f (x) from the problem. The effective Hamiltonian that we
need to study is thereby considerably simplified:

H eff =
∫ ∞

0
dx

[
(1 + r)(∂xθ

′
c)2 + 1

1 + r
(∂xφ

′
f )2

]

+ A′ cos
[
2
√

πθ ′
c(0) + eV t

]
. (12)

The effect of θ f (�/2) is folded into a new coefficient of
backscattering, A′, which undergoes the second stage of renor-
malization. Eq. (12) is the celebrated “boundary sine-Gordon”
model [70,71].

We close this section by summarizing our main point. Our
system is accurately described by a two-stage RG process,
as shown schematically in Fig. 2. The first stage maps the
initial microscopic Hamiltonian [Eq. (A13)] to the vicinity
of the full-transmission strong-coupling fixed point described
by the Hamiltonian (10). The second stage corresponds to a
crossover from nearly full to very small transmission. The
physical properties for a system in this crossover regime can
be found by using an effective single-barrier tunneling model,
namely the boundary sine-Gordon Hamiltonian, Eq. (12).

IV. NONEQUILIBRIUM CURRENT AND CONDUCTANCE

The nonequilibrium I-V curve for the boundary sine-
Gordon model has been investigated using a wide variety of
techniques, including the thermodynamic Bethe ansatz (TBA)
[72–75], fermionic methods [100], the nonequilibrium RG
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FIG. 3. Comparison between experiment (dots) [98] and theory (lines) [99] for r = 0.75 [yielding an exponent of r/(1 + r) = 0.43].
(a) Nonequilibrium result at zero temperature [more precisely, T = 0.002V (theory) and T ≈ 0.05V (experiment)]. (b) Equilibrium result
(linear response) for finite temperature. [(c) and (d)] Corresponding plots for the “backscattering conductance” 1 − Gh/e2. (e) All of the data
and theoretical results in a single plot. The constant a = π�(1 + r)1/r ≈ 2.8 is the relation between the bias and temperature scales. For the
theoretical curves, we obtain A′/Vgate ≈ 0.398 by fitting the equilibrium data in (b), thus leaving no fit parameters for the excellent agreement
in the nonequilibrium case. Although equivalent in the two limits, in the crossover regime the temperature and bias curves differ.

technique [69], expansion in the Coulomb gas representation
(instantons) [101], and boundary conformal field theory meth-
ods [102–104]. In this paper, we first use the TBA technique
of Ref. [74] to find the differential conductance curve G(V, T )
and compare it with experimental data [28]. The theoretical
results are then supported by a case that is exactly solvable.

A. TBA compared to experiment: r = 0.75

An advantage of using the TBA technique is that it can
produce the G(V, T ) curve for all values of the backscatter-
ing parameter A′ over a wide range of temperature and bias.
Strictly speaking, the TBA method is applicable only if the
parameter r is an integer [74], a point emphasized recently
[77]. However, interestingly, it was conjectured [76] that this
technique can be applied to systems with arbitrary values
of r. This conjecture is now widely accepted—for support
see, for instance, Refs. [105–107] and compare the results of
Refs. [69,74]—and we proceed on that basis.

The nonlinear conductance from applying the TBA method
to the effective Hamiltonian Eq. (12) with r = 0.75 is shown
in Fig. 3 [99]. (For convenience we use units in which e =
kB = 1). Theoretical results for two limiting cases are shown:
(i) equilibrium, V 
T (linear response, blue lines) and (ii) far
from equilibrium, T 
V ( red lines). Both cases are compared
to experimental data from H. T. Mebrahtu et al. [28] on a
system carefully tuned to be symmetric, tS = tD [98].

The independent variable in Fig. 3 is the detuning from
perfect transmission, denoted Vgate, because it was varied ex-

perimentally at fixed temperature and bias: the “line shape”
of the conductance peak was measured. From the follow-
ing scaling argument, it is natural to divide Vgate by T r/(1+r)

or V r/(1+r) (for the corresponding argument in a LL see
Sec. VII of Ref. [39]). Since the scaling dimension of the
operator describing the deviation from the full-transmission
fixed point in Eq. (12) is 1/(1 + r), one expects this term
to grow at low temperature or bias according to A′ ∝
(T or V )−[1−1/(1+r)]. General theory of critical points then
suggests that the differential conductance is a universal func-
tion of X ≡Vgate/(T,V/a)r/(1+r) throughout the crossover
[39], thus justifying the x axis in Fig. 3. The proportionality
constant a relates the scales of V and T . It is not a free
parameter but rather is fixed by the requirement that there is
a single universal behavior in the X 
1 asymptotic regime:
the T →0 limit of linear response coincides with the V →0
limit of the T 
V nonequilibrium result. This yields a≡
π�(1 + r)1/r [where �(1 + r) refers to the gamma-function]
[39]. Indeed, it was shown in Ref. [28] that the linear-response
(equilibrium) conductance does obey such a universal func-
tion. In the nonequilibrium case, our calculation of G(X ) (red
lines in Fig. 3) is the corresponding nonequilibrium universal
function. The direct comparison in Fig. 3(e) shows that the
equilibrium and nonequilibrium universal functions are not
the same.

To highlight power-law behavior, a log-log scale is used in
Fig. 3. In the first column [panels (a) and (b)], note that the
conductance approaches e2/h for small detuning, or equiva-
lently for large V or T . For large X (small V or T ), because
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the detuning is not exactly zero, the conductance becomes
small. In the tail (X 
1, G
e2/h), reproducing the known
power-law for a single barrier, G∝T 2r , requires therefore G∝
X −2(1+r) = X −3.5. Both the equilibrium and nonequilibrium
universal curves in Fig. 3 satisfy this constraint (dashed lines);
in fact, the constant a is fixed by requiring the two curves to
coincide in this regime.

To compare to experiment, there is only one free parameter
in the theory, namely the magnitude of the backscattering, A′
in Eq. (12), which is related to the experimental detuning Vgate.
We fix this parameter by fitting the equilibrium conductance;
the best fit yields A′/Vgate ≈ 0.398. (Changing the value of this
ratio shifts the theoretical curves along the x-axis). In panel
(b), we see that the fit of the equilibrium universal curve to
the data is excellent.

The comparison of the nonequilibrium theory and exper-
iment is then parameter free. First, note that in the large
X regime, temperature and bias are indistinguishable: the
finite bias and finite temperature data points [panels (a) and
(b), respectively, or panel (e) combined] lie almost on top
of each other, as they should. The overall message from
the comparison in panel (a) is that the agreement between
the experimental and theoretical nonequilibrium universal
curves—in the absence of any fit parameter—is remarkable.

In order to investigate the small deviations from full trans-
mission near the strong-coupling fixed point, we plot 1−G in
the second column [panels (c) and (d)]. Near the non-Fermi-
liquid QCP (X 
1 and G ≈ e2/h), we expect the equilibrium
and nonequilibrium universal curves to show the same power-
law behavior. Since 1−G∼|A′|2 by perturbation theory, one
finds 1−G∝X 2 near the QCP (dashed lines). While the
power-law is the same, the magnitude of the two curves is
not: the nonequilibrium deviation from e2/h is smaller (red).
Because A′ is set by fitting the equilibrium curve and the
constant a is fixed by the physical requirement that the two
curves coincide in the tail, there is no freedom in the theory to
adjust this difference.

The two theory curves generally provide a good description
of the experimental data in panels (c) and (d). The main
deviation is for X <1 in the nonequilibrium case, where the
experiment shows saturation and the conductance does not
quite reach e2/h. (With regard to the equilibrium data, see
Ref. [28] for more discussion and detail). In fact, the approach
to the QCP in the experiment is being cut off by the finite
bias: when tuned exactly to the QCP (Vgate = 0), 1 − Gh/e2 ∝
V 2/(1+r) [108]. While the value of V used for this data prevents
a close approach to the QCP thereby causing the saturation
in panel (c), in the theory we used values such that the full
crossover curve could be plotted.

In strong contrast to the two asymptotic limits, in the
crossover regime centered on X ∼2.5, a significant difference
between the equilibrium and nonequilibrium curves emerges:
here the nonequilibrium conductance has a much sharper
transition between the two asymptotic regimes [Fig. 3(e)].
The physical reason underlying the bias/temperature differ-
ence in the crossover is discussed in Sec. V A. Remarkably,
the theoretical result successfully captures the experimen-
tal conductance in this regime for both the equilibrium and
nonequilibrium cases, thus supporting our mapping from the
DRL model to the boundary sine-Gordon model.

FIG. 4. (a) Differential conductance and (b) “backscattering cur-
rent” for the r = 1 case as a function of T or V . The finite V and
finite T curves correspond to the limits V 
T (where T = 10−7V )
and T 
V (where V = 10−7T ), respectively. We choose to present
the “backscattering current” in (b) because the leading-order conduc-
tance is constant when the deviation is small [109].

B. Exact solution: r = 1

As is often the case for quantum impurity models [71],
the DRL model is exactly solvable for a specific choice of
parameters. In particular, for r = 1 the system Hamiltonian
(see Appendix A) can be mapped to a Majorana resonant level
model that is noninteracting. The mapping is presented in
Appendix B; it starts with bosonization, proceeds through
several unitary transformations, and finally uses refermion-
ization. For this noninteracting problem, the nonequilibrium
transport can be calculated exactly. We find in Appendix B
that the current is

I (V, T ) = e2

h

[
V − λ2Im ψ

(
1

2
+ λ2 + iV

2πT

)]
, (13)

where ψ is the digamma function and λ measures the devia-
tion from the QCP, combining both detuning and source-drain
asymmetry [defined in Eq. (B8)]. The nonequilibrium current
(13) is similar to that in other effectively quadratic nonequilib-
rium mesoscopic systems, including the two-channel Kondo
[110], two impurity Kondo [63], and Toulouse-point LL [39]
systems.

In Fig. 4, we plot the analytical r = 1 result, Eq. (13), but
in a way that is slightly different from Fig. 3. The x axis is
now 1/X 2 ∝ (T or V ), making the form of the conductance as
a function of temperature or bias clearer. Thus, while Fig. 3
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FIG. 5. Physical picture behind the difference between
temperature-induced and bias-induced crossover. The peak in the
renormalized LDOS (black line) is detuned from the resonance
condition by the renormalized gate voltage Ṽgate. The width of the
energy window contributing to transport (indicated by the blue and
red arrows) is associated with temperature in equilibrium (top row)
or bias voltage out of equilibrium (bottom row). [(a) and (c)] The
peak in the LDOS is within the energy window. [(b) and (d)] The
LDOS peak is outside the window. The fact that the window for
applied bias is a sharp rectangle makes the nonequilibrium crossover
sharper.

highlights the lineshape as a function of detuning (the quantity
measured experimentally in Ref. [28]), Figure 4 highlights the
nonequilibrium I-V curve.

This analytical result shares the main features of the r =
0.75 numerical result and experimental data (see Appendix C
for more plots). The exponents of the power law behavior in
both asymptotic regimes are consistent with using r = 1 in
the scaling dimensions discussed above and are the same for
the finite T and finite V curves. (The shift along the x axis
of the curves in Fig. 4 compared to Fig. 3 is due to match-
ing the experimentally measured Vgate in the latter, A′/Vgate ≈
0.398). Importantly, the universal nonequilibrium function is
substantially different from the equilibrium function in the
crossover regime: the nonequilibrium crossover is sharper.

V. DISCUSSION

A. Bias crossover versus temperature crossover

The most interesting feature in our results is that tempera-
ture and bias lead to different behavior for the crossover (see
Figs. 3 and 4). Indeed, there is no reason that the equilibrium
and nonequilibrium crossover functions should be the same
[12,39,69], though at first sight one might guess from an
RG perspective that these parameters are interchangeable en-
ergy cutoffs. Certainly, the theoretical curves agree amazingly
well with the experimental data measured for the dissipation
strength r = 0.75.

In either asymptotic regime of the conductance curves (the
weak tunneling regime where G→0 or the weak backscatter-
ing regime where G→e2/h), a single operator with a small
amplitude dominates the transport. A straightforward RG ar-
gument yields power-law behavior [39], and one simply uses
max(T,V ) as the RG cutoff, thereby leading to the naive
notion of interchangeable energy cutoffs.

The nontrivial regime is the crossover where the per-
turbative RG analysis fails. We physically explain the
temperature-bias difference in the crossover regime with the
help of Fig. 5. The key ingredients are (i) how the local density

of states (LDOS) in and near the quantum dot lines up with the
window of energies participating in the transport and (ii) the
fact that the energy window defined by temperature is smooth
while that introduced by bias is a sharp rectangular window.
Throughout the argument, it is important to keep in mind that
both the detuning and the width of the resonance renormalize
as T or V varies. We therefore consider the renormalized
detuning, Ṽgate ∼ V (1+r)/r

gate , which can be compared directly to
T or V . First, consider the case when max(T,V ) is slightly
larger than the renormalized detuning, so that the weight of
the LDOS is within the energy window. (In the initial system,
the weight of the LDOS corresponds simply to the level in
the quantum dot; near strong coupling, there is nevertheless
a peak in the renormalized LDOS associated with the full-
transmission condition). In equilibrium, Fig. 5(a), lead-dot
tunneling is enabled only through thermal fluctuation and so
is reduced compared to resonant transmission. In contrast, the
nonequilibrium conductance, Fig. 5(c), is almost unaffected
by the increasing detuning. Compared to the finite temper-
ature conductance, we see that when Ṽgate <max(T,V ), the
finite bias conductance is larger.

The situation changes dramatically when the renormalized
detuning becomes slightly larger than max(T,V ), so that the
weight of the LDOS is on the edge or in the tails of the energy
window. In the finite temperature situation Fig. 5(b), there
is no qualitative change—the decrease of the conductance is
similar to that in Fig. 5(a). In contrast, in the finite bias situ-
ation Fig. 5(d), the weight of the renormalized LDOS is now
passing outside of the sharp window, and so the conductance
rapidly decreases. Combining this trend with that in the last
paragraph, we see that in the nonequilibrium scenario, the
transition in the crossover regime is much sharper.

B. Connection to two-channel Kondo model

In order to elucidate the underlying physics in quantum
impurity problems, it is useful to make connections between
different models. It was recognized early on that resonant
tunneling in a LL gives rise to 2CK physics [40]. Likewise,
the QCP in the DRL model is known to be two-channel
Kondo-like [23,28,29]. However, an explicit mapping to the
2CK model was not made in either case.

In Appendix D, we carry out an explicit mapping from
the DRL model for r = 1 to the 2CK model, thus showing
that they are equivalent. Indeed, a spin flip in the 2CK model
corresponds to a change in the occupation of the quantum
dot in the DRL model, and spin current between channels
in the 2CK model is equivalent to charge transfer across the
dissipative dot here. The connection to the 2CK model, which
is a well-known example of frustration, helps one understand
why perfect symmetry is required in the DRL model to reach
quantum criticality.

The mapping is made between the bosonized forms of the
two models, after a unitary transformation. The condition r =
1 allows one to refermionize the bosonic model to obtain the
Hamiltonian of the spin sector of the 2CK model. When r �=1,
the DRL model has different, more subtle correlations than the
2CK model, ones that cannot, as far as we know, be mapped
onto a noninteracting model. (See Appendix B for mapping
of the r = 1 DRL model to a noninteracting problem). For
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r �=1, the two models are qualitatively similar in terms of the
underlying physics of frustration and renormalization, but are
not exactly the same.

VI. CONCLUSION

To summarize, in this paper, we study the nonequilibrium
nonlinear conductance of a dissipative resonant level as a
model for a quantum dot connected to resistive leads. We
consider a situation where slight detuning from the QCP
drives the system toward the weak tunneling regime through
a crossover. For the special case r = 1, we find an exact
expression for the I (V, T ) curve using the Keldysh formal-
ism. For general r, we show that our problem is effectively
a boundary sine-Gordon model, for which the I (V, T ) curve
can be found through the TBA technique. Our calculation
for r = 0.75 matches perfectly with the experimental data.
The dependence on bias is not the same as the temperature
dependence outside of the asymptotic regimes; we explain this
difference by observing that the stronger thermal fluctuations
in the finite temperature situation lead to a smoother transition
between the two asymptotic limits.

Our argument to arrive at these results has three main steps.
First, using the RG analysis of the system Hamiltonian as
a guide as well as expectations of universality connected to
fixed points, we find an effective Hamiltonian, Eq. (10), for
the full transmission (strong coupling) regime near the QCP.
Second, for parameters that are only slightly detuned from the
QCP, an argument based on the correlation function of the
resulting interaction terms [70] yields a simplified effective
Hamiltonian for the crossover regime, Eq. (12), that is sim-
ply the boundary sine-Gordon model. Third, we use previous
work on the nonequilibrium properties of the boundary sine-
Gordon model, especially results from the TBA technique by
Fendley and coworkers [72,74], to find the I-V curve, plotted
in Fig. 3 [with the special case r = 1 given analytically in
Eq. (13)]. While one may question the exactness of these
steps, the validity of our argument is supported by the fact
that the end result is in remarkably excellent agreement with
the experimental measurements.

We close by noting that this topic ties together four themes
of great interest currently: (i) electron correlations and non-
Fermi-liquid states (though in a quantum impurity setting, not
bulk), (ii) nonequilibrium many-body physics in that the bias
V plays a distinctly different role from T in the steady state,
(iii) open quantum systems—dissipation here causes quantum
critical effects—and finally (iv) quantum simulation since the
dissipation generates interactions that simulate true repulsive
interactions in a LL. Going forward, we believe that further
developing this system—by considering, for instance, the role
of spin in the quantum dot, the presence of superconductiv-
ity, or time dependence—will be even more interesting and
beneficial in advancing these four themes.
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APPENDIX A: INITIAL SYSTEM HAMILTONIAN AND
BOSONIZATION NEAR THE DECOUPLED-LEVEL

FIXED POINT

In this Appendix, we first present the Hamiltonian of the
system, following our previous work Ref. [29]. This fermionic
Hamiltonian is then transformed into a representation in terms
of chiral bosons [28,78].

The Hamiltonian for a spinless resonant level between two
resistive leads consists of five parts:

H = HDot + HLeads + Hμ + HT + HEnv. (A1)

The quantum dot is described by a single energy level which
may be tuned by a gate voltage, εd(Vgate), while the source (S)
and drain (D) leads contain noninteracting electrons,

HDot = εd(Vgate)d†d, HLeads =
∑

α=S,D

∑
k

εk c†
kα

ckα
. (A2)

We use operators d and d† in Eq. (A2) to represent
the quantum dot instead of the bosonic fields of the main
text [e.g., Eq. (5)]. This convention is taken since near the
decoupled-level fixed point the dot is almost isolated and so
can hardly be described by the lead fields. The connection
between the two descriptions is made by considering a multi-
level 1D quantum dot for a moment. For hard walls confining
free electrons to length �, the levels would be separated by
�k = π/� where k is the wave vector in the dot. This is the
same separation given by the continuum field model Eq. (9d)
(written in terms of the lead wave vector kF ), thus establishing
the connection.

Tunneling in our system excites the resistive environment
through fluctuations of the voltage on the source and drain.
These require a quantum description of the tunnel junction
[111–114] via junction charge and phase fluctuation operators
that are conjugate to each other, ϕS/D and QS/D. A tunneling
event shifts the charge on the corresponding junction, as, for
example, in this contribution to tunneling from the dot to
the source: c†

kSe−i
√

2πϕS d . We take the capacitance of the two
tunnel junctions to be the same and so it is natural to con-
sider the sum and difference variables ψ ≡ (ϕS + ϕD)/2 and
ϕ ≡ ϕS − ϕD. The fluctuations ϕ involve charge flow through
the system and so couple to the environment. In contrast,
because ψ involves the total dot charge, it is not coupled to
the environment [78,111,112], and we therefore drop it at this
point. We thus arrive at the tunnel Hamiltonian

HT =
∑

k

(
tS c†

kSe−i
√

π
2 ϕd + tDc†

kDei
√

π
2 ϕd + H.c.

)
. (A3)

Because of the sum over momentum, only the electrons at
x = 0 couple to the dot and environment. The barriers to
tunneling are large in the experimental system and so tS and
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tD are small—the system is in the “weak-link” regime near the
decoupled-level fixed point (see Fig. 2).

The ohmic environment of resistance R is modeled in the
usual way as a bath of harmonic oscillators to which the
phase fluctuations ϕ of the junction are coupled. The model
must produce the expected temporal correlations of the phase
fluctuations at long times related to the resistance of the envi-
ronment by [111–114]〈

e−iϕ(t )eiϕ(0)〉 ∝ (1/t )2r with r ≡ e2

h
R. (A4)

One way to satisfy these constraints is to represent the envi-
ronment by an infinite chiral transmission line with field ϕ(x)
and Hamiltonian [78]

HEnv = 1

8r

∫ ∞

−∞
dx (∂xϕ)2. (A5)

The impedance of this transmission line is r. It is coupled
to the junction by identifying ϕ(x = 0) as the phase ϕ in the
tunneling term Eq. (A3).

Finally, the term driving the system out of equilibrium is

Hμ =
∑

α=S,D

∑
k

μαc†
kα

ckα
, (A6)

where the chemical potential is related to the applied bias.
Because we assume that the two junctions have the same
capacitance, the voltage bias drops symmetrically, yielding
μS/D = ±eV/2.

The renormalization of this weak-coupling model can be
obtained through the method of bosonization. For the physics
of the strong-coupling fixed point discussed in Sec. III, it
is most convenient to use bosonization in terms of canoni-
cal fields [see φ(x) and θ (x) in Eq. (3)]. In contrast, here
we proceed by using chiral bosonic fields, which provides
a simpler basis for presenting the exactly solvable case in
Appendix B and the mapping onto the two channel Kondo
model in Appendix D.

The source and drain leads are each represented by a
semi-infinite 1D system of right- and left-moving fermions.
(A 1D representation is possible because we are treating a
quantum impurity problem, which is therefore local in space
[8,71]). Each of these is then unfolded in the usual way into a
right-moving field on an infinite line, ψS (x) and ψD(x), with
x = 0 at the point of coupling to the dot. We now introduce
corresponding chiral bosonic fields, �S/D(x), with the com-
mutation relations [∂x�i(x), � j (x′)] = iδi jπ δ(x − x′) where
i, j ∈ {S, D}. The fermionic and bosonic fields are related
through phenomenological bosonization in the standard way
[70,71],

ψS/D(x) = 1√
2πa0

FS/D exp[i�S/D(x)], (A7)

where FS/D are the Klein factors needed to preserve the
fermionic anticommutation relations, a0 is a regularization
scale for short distance or time, and we use the conventions
of Ref. [70].

We now rotate the lead basis by introducing the flavor field
� f and charge field �c, defined by

� f ≡ 1√
2

(�S − �D) and �c ≡ 1√
2

(�S + �D). (A8)

The noninteracting lead Hamiltonian is now simply

HLeads = vF

4π

∫ ∞

−∞
dx[(∂x�c)2 + (∂x� f )2], (A9)

while the tunneling Hamiltonian (A3) becomes

HT = tS
FS√
2πa0

e− i√
2

[�c+� f ](x=0)e−i 1
2 ϕ(0) d

+ tD
FD√
2πa0

e− i√
2

[�c−� f ](x=0)e+i 1
2 ϕ(0) d + H.c. (A10)

A subtlety appears in treating the applied bias term: the
experimentally relevant bias applied to the leads, Eq. (A6), is
not the bias appropriate for the 1D wires. This has been dis-
cussed in detail in the case of a LL wire connecting reservoirs
[48,91–94]. Using the same argument here [with g = 1/(1 +
r)] [115], one finds that applying a 1D bias of ±(1 + r)eV/2,

where V is the physical bias yields the physical current. Thus
the nonequilibrium driving written using the bosonic form of
the S/D density is

Hμ = 1 + r

2
eV

∫ ∞

−∞

dx

2π
(∂x�S − ∂x�D)

= 1 + r

2
√

2π
eV

∫ ∞

−∞
dx ∂x� f . (A11)

Note that the way that � f (x = 0) and ϕ appear in (A10) is
similar. Since the correlation function of both ϕ and the free
chiral field have a power law decay, it is natural to combine
them.

The effect of the dissipative environment is incorporated
into the flavor field by the transformation

�′
f (x) ≡ 1√

1 + r

[
� f (x) + 1√

2
ϕ(x)

]
,

ϕ′(x) ≡ 1√
1 + r

[√
r� f (x) − 1√

2r
ϕ(x)

]
. (A12)

The prefactors in this transformation are chosen so that the
Hamiltonian of the leads remains noninteracting and the field
ϕ′(x) decouples from the rest of the system. The commutation
relation is preserved, [∂x�

′
f (x), �′

f (x′)] = iπ δ(x − x′). In
terms of these fields, the Hamiltonian becomes

H = εd(Vgate) d†d + h̄vF

4π

∫ ∞

−∞
dx[(∂x�c)2 + (∂x�

′
f )2]

+ tS

[
FS√
2πa0

e−i
√

1+r
2 �′

f (0)e−i 1√
2
�c (0)d + H.c.

]

+ tD

[
FD√
2πa0

e+i
√

1+r
2 �′

f (0)e−i 1√
2
�c (0)d + H.c.

]

+
√

1 + r

2

eV

2π

∫ ∞

−∞
dx ∂x�

′
f , (A13)

where we have dropped the decoupled term involving ϕ′(x).
Because of the way the fields have been scaled in (A12),

the interactions appear only in boundary terms in (A13),
namely, those connected to the quantum dot. As in the strong-
coupling regime discussed in Sec. III, one of the fields has
become interacting: �′

f is associated with transfer of charge
through both barriers and therefore couples to the dissipative
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environment. This is in contrast to what happens in a LL in
which both fields are interacting.

The renormalization caused by the interactions in (A13)
can be efficiently studied using the “Coulomb gas” RG
technique developed for quantum impurity problems (see
Refs. [39,116] for the method in general and Refs. [78,117]
for application to this problem). The resulting RG equations
(in equilibrium) are

dtS
d ln τc

= tS

[
1 −

(
1 + r

4
+ K1 + 2K2

)]
,

dtD
d ln τc

= tD

[
1 −

(
1 + r

4
+ K1 − 2K2

)]
,

dK1

d ln τc
= −4τ 2

c

[
K1

(
t2
S + t2

D

) + K2
(
t2
S − t2

D

)]
,

dK2

d ln τc
= −2τ 2

c

[
K2

(
t2
S + t2

D) + (t2
S − t2

D

)]
,

dεd

d ln τc
= εd − 2

(
t2
S + t2

D

)
τc sinh(εdτc),

(A14)

where K1 and K2 are two parameters that change during the
RG flow and 1/τc is the high-energy cutoff. The parameter
K1 indicates the scaling dimension of the charge field, and
is thus dissipation-independent. With its initial value K1 = 1,
it decreases during the RG flow, indicating the loss of the
dynamics of the charge field under the influence of the charge-
dot interaction. In contrast, during the RG flow the magnitude
of K2 increases from its initial value of zero. It thus increases
the scaling dimension of the more weakly coupled lead, and
decreases that of the stronger one. Asymmetry thus increases
during the RG flow, except for symmetric coupling tS = tD in
which case K2 remains zero.

In the regime r <1 on which we focus, the hopping to
the dot in a symmetric, on-resonance system renormalizes to
stronger values (corresponding to smaller tunneling barriers).
This then sets the stage for the weak barrier analysis near the
full-transmission (strong-coupling) quantum critical point in
Sec. III.

APPENDIX B: EXACTLY SOLVABLE CASE: THE
EFFECTIVELY NONINTERACTING (TOULOUSE) POINT

In this Appendix, we treat the special case of r = 1, pre-
senting an exact solution of the system Hamiltonian through
refermionization of the bosonic fields. In the literature on the
Kondo problem, such a point in parameter space is known as
a “Toulouse point.” For this special point, the nonequilibrium
nonlinear conductance can be found analytically without re-
sorting to the methods used in Secs. III and IV.

Our starting point is the Hamiltonian Eq. (A13) with r = 1.
First, it is advantageous to remove the field �c from the
tunneling term. This is accomplished through the unitary
transformation

U ≡ exp

[
i

1√
2

�c(0)

(
d†d − 1

2

)]
. (B1)

The Hamiltonian now becomes

H = εd(Vgate) d†d + h̄vF

4π

∫ ∞

−∞
dx[(∂x�c)2 + (∂x�

′
f )2]

+ 1√
2πa0

[tSFSe−i�′
f (0)d + tDFDe+i�′

f (0)d + H.c.]

− h̄vF

2
√

2

(
d†d − 1

2

)
∂x�c(0) + eV

2π

∫ ∞

−∞
dx ∂x�

′
f , (B2)

after taking r = 1. The quartic term produced by the unitary
transformation (last line) is crucial in describing the approach
to the strong-coupling fixed point [79]. However, since it
is RG irrelevant near that fixed point, the role it plays in
the physics of detuning and the crossover from strong- to
weak-coupling is minor [39,64,71,79]. It is thus dropped from
further consideration [118]. The field �c is thereby decoupled
from the quantum dot and so dropped as well.

A key feature of this r = 1 case is that the scaling di-
mension of the tunneling terms in Eq. (B2) is 1/2, the same
as that of a free fermion. Hence the entire Hamiltonian can
be refermionized using ψ f (x) ≡ FS/Dei�′

f (x)/
√

2πa0 [71,79].
The Hamiltonian thus becomes

H = εd(Vgate) d†d + h̄vF

i

∫ ∞

−∞
dx ψ

†
f (x)∂xψ f (x)

+ tS − tD
2

[ψ†
f (0) − ψ f (0)](d† + d )

− tS + tD
2

[ψ†
f (0) + ψ f (0)](d† − d )

+ eV
∫ ∞

−∞
dx ψ

†
f (x)ψ f (x). (B3)

We see that Majorana fermion operators occur naturally in
(B3) and so define them explicitly,

a f (x) = [ψ†
f (x) + ψ f (x)]/

√
2, (B4a)

b f (x) = [ψ f (x) − ψ
†
f (x)]/

√
2i, (B4b)

χ1 = (d† + d )/
√

2, (B4c)

χ2 = (d − d†)/
√

2i. (B4d)

The symmetric and antisymmetric combination of the
hopping amplitudes are t± ≡ tS ±tD. The Hamiltonian thus
becomes

H = iεd(Vgate) χ1 χ2 + h̄vF

2i

∫ ∞

−∞
dx (a f ∂xa f + b f ∂xb f )

+ it+a f (0)χ2 − it−b f (0)χ1 + ieV
∫ ∞

−∞
dx a f (x)b f (x).

(B5)
The first and fourth terms here correspond, respectively, to
particle-hole and source-drain asymmetry.

The final ingredient needed is the form of the current oper-
ator in terms of the Majorana fermions. The current between
the leads is I ≡ i[(NS − ND)/2, H], where NS/D denote the
number operators for the original fermions in the leads. After
the transformation to the Majorana operators, this becomes

Î = i

2
t−a f (0)χ1 + i

2
t+b f (0)χ2 . (B6)

The I-V curve can be calculated from Eqs. (B5)-(B6) using
the standard Keldysh formalism [119]. We find

I (V, T ) = e2

h

[
V − λ2Im ψ

(
1

2
+ λ2 + iV

2πT

)]
(B7)
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FIG. 6. (a) Conductance and (b) “backscattering current” as
functions of the normalized detuning λ/

√
max(T,V/π ), for the

Toulouse point r = 1.

in units of e2/h, where T is the temperature, ψ (x) is the
digamma function, and

λ2 ≡ t2
−

2vF
+ 2vF ε2

d

t2+
(B8)

is the effective total deviation from the strong-coupling fixed
point trajectory that combines both detuning and asymmetric
leads. Eq. (B7) is used to plot the differential conductance in
Fig. 4 and is the basis for the discussion of these results at the
end of Sec. IV.

APPENDIX C: OTHER TRANSPORT CURVES AT THE
TOULOUSE POINT

In presenting the conductance and “backscattering cur-
rent” for the Toulouse point r = 1 in Sec. IV B, we use
max(T,V/π )/λ2 as the x axis in Fig. 4 rather than X =
Vgate/(T,V/a)r/(1+r) = Vgate/

√
(T,V/π ) as in Fig. 3. (a = π

for r = 1). As a simple alternative to the scan of Vgate at fixed
T and V used for taking the data in Fig. 3, this shows how
the data would look if Vgate were fixed and data taken as a
function of temperature or bias voltage. The latter is partic-
ularly interesting—the differential conductance as a function
of bias—since it is the derivative of the I-V curve.

However, to directly compare the r = 1 and r = 0.75 re-
sults, it is useful to plot the Toulouse point results in the same
way as in Fig. 3. This is done in Fig. 6. The main features
of the universal curves are clearly the same in the two cases,

though of course the power law seen in the asymptotic regimes
depends on the value of r. (The crossover is centered at X = 1
here since in the absence of experimental input A′/Vgate = 1).
Note in particular that in the nonequilibrium curve the transi-
tion from one asymptotic regime to the other is sharper.

APPENDIX D: MAPPING TO THE
TWO-CHANNEL-KONDO MODEL

In this Appendix, we present the mapping between the r =
1 DRL model and the 2CK model. We begin with the effective
Hamiltonian (A13) evaluated at r = 1. First, apply the unitary
transformation

U ′ = exp

[
i

(
1√
2

− 1

)
�c(0)

(
d†d − 1

2

)]
. (D1)

This transformation is not the same as (B1) used at the exactly
solvable point: here, we change the coefficient in the exponent
from 1/

√
2 to 1 rather than removing it from the tunneling

terms entirely. The Hamiltonian thus becomes

H = Hleads + Hdot + vF

2

(
1 − 1√

2

)(
d†d − 1

2

)
∂x�c(0)

+ λ

[
FS√
2πa0

e−i�′
f (0)−i�c (0)d + H.c.

]

+ λ

[
FD√
2πa0

ei�′
f (0)−i�c (0)d + H.c.

]
, (D2)

where λ defined in (B8) combines the effects of energy
detuning and barrier asymmetry. In this form, the degrees
of freedom represented by both �′

f (0) and �c(0) may be
refermionized (see below). Notice that the scaling dimension
of all three lines of (D2) is one, as in tree-level scaling in
Kondo models.

The next step is to combine the quantum dot operator and
Klein factors into a spin operator,

S− ≡ Fd, S+ ≡ d†F, Sz ≡ d†d − 1
2 . (D3)

In addition, the lead and environment degrees of freedom
encoded in �′

f and �c are mapped to the spin degrees of
freedom of the two channels in the 2CK model. We introduce
the standard 2CK labels “s” for the total spin of both channels
and “sf” (spin flavor) for the spin imbalance between the
channels (see Ref. [120], for instance) and identify

�c → �s, �′
f → �s f . (D4)

In this spin notation, the Hamiltonian is

H = h̄vF

4π

∫ ∞

−∞
dx[(∂x�s)2 + (∂x�s f )2]

+ BSz + vF

2

(
1 − 1√

2

)
Sz ∂x�c(0)

+ λ√
2πa0

[e−i�s f (0)−i�s (0)S− + H.c.]

+ λ√
2πa0

[ei�s f (0)−i�s (0)S− + H.c.]. (D5)

This is the bosonized form of the Hamiltonian of the spin
sector of the 2CK model [71,120].
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The spin-flip terms can be refermionized: the coefficient of
both bosonic fields in the exponent is simply one due to the
unitary transformation (D1). The refermionization relations
are [71,120]

ψ
†
1↑ψ1↓ = 1

2πa0
exp[−i (�s + �s f )],

ψ
†
2↑ψ2↓ = 1

2πa0
exp[−i(�s − �s f )],

ψ
†
1↑ψ1↑ − ψ

†
1↓ψ1↓ + ψ

†
2↑ψ2↑ − ψ

†
2↓ψ2↓ = 1

π
∂x�s,

(D6)

where “1” and “2” denote the two channels of the 2CK.
Eq. (D5) then becomes

H = Hchannels + BSz + vF π

2

(
1− 1√

2

)

× Sz[ψ
†
1↑ψ1↑−ψ

†
1↓ψ1↓+ψ

†
2↑ψ2↑−ψ

†
2↓ψ2↓]

+ λ
√

2πa0[ψ†
1↑ψ1↓S− + ψ

†
2↑ψ2↓S− + H.c.], (D7)

where Hchannels includes not only the continuum of spin
degrees of freedom of the two channels—the first line in
(D5)—but also their charge sector (which is not coupled to
the local spin). Eq. (D7) is the Hamiltonian of the anisotropic
two-channel-Kondo model.

Importantly, it is known that the 2CK fixed point con-
tains an impurity Majorana from quantum frustration (see,
e.g., Ref. [120]). This Majorana induces a nontrivial impurity
entropy that has been recently verified through simple con-
ductance measurement [121]. Its interplay with a topological
Majorana is also investigated in recent studies [122,123].
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