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Time-reversal symmetric topological metal

L. C. Xie, H. C. Wu , L. Jin ,* and Z. Song
School of Physics, Nankai University, Tianjin 300071, China

(Received 8 June 2021; revised 14 September 2021; accepted 18 October 2021; published 25 October 2021)

Topological metals possess gapless band structures accompanied by nontrivial edge states. Topological metals
are created from the topological insulators by adjusting the magnetic flux. Here we propose the time-reversal
symmetry protected topological metal without employing the magnetic flux. Topological metallic phase presents
although the Chern number vanishes. In the topologically nontrivial phase, three different cases in the metallic
phase are distinguished from the band-touching and in-gap features of the topological edge states. These findings
shed light on the time-reversal symmetric topological metals and greatly simplify the realization of topological
metals.
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I. INTRODUCTION

The introduction of topology in condensed matter physics
greatly changes the traditional way of classifying phases of
matter, novel topological states including insulators, super-
conductors, semimetals, and metals are discovered [1–14] .
These topological phases all support robust edge states, which
are counted by the corresponding topological invariant that
captures the topology of the bulk band [15–17]. The tremen-
dous progresses in various platforms of photonics, acoustics,
and electronic circuits allow us to study these topological
phases in experiments, which provide crucial enlightenments
for topological materials [18–30] .

Topological insulators have a fully gapped bulk band struc-
ture like ordinary insulators, but topological insulators support
conductive edge states on the surface of the sample, where
electrons move along the surface of materials [2]. The Chern
insulator is a typical two-dimensional (2D) topological insula-
tor, which supports robust chiral edge states that are predicted
from the nonzero Chern number. A landmark development of
topological insulators is the discovery of time-reversal invari-
ant topological insulators [31–34], where the Chern number
vanishes and becomes invalid for topological characteriza-
tion; alternatively, the Z2 topological number classifies the
time-reversal invariant insulators [35] and these topological
insulators are featured by their helical edge states, being con-
firmed in a nonlocal transport experiment [36]. The helical
edge states have opposite spins and counterpropagate on the
boundaries in the opposite directions. The spin Chern number
[37–39], valley Chern number [40–42], and wave polarization
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[43–45] are developed to characterize the quantum spin Hall
effect.

Topological semimetals and metals are metallic states with
nontrivial gapless band structure and unique quasiparticle
excitations [8], represented by Weyl and Dirac semimetals.
In the Weyl (Dirac) semimetals, energy bands are double
(fourfold) degenerately connected by the Weyl (Dirac) points
[46–48]. In addition, the existence of other multiple degener-
acy points have been discovered, like threefold and sixfold
[49–54]. For systems protected by certain symmetries, the
band connection is a closed node line instead of nodes. The
corresponding topological node-line semimetals have been
reported in the graphene network [55–57].

Topological metals (TMs) are gapless phases featured by
their separable conduction and valence bands. Thus, the topo-
logical characterization for the metals is similar as that for the
insulators. TMs can be divided into nodal-point, nodal-line,
and nodal-surface TMs according to the dimension of band
crossing [58]; or alternatively be divided into type I and type
II TMs according to the dispersion close to the band crossing
[59–61]. TMs in different spatial dimensions have been ex-
tensively studied [62–64]. To create a 2D topological metal,
the traditional method is through adjusting the magnetic flux
to tune the energy bands of the topological insulators [65].
However, introducing and tuning the magnetic flux is difficult
in many experimental platforms. Here we demonstrate a time-
reversal symmetric topological metal without the magnetic
flux.

In this paper we report the time-reversal symmetric topo-
logical metal in a 2D square lattice, which belongs to class
AI in the tenfold way of topological classification. The
2D square lattice possesses nontrivial topology although the
Chern number is zero ensured by the time-reversal symmetry.
The proposed topological metal is free from the magnetic
flux and significantly differs from the traditional topological
metal created through using the magnetic flux. The reflection
symmetry ensures the quantized polarization; the zero polar-
ization predicts the trivial topology in the vertical direction.
The Zak phase at the phase transition point characterizes the
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FIG. 1. Schematic of the 2D square lattice. The unit cell consists
of two sublattices A and B in cyan and magenta as indicated inside
the dashed blue rectangle. λ, κ , and m are the couplings between the
sublattices.

topology in the horizontal direction. We demonstrate three
different cases in the topologically nontrivial phases that are
distinguished from their different types of topological edge
states. The topological phases as well as the topological edge
states can be deformed into each other without undergoing
topological phase transition. Our findings provide novel in-
sights into time-reversal symmetric topological metals.

The remainder of the paper is organized as follows. In
Sec. II the time-reversal symmetric 2D square lattice is intro-
duced. Section III presents the phase diagram and the energy
band of the topological metallic phase. Three different topo-
logical edge states are elucidated. Section IV provides the
topological characterization. The discussion and conclusion
are summarized in Secs. V and VI.

II. TIME-REVERSAL SYMMETRIC 2D SQUARE LATTICE

We consider a time-reversal symmetric 2D square lattice.
The schematic of the lattice is illustrated in Fig. 1. The Hamil-
tonian of the 2D square lattice in the real space is written in
the form of

H =
∑
l, j

(
λa†

l, jbl, j + κa†
l, jbl−1, j + ma†

l, jbl, j+1

+ ma†
l, jbl, j−1 + H.c.

) + λa†
l, j (al, j+1 + al, j−1)

+ κb†
l, j (bl, j+1 + bl, j−1), (1)

where a†, b† (a, b) represent the creation (annihilation)
operators for the sublattices A and B. The dashed box in
blue indicates the unit cell of the system. The couplings λ

and κ indicate the nearest neighbor coupling strengths, the
coupling m is the next nearest neighbor coupling strength.
The 2D square lattice does not enclose any magnetic flux
and can be realized in many versatile experimental plat-
forms for the topological insulators including the ultracold
atoms in the optical lattice, the photonic crystals of coupled

optical waveguides/resonators, the acoustic metamaterial
dubbed sonic crystals, and the electric circuits [66–72].

Applying the Fourier transformation ρl, j =
M−1 ∑

k eik·rρk (ρ = a, b) to the two sublattices, we rewrite
the lattice Hamiltonian H in the momentum space in the form
of

H =
∑

k

H (k) =
∑

k

ψ
†
kh(k)ψk, (2)

where the basis is ψk = (ak, bk )T and the Bloch Hamiltonian
h(k) is a 2 × 2 matrix

h(k) = d0σ0 + d · σ, (3)

where σ0 is the 2 × 2 identical matrix, d0 = (λ + κ ) cos ky.
σ = (σ x, σy, σz ) is the Pauli matrices, and the effective mag-
netic field d is

dx = λ + 2m cos ky + κ cos kx,

dy = κ sin kx,

dz = (λ − κ ) cos ky. (4)

The energies of the Bloch bands are

E± = d0 ±
√

d2
x + d2

y + d2
z , (5)

where the subscripts + and − of energy represent the upper
and lower bands, respectively. Without loss of generality, we
fix the coupling m as unity. Notably, the band gap closes at
λ = ±κ , associated with the appearance of degenerate points
(DPs) or degenerate lines.

The Bloch Hamiltonian h(k) of the square lattice is pro-
tected by the time-reversal symmetry. Thus, the band energies
satisfy E±,k = E∗

±,−k as reflected from Eq. (5). The sym-
metries are important [11,13,73]. Notably, the time-reversal
symmetry ensures a zero Chern number for the energy band;
however, the topologically nontrivial phase still exists in the
2D lattice [45,74]. d0 adjusts the energy band and changes the
band structure, and plays a crucial role in creating the metallic
phase when the strengths of the couplings λ and κ are not
equal λ2 �= κ2. In the absence of d0, the bands are fully gapped
except for the band touching and the system is in an insulator
phase.

The energy bands have highly degenerate points, where
the energy bands become fully flat. The highly degenerate
points appear at ky = ± arccos(−λ/2), but disappear as |λ| >

2. Time-reversal symmetry ensures that the two highly degen-
erate points are symmetric about ky = 0. The upper and lower
bands reduce to two momentum independent flat bands

ε± = −(λ2 + κλ ±
√

�)/2, (6)

where � = 4κ2 + κ2λ2 − 2κλ3 + λ4. Notice that the pres-
ence of d0 breaks the symmetry of the upper and lower bands
about zero energy.

We emphasize that the proposed topological metal signif-
icantly differs from the traditional topological metal created
through altering the magnetic flux. Their symmetry protec-
tions, topological classifications, and topological invariants
are different. The proposed topological metal without mag-
netic flux is time-reversal symmetric and belongs to the
symmetry class AI [75]. In contrast, the topological metal with
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FIG. 2. Phase diagram of h(k) in the κ-λ parameter space. Re-
gions with different colors indicate different phases: topological
metal (TM) in purple, ordinary metal (OM) in green, topological
insulator (TI) in cyan, and ordinary insulator (OI) in yellow. The
black solid lines indicate the Wilson transitions. The red dashed
lines indicate the topological phase transition with two DPs, while
the blue dashed line indicates the topological phase transition with
four DPs. The brown solid lines are the boundary that characterizes
the positional relationship between the edge states and bulk bands,
indicating three different cases in the topological metallic or insulator
phase.

magnetic flux breaks the time-reversal symmetry; for exam-
ple, the topological metal in Ref. [65] created via tuning the
magnetic flux from the ordinary metal is particle-hole sym-
metric and belongs to the symmetry class D. Consequently,
the topological invariants are different. In addition, the energy
bands are symmetric about ky = 0 in the time-reversal sym-
metric topological metal. Thus, the edge states cross twice at
zero energy as a consequence of zero Chern number C = 0;
and the dispersions and velocities near the zero edge states on
the two sides of ky = 0 are opposite. We can observe these
features in the following section. However, the edge states
cross once at zero energy in the traditional topological metal
without the time-reversal symmetry protection as a conse-
quence of nonzero Chern number C = ±1.

III. METAL-INSULATOR TRANSITION

In this section we discuss the topological phases. The
prominent feature of the considered 2D square lattice is the
presence of topological metallic phase. For a two-band model,
if the bulk bands are separable and the Fermi level lies in the
band gap, the system is an insulator. Once the highest energy
level of the valence band exceeds the lowest energy level of
the conduction band, the two band energies partly overlap
each other and the Fermi level crosses the two bands. Then,
the system completes the transition from insulator to metal,
known as the Wilson transition. Figure 2 is the phase diagram,
being inversion invariant about the origin (κ, λ) = (0, 0). The

FIG. 3. Band structures of three cases in the insulator phase
at (a) κ = 1, λ = −0.5, (b) κ = 2, λ = −1, (c) κ = 5, λ = −1 and
three cases in the metallic phase at (d) κ = 1, λ = 0.5, (e) κ =
2, λ = 1, (f) κ = 5, λ = 1 as indicated by the black solid dots in the
phase diagram of Fig. 2. The energy band is depicted for the OBC
in the x direction and the PBC in the y direction. The other system
parameter is m = 1. The red line indicates the edge state.

dashed lines represent the topological phase transition, and the
solid black lines represent the Wilson transition. The purple
and cyan regions are the metallic and insulator phases, respec-
tively; being the topologically nontrivial phases. Similarly, the
green and yellow regions are the metallic and insulator phases,
respectively; being the trivial phases.

The topological insulator phase is indicated by the cyan
region in the phase diagram Fig. 2. The two bands are fully
gapped as shown in the energy spectra Figs. 3(a)–3(c). The
topological metallic phase is indicated by the purple region in
the phase diagram Fig. 2. The lowest energy of the conduction
band is lower than the highest energy of the valence band
as shown in the energy spectra Figs. 3(d)–3(f). When the
system in the insulator phase crosses the solid black lines
in the phase diagram Fig. 2, the system undergoes a Wilson
phase transition and enters the metallic phase. However, the
band gap is always open, which ensures that the topologi-
cal characteristics remain unchanged. This indicates that the
topological metallic phase and the topological insulator phase
have identical topological properties.

165422-3



L. C. XIE, H. C. WU, L. JIN, AND Z. SONG PHYSICAL REVIEW B 104, 165422 (2021)

Interestingly, the system has three different types of edge
states featured from the relation between the edge states and
the bulk bands in both the topological metallic phase and
the topological insulator phase. The edge states always in-
tersect at the momentum ky = ±π/2, which is also the band
closing point. These are observed from the energy spectra of
Figs. 3(a)–3(c) and Figs. 3(d)–3(f), respectively. The different
types of edge states can be deformed into each other without
the band gap closing; thus, they possess identical topological
properties. These edge states are distinguished by the lines
λ + κ ± 2 = 0, λ − κ ± 2 = 0 as the solid brown lines in the
phase diagram of Fig. 2. The topological insulator phase in
the κ > 0 is divided into three regions; the spectra for points
a, b, and c are representative cases. In Fig. 3(a) the system
has two pairs of gapless edge states, connecting the upper
and the lower bulk bands. In Fig. 3(b) the gapless edge states
near the center of the Brillouin zone (BZ) detach the bulk
bands, forming two edge states cross twice at ky = ±π/2 with
each edge state connected to one bulk band, respectively. In
Fig. 3(c) the edge states are completely detached from the
bulk bands and become the in-gap edge states. The edge states
in the topological metallic phase inherit the characteristics of
the edge states in the topological insulator phase. Figures 3(d)
to 3(f) show the three typical energy spectra for the topolog-
ical metallic phase. The topological metal still has separable
energy bands. In Fig. 3(d) the gapless edge states intact the
bulk bands. In Fig. 3(e) the edge states detach the bulk bands
near the boundary of the BZ. In Fig. 3(f) the edge states are
completely detached from the bulk band and become in-gap
edge states.

For the three cases of insulator or metal as separated by
the brown solid lines in Fig. 2, we introduce the total inverse
participation ratio (TIPR) as a criterion to distinguish their dif-
ferent features. The existence of edge states can be measured
by the quantity of TIPR, which is defined as

TIPR(ky) =
∑
n,l

|〈l|ψn,ky〉|4, (7)

where n is the band index and |ψn,ky〉 is eigenstate. In the
large size limit, the value of TIPR(ky) is stable. The distribu-
tion of TIPR has three different configurations. The TIPR(ky)
has relative large values in two separated regions, in single
incomplete region, and in the whole region of the Brillouin
zone of ky. The TIPR(ky) in the topological insulator phase is
shown in Figs. 4(a)–4(c) and the TIPR(ky) in the topological
metal phase is shown in Figs. 4(d)–4(f). The distribution can
be characterized by the scattering process, where the mid-
gap levels are detected. Each region opens a window in the
momentum space (or energy) for the channel of electron trans-
port, and then can be detected by measuring the edge electrical
conductivity and thermal conductivity [76].

The insulator phase and metallic phase can be distin-
guished from the local density of states (LDOS), which
describes a space-resolved density of states. The LDOS at
the position x and the energy E is defined as D(E , x) =∑

n |ψn(x)|2δ(E − εn) in a continuous system, and the LDOS
reduces to the form

D(E , l ) = 1

χ

N∑
n=1

e−α2(En−E )2 |〈l|ψn〉|2 (8)
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FIG. 4. Plot of the total inverse participation ratio along the mo-
mentum ky as the counterpart of Fig. 3. The red line represents the
TIPR including the localized edge state, and the black line represents
the TIPR of extended states in bulk. (a) κ = 1, λ = −0.5, (b) κ =
2, λ = −1, (c) κ = 5, λ = −1, (d) κ = 1, λ = 0.5, (e) κ = 2, λ = 1,
(f) κ = 5, λ = 1.

at the lattice site l and the energy E in a discrete system. In
Eq. (8) the delta function is replaced by a Gaussian function
and χ is the renormalization factor. Here we consider the
half-filling situation. The LDOS at the Fermi surface EF = 0
is calculated for the finite size systems with several repre-
sentative parameters; the results are shown in Fig. 5. D(E , l )
has vanishing distributions in all the insulating phases as
shown in Figs. 5(a)–5(c), but has finite distributions in all the
conducting phases as shown in Figs. 5(d)–5(f). In addition,
D(E , l ) has evidently large distributions along only two sides
in all the phases, resulting in the relatively large electrical and
thermal conductivities. The LDOS is detected by a scanning
tunneling microscope (STM), which is capable of imaging
electron densities of states with atomic resolution [77]. The
TIPR and LDOS are measurable quantities in experiment.
Furthermore, the nonzero bulk current of the topological metal
differs from that of the insulator and the relatively larger edge
current of the topological metal differs from that of the normal
conductor.

In the topological phases, the edge states exist for the
system under the periodic boundary condition (PBC) in the
y direction and the open boundary condition (OBC) in the x
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FIG. 5. Plot of the local density of state near the zero energy as
the counterpart of Fig. 3. (a) κ = 1, λ = −0.5, (b) κ = 2, λ = −1,
(c) κ = 5, λ = −1, (d) κ = 1, λ = 0.5, (e) κ = 2, λ = 1, (f) κ =
5, λ = 1. Here we take α = 2 and lattice size is 30 × 30. The color
bar indicates the probability of wave function and the maximum is
renormalized to 1.

direction. The energies of the edge states that localized on the
left and right boundaries are

EL(ky) = 2λ cos ky, ER(ky) = 2κ cos ky. (9)

The wave function for the edge state with EL(ky) [ER(ky)]
localized at the left (right) boundary is denoted as |ψL〉 (|ψR〉).
We denote the expression of the edge states as

|ψL,R〉 = (ψ1A, ψ1B, . . . , ψNA, ψNB), (10)

where N is the total number of the unit cells. The edge states
at the limitation of infinity large size system (N → ∞) are
analytically obtained. For the edge state |ψL〉, the components
of |ψL〉 in the nth unit cell are (ψnA, ψnB) = (ρn−1, 0) with the
decay factor ρ = −(λ + 2 cos ky)/κ . For the edge state |ψR〉,
the components of |ψR〉 in the nth unit cell are (ψnA, ψnB) =
(0, ρN−n). The expression is valid for all the three types of
topological edge states.

IV. TOPOLOGICAL CHARACTERIZATION

Nonspatial (internal) symmetry plays a key role in the
topological classification and determines the topological

characterization [11]. Time-reversal symmetry (TRS),
particle-hole symmetry (PHS), and chiral symmetry (CS)
classify the topological phases in a tenfold way [75]. The
time-reversal symmetry is defined as

TRS : T h(k)T −1 = h(−k), T 2 = ±1. (11)

The time-reversal operator T = UK is an anti-unitary opera-
tor, where U is a linear operator and the complex conjugation
K is an antilinear operator.

The TRS ensures that the Berry curvature F satisfies
F (k) = −F (−k), the integral of F in the entire BZ re-
sults in a vanishing Chern number. How to characterize the
band topology and determine the topologically nontrivial
phase of a time-reversal symmetric system? For the time-
reversal symmetric system with T 2 = −1, the topological
properties can be characterized by a Z2 topological invariant.
Z2 = 0 represents the trivial insulator and Z2 = 1 represents
the topological insulator. The Pfaffian method, time-reversal
polarization, and non-Abelian Berry connection have been
developed as the Z2 invariant, but these are unable to describe
the topological systems with T 2 = +1. For the time-reversal
symmetric system with T 2 = +1, the 2D Zak phase, also
known as the wave polarization, is used for the topological
characterization. The wave polarization is quantized to 0 or
1/2 under the symmetry protection and is used to describe
the band topology of the time-reversal symmetric system with
T 2 = +1 [45]. The topological edge states appear inside the
band gap [74].

For the Bloch Hamiltonian of the 2D square lattice h(k),
the linear operator U = σ0 is the 2 × 2 identical matrix; thus,
the 2D square lattice possesses the time-reversal symmetry of
T 2 = +1. The term d0σ0 in the Bloch Hamiltonian h(k) is
crucial for the appearance of the metallic phase; however, d0σ0

only adjusts the band energy, but not the eigenstates of h(k).
The topology of h(k) only relates to the eigenstate and thus is
determined from d · σ . The eigenstate of h(k) is in the form
of

|±(k)〉 = 1

�±

(
dz ± d

dx + idy

)
, (12)

where the subscript + represents the upper band and the sub-
script − represents the lower band; and �± = √

2d (d ± dz )
is the normalization factor.

The wave polarization is defined as

P = 1

2π

∫
BZ

Tr[A(kx, ky)]dkxdky, (13)

where A(kx, ky ) = 〈(k)|i∇k|(k)〉 is the Berry connection.
P = (Px, Py) includes two components, where Px characterizes
the topology in the x direction and predicts the edge states
for the 2D square lattice under the OBC in the x direction.
Py characterizes the topology in the y direction. The wave
polarization defines the 2D Zak phase �ν = 2πPν (ν = x, y).
Protected by the reflection symmetry or inversion symmetry,
the value of wave polarization is quantized, being 0 or ±1/2.
For the Bloch Hamiltonian h(k), the reflection symmetry in
the y direction guarantees Py = 0. The Bloch Hamiltonian
h(k) is reflection symmetric in the y direction h(kx, ky) =
h(kx,−ky ). Py = 0 reflects the lack of nontrivial edge state for
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FIG. 6. Topological phase diagram of the time-reversal sym-
metric 2D square lattice. The |λ| < |κ| region in purple is the
topologically nontrivial phase; in contrast, the |λ| > |κ| region in
green is the trivial phase. The Zak phase �x distinguishes different
topological phases.

the 2D square lattice under the OBC in the y direction and the
PBC in the x direction.

The polarization Px is not quantized without the symme-
try protection. Therefore, Px is invalid for the topological
characterization. We apply a Fourier transformation to decom-
pose the 2D lattice Hamiltonian into a decoupled 1D lattice
Hamiltonian parametrized by the momentum ky. The band gap
closes at ky = ±π/2, where the topological phase transition
occurs and the edge states intersect. For λ = −κ (κ �= 0),
the band degenerate points locate at (kx, ky) = (0,±π/2).
For λ = κ (|κ| � 1), the band gap closes at (kx, ky) =
(0,± arccos λ) and (π,±π/2). For λ = κ (|κ| > 1), the band
degenerate points locate at (kx, ky) = (π,±π/2). In particu-
lar, when (λ, κ ) = (0, 0), the band degenerate points become
two degenerate lines at ky = ±π/2.

The 1D Zak phase is defined as

�x(ky) =
∫

〈ψ (kx )|i∂kx |ψ (kx )〉dkx, (14)

which reflects the winding of the Bloch Hamiltonian when
kx varies throughout the entire BZ of the decoupled 1D lat-
tice. The 1D Zak phase �x(±π/2) is quantized to π in the
topologically nontrivial phases (the purple and cyan regions
in Fig. 2), whereas �x(±π/2) is quantized to 0 in the trivial
phase (the green and yellow regions in Fig. 2). The topological
characterization is shown in Fig. 6 and is consistent with the
phase diagram in Fig. 2. �x(±π/2) = π characterizes the
topological metal and topological insulator. �x(±π/2) = 0
characterizes the ordinary metal and ordinary insulator.

V. DISCUSSION

The vertical coupling λ �= ±κ is crucial for the topological
metallic phase as indicated in Fig. 2. In addition, we consider
the horizontal couplings λ and κ are replaced by λ′ and κ ′.
Then, when λ′ = κ ′, the energy band must have degenerate
points located at (kx, ky) = (±π,±π/2); when λ′ = −κ ′, the
energy band must have degenerate points located at (kx, ky) =
(0,±π/2). Notably, λ′ �= ±κ ′ is necessary for the topological
metallic phase, but λ = λ′ and κ = κ ′ are not necessary. The
nearest neighbor coupling m �= 0 is important for the different
edge states in the topological metallic phases. For m = 0, only
the in-gap edge states exist in the topological phase and only
one type of topological phase presents in this situation.

The spin-orbit coupling is used to create the magnetic flux
and the traditional topological metal. However, the proposed
2D topological metal is time-reversal symmetric without the
magnetic flux. This requires the spin-orbit coupling is negli-
gible in the material. The organic materials composed of light
elements have weak spin-orbit coupling [78]. Therefore, the
organic materials may be suitable candidates for the class AI
topological phase [79].

If the time-reversal symmetry breaks when the square lat-
tice is threaded by the magnetic flux. The topological metallic
phase still exists through tuning the magnetic flux and the
coupling strengths. In this situation, the topological phase is
characterized by the nonzero Chern number. Under the PBC
in the y direction, a pair of antichiral edge states exist after
imposing the OBC in the x direction. The antichiral edge
states also connect the upper and lower energy bands to form
the conductive surface states, but the two antichiral edge states
on different boundaries propagate in the same direction in
contrast to the chiral edge states [80].

Furthermore, the non-Hermiticity compresses the band gap
between the valence band and the conduction band. The non-
Hermitian topological metallic phase exits in the proposed 2D
square lattice when the additional gain and loss are presented
in different sublattices. This is an interesting topic that deserv-
ing further investigation.

VI. CONCLUSION

In conclusion, we provide an alternative way of generat-
ing the topological metals. The proposed topological metallic
phases are protected by the time-reversal symmetry and are
free from magnetic flux. The time-reversal symmetry ensures
a zero Chern number; however, the 2D square lattice supports
topologically nontrivial phases, which are distinguished by
the different types of edge states. The 2D square lattice sup-
ports three different cases in the topological metallic phase
that significantly differ from the traditional topological metal-
lic phases created through tuning the magnetic flux. These
different cases can be deformed into each other without topo-
logical phase transition. Our findings provide insights into the
time-reversal symmetric topological metals.
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