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Thermal properties of Dirac fermions in Xenes: Model studies
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The thermal properties and the electrical conductance are studied for 2D electron gases in doped
Xenes – graphene, silicene, germanene, stanene, and plumbene – applying a four-band model to describe the
low-energy Dirac-fermion-like electronic excitations. Spin-orbit interactions to discriminate the five Xenes and
the influence of an electric field in the normal direction, are taken into account. The density of states and the
spectral behavior of the current-current correlation function allow the calculation of the Onsager coefficients.
They give analytical formulas for the electronic contributions to the heat capacity and thermal conductance.
Also, the electrical conductance can be described within the same framework, if the scattering properties of the
electron gases are simulated by constant broadening parameters. For all these thermal and transport properties,
only a weak variation with the Xene is found, because of their small spin-orbit-induced gaps, with the exception
of plumbene. The heat capacity of Xenes does not show a Schottky anomaly. The thermal conductance increases
linearly or quadratically with temperature depending on the temperature range. A similar behavior characterizes
the electrical conductance. The dominance of Dirac fermions, i.e., linear bands, determines the ratio of electron
thermal conductance and electric conductance, which depends on doping level and temperature. It violates the
Wiedemann-Franz law known for 3D electron gases with parabolic energy-momentum dispersion. The Lorenz
number is generally much larger for 2D electron gases with almost Dirac character of the dispersion relation.

DOI: 10.1103/PhysRevB.104.165420

I. INTRODUCTION

Research on two-dimensional (2D) materials is driven both
by fundamental interest and the perspective of applications
in novel devices. Among the 2D systems, atomic monolayer
structures exhibit outstanding electronic, optical, transport but
also thermal properties because of strong quantum size ef-
fects and formation of a quantum spin Hall phase. Elemental
monolayers consisting of group-IV atoms carbon (C), silicon
(Si), germanium (Ge), tin (Sn), and lead (Pb) and crystallizing
in a hexagonal honeycomb geometry, the so-called Xenes
graphene, silicene, germanene, stanene, and plumbene [1],
are of special interest. For instance, the unbuckled graphene
layer with zero gap exhibits amazing physical effects such
as a constant infrared absorbance ruled by the fine-structure
constant [2], the room temperature quantum Hall effect [3],
a high intrinsic carrier mobility [4], and a large thermal
conductivity [5].

The Si, Ge, Sn, and Pb counterparts of graphene can-
not be produced by exfoliation techniques but have been
fabricated on various substrates in the last years [1]. Theo-
retically, as freestanding low-buckled honeycomb layers [6],
their low-energy electronic excitations are dominated by Dirac
fermions. However, due to the increasing spin-orbit coupling
(SOC) along the column C → Si → Ge → Sn → Pb in the
Periodic table, the linear bands near the K and K ′ corner
points of the hexagonal Brillouin zone (BZ) are modified. The

SOC-induced gap opening leads to massive Dirac particles
[7]. Above this gap, a constant infrared optical absorbance as
in graphene is predicted also for the other Xenes [7,8]. The
Xenes are promising candidates for application in ultrafast
detectors, ultra-low-power spintronics, and quantum devices
[9–11]. The gap opening, at least in germanene and stanene
with stronger SOC, makes these materials suitable to room-
temperature quantum spin Hall (QSH) insulators [12,13],
although the quantization of the spin Hall conductivity may
be slightly destroyed by the Rashba contribution to the SOC
[14,15]. Interestingly, pristine plumbene is a trivial insulator,
not showing the topological properties of the other Xenes [16].

Besides electric conduction, thermal conduction is another
important mechanism of energy or information transport [17].
It is mediated by either electrons or phonons. Thermal trans-
port in Xenes has been essentially investigated as driven by
lattice vibrations, in agreement with their dominance over the
electronic contribution in graphene [18]. Phonon transport in
silicene and germanene, but also stanene or plumbene, has
been studied within ab initio theoretical approaches [19–24].
Applying the Green-Kubo method or molecular dynamics
investigations, thermal conductivities of silicene vibrational
lattice in the range of 5–65 W/mK have been predicted
[25–28].

Graphene has a significantly higher phonon thermal con-
ductance than its electronic counterpart at room temperature
[5,18,29–31]. This fact is in complete contrast to metals,
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where the electronic contribution dominates the thermal prop-
erties [32]. In the case of the other Xenes with layer buckling
– silicene, germanene, stanene, and plumbene – the situation
is less clear. Model studies on the electronic contribution to
the thermal properties have been performed without taking
SOC into account [33,34] or with SOC included [22]. Here,
we focus on the low-energy electric carriers at energies near
the Dirac points. A four-band model including spin-orbit
interaction is investigated. Analytical expressions, not only
including SOC but also different band occupations, vertical
electric fields modifying the effective SOC constants, and
temperature variations, are derived for the heat conductance,
the Lorenz number, and the heat capacity. For comparison,
also the electrical conductance is studied.

II. METHODOLOGY

A. Electronic structure model

For energies near the chemical potential μ of the electrons,
i.e., near the Dirac points located at the K (ξ = +) and K ′
(ξ = −) corner points of the 2D hexagonal BZ, the band struc-
ture of Xenes can be described by a four-band tight-binding
model including SOC. With the 2D wave-vector deviations
k̃ = k − kKξ

from the corner points with valley index ξ , one
has a 4 × 4 Hamiltonian matrix [1,15,35,36]

Ĥξ (k̃) = ξ

(
ĥ(k̃) h̄vF k̃+ξ σ̂0

h̄vF k̃−ξ σ̂0 −ĥ(k̃)

)
(1)

with k̃ = (k̃x, k̃y), k̃±ξ = ξ k̃x ± ik̃y, and the 2 × 2 matrix
ĥ(k̃) = −λSOσ̂z + ξU σ̂0, where σ̂z denotes a Pauli matrix but
σ̂0 the unit matrix. The Rashba contribution to the SOC has
been neglected because of its general smallness for Xenes
[35]. The Fermi velocity vF characterizes the gapless linear
bands in the limit of vanishing SOC, λSO ≡ 0. The bias volt-
age U = eFz�/2 can be related to a vertical electric field
with strength Fz, where � describes the buckling of the Xene
lattice. For the parameters in (1), we apply the results of
atomic and electronic structure calculations within the den-
sity functional theory and a semilocal exchange-correlation
potential [1,7]. They are � = 0.00 (0.45, 0.69, 0.85, 0.92) Å,
vF = 0.83 (0.53, 0.52, 0.48, 0.45) × 106 m s−1, and the spin-
orbit gap 2λSO = 0.0 (1.5, 24.0, 73.0, 491) meV for graphene
(silicene, germanene, stanene, plumbene). The area of the unit
cell is 5.28 (12.96, 14.28, 18.91, 21.28) Å2.

The diagonalization of the Hamiltonians (1) gives the four
bands as eigenvalues

εξνs(k̃) = ν

√
λ2

ξs + h̄2v2
F k̃2,

λξs = U − ξsλSO, (2)

where ν = +,− indicates the conduction (ν = +) or valence
(ν = −) band and s = +,− the spin orientation. The applied
electric field modifies the energy gap Eg = 2|λξs| via the ef-
fective SOC constant λξs. The zero of the latter one, λξs = 0,
characterizes the transition from the topological to the trivial
phase of a Xene [37]. Small gaps, |λξs| → 0, give rise to linear
bands in |k̃| and, hence, massless Dirac fermions, while finite
effective SOC constants λξs define massive Dirac particles
for small wave-vector deviations k̃ from the K or K ′ point

FIG. 1. Electronic band structure of germanene in proximity of
the Dirac point as a function of an external electric field. SOC
is included. The horizontal lines denote two different values of
the chemical potential (μ = 15 meV, green line, and μ = 60 meV,
yellow line). Red and blue bands refer to spin up and down states,
respectively.

[7]. An example of topological to trivial insulator transition,
induced by an applied electric field, is shown in Fig. 1 for
germanene. The two chosen chemical potentials illustrate the
degenerate or nondegenerate character of the spin polarized
electron gases with variation of the external electric field.

The eigenvalues (2) allow the description of the spec-
tral properties of the Xenes in the low-energy region [1,38].
Single-particle properties may be described by the trace of the
matrix of single-particle spectral functions

Tr{Âξ (k̃, ε)} = 2π
∑

ν=+,−

∑
s=+,−

δ(ε − εξνs(k̃)), (3)

which yields the density of states (DOS) per energy as

D(ε) = 1

2π

∑
ξ=+,−

A

(2π )2

∫
d2k̃Tr{Âξ (k̃, ε)}.

The DOS has contributions from both valleys and both spin
spaces [1,38]

D(ε) =
∑

ξ=+,−

∑
s=+,−

Dξs(ε),

Dξs(ε) = A

2π h̄2v2
F

|ε|
(|ε| − |λξs|). (4)

Without A, the area of the 2D unit cell of a Xene, the DOS is
measured per energy interval and unit area.

B. Heat capacity

The electronic contribution to the specific heat or heat
capacity at constant area A of the 2D electron gas [32,39] is
given as

CA(T ) =
(

∂u

∂T

)
A

(5)

with the internal energy

u(T ) =
∫ +∞

−∞
εD(ε) f (ε)dε, (6)

which is defined by the temperature-dependent Fermi-Dirac
function f (ε) = 1/[exp((ε − μ)/kBT ) + 1], where the chem-
ical potential is measured with respect to the Dirac point in a
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midgap position of the bands (2). Using the DOS in (4), one
finds

CA(T ) = kB
2

π

(kBT )2A

h̄2v2
F

1

4

∑
ξ=+,−

∑
s=+,−

C̃

( |λξs|
kBT

,
|μ|
kBT

)
, (7)

C̃(x, y) =
∫ ∞

x
t2

{
(t−y)

et−y

[et−y+1]2
+(t + y)

et+y

[et+y + 1]2

}
dt .

(8)

An analytic expression of (8) is possible

C̃(x, y) = x2
{ x − y

ex−y + 1
+ x + y

ex+y + 1

}
+ 6{F2(y, x)

+ F2(−y, x)} − 2y{F1(y, x) − F1(−y, x)}, (9)

if incomplete Fermi-Dirac integrals

Fn(a, b) = 1

n!

∫ ∞

b
dt

tn

et−a + 1
(n = 0, 1, 2, . . . ) (10)

are introduced.

C. Thermal and electrical transport coefficients

Applying Onsager relations between electrical and heat
currents and in-plane electric fields and temperature gradients,
respectively [32,40], one derives

σ = e2L11, (11)

κ = 1

T

{
L22 − L2

12

L11

}
(12)

for the static electrical conductance σ and the heat conduc-
tance κ , where the Onsager coefficients are given (i, j = 1, 2)
by the Jonson-Mahan theorem [41–44]

Li j = − h̄

4π

∑
ξ=+,−

∫
d2k̃

(2π )2

∫ +∞

−∞

[
∂

∂ε
f (ε)

]

× (ε − μ)i+ j−2Kξ (k̃; ε, ε)dε. (13)

The transport properties are ruled by the spectral behavior of
the current-current correlation function averaged over the two
in-plane Cartesian coordinates x and y as

Kξ (k̃; ε, ε′) = 1
2 Tr{[V̂x(ξ, k̃)Âξ (k̃, ε′)][V̂x(ξ, k̃)Âξ (k̃, ε)]

+ [V̂y(ξ, k̃)Âξ (k̃, ε′)][V̂y(ξ, k̃)Âξ (k̃, ε)]}
(14)

with the matrices V̂x(ξ, k̃) and V̂y(ξ, k̃) of the Cartesian com-
ponents of the velocity operator. One finds [1]

Kξ (k̃; ε, ε′) = 2π2v2
F

∑
ν,ν ′=+,−

∑
s=+,−

εε′ − λ2
ξs

εξνs(k̃)εξν ′s(k̃)

× δ(ε − εξνs(k̃))δ(ε′ − εξν ′s(k̃)). (15)

In order to compute the static limit and, therefore, intraband
contributions of the electrical and heat conductances with
ν = ν ′ and ε = ε′ a Dirac δ function δ(0) at zero argument
appears. Applying the definition of the Dirac δ function, one
writes explicitly δ(0) → 1

πγ
with γ = h̄/τ as the reciprocal

relaxation time τ of the carriers multiplied with h̄, i.e., in

energy units. Sometimes, this replacement is called constant
relaxation time approximation, with the intraband relaxation
time τ [32,45].

The constant-relaxation-time approach is a rough approxi-
mation to describe globally the carrier scattering processes by
electron-electron, electron-phonon, electron-impurity etc. in-
teraction which, however, depend on the material, the doping
level and the temperature. More in general, the relaxation time
varies with the band energy and the quasimomentum. These
dependencies have been analytically investigated for different
scattering mechanisms for graphene [46,47]. In 3D metals, τ

is typically 10−14 to 10−15 s at room temperature, i.e., γ =
66–660 meV [32]. In intrinsic 2D crystals, e.g., graphene, the
relaxation time and, consequently, the electrical conductivity
is strongly limited by the electron-phonon scattering [48,49].
The phonon mechanism gives, for high doping and room
temperature, τ = 2 ps [50] or for silicene τ = 1–13 ps, values
which may be reduced due to substrate effects toward less than
1 ps [51,52]. In the case of impurity scattering in graphene
also values of the order of 1–17 ps have been published [53].
Consequently, an upper limit of about γ = 100 meV may be
investigated.

In the case of the electrical conductance σ the relation
(11) to L11 combined with (13) arises from the Kubo for-
mula [1,45,54]. The relation of the thermal conductance κ

(12) to L11, L12, and L22 comes from its evaluation to first
temperature corrections as shown in the framework of the
Sommerfeld expansion [32,43]. The generalization of L11 to
the other Onsager coefficients L12 and L22 (13) can be demon-
strated in terms of thermodynamic Green functions to result
in energy-dependent prefactors (ε − μ)i+ j−2 of the integrand
[42,55]. Apart from an equal temperature-dependent factor,
expression (13) is in agreement with similar representations
in Refs. [33,40].

With the explicit correlation function (15) the Onsager
coefficients become

Li j = 1

πγ h̄
[−sgn(μ)]i+ j−2(kBT )i+ j−1

× 1

4

∑
ξ=+,−

∑
s=+,−

Ci+ j−2

( |λξs|
kBT

,
|μ|
kBT

)
(16)

with (n = 0, 1, 2)

Cn(x, y) =
∫ ∞

x
dt

(
t − x2

t

){
(t − y)n et−y

[et−y + 1]2

+ (−1)n(t + y)n et+y

[et+y + 1]2

}
. (17)

Similarly to C̃(x, y) (8), this expression can be also rep-
resented in terms of incomplete Fermi-Dirac integrals (10).
Apart from constant prefactors and the sums over the valleys
K and K ′ and spin spaces s = +,−, similar expressions can
be found in Refs. [22,33,34]. There, however, SOC (apart
from [22]) and field effects are not taken into account, i.e.,
λξs ≡ 0. Moreover, instead of γ the energy π

2 h̄vF d with the
thickness d of the Xenes appears [22].
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D. Lorenz number

Very interesting is the ratio LT = κ/σ of thermal and elec-
trical conductance, with L known as Lorenz number. In the
classical Drude limit of a three-dimensional (3D) electron gas,
L is proportional to the temperature T , in complete agreement
with the law of Wiedemann and Franz, with a prefactor L =
3
2 ( kB

e )2 [32,39,45]. With first nonclassical corrections within
the Drude-Sommerfeld approximation the prefactor becomes,
instead, L = π2

3 ( kB
e )2 [32]. However, in general, for other elec-

tron gases, the proportionality factor L is not a fundamental
constant. Applying the definitions (11) and (12), with the
Onsager coefficients (16) derived in the framework of the
electronic structure model (1), the Lorenz number becomes

L = κ

σT
= 1

e2T 2

L22L11 − L2
12

L2
11

, (18)

and therefore

L =
(

kB

e

)2
1
4

∑
ξ=+,−

∑
s=+,−

C2(x, y)

1
4

∑
ξ=+,−

∑
s=+,−

C0(x, y)

−
(

kB

e

)2

[
1
4

∑
ξ=+,−

∑
s=+,−

C1(x, y)

]2

[
1
4

∑
ξ=+,−

∑
s=+,−

C0(x, y)

]2 (19)

with x = |λξs|/kBT and y = |μ|/kBT .

E. Transport limits: vanishing SOC or band occupation

In the case of graphene, i.e., no SOC and no layer buckling,
it holds λSO = 0 and � = 0. Consequently, the quantities
(7), (11), and (12) have to be only investigated in the limit
λξs = 0, which is also fulfilled for the other Xenes in the
high-temperature limit |λξs| � kBT . Expressions (8) and (17)
have to be investigated for x = 0. The important factors (17)
are (n = 0, 1, 2)

Cn(0, y) =
∫ +∞

−∞
dt |t + y|t n et

(et + 1)2
(20)

in agreement with Ref. [22]. They can be related to the com-
plete Fermi-Dirac integrals Fn(a, 0) (10). We go a step further
and use their relation to the polylogarithms Lin+1(z) [56] with

Lin+1(−ey) = −Fn(y, 0) (21)

and their series expansion

Lin(z) =
∞∑

k=1

zk

kn
(|z| < 1). (22)

The arguments ey of the polylogarithms hamper the investiga-
tion of the low-temperature limit y → ∞. For that reason, we
apply the inversion relations [56,57]

Li1(−ey) = 2yLi0(−1) + Li1(−e−y),

Li2(−ey) = y2Li0(−1) + 2Li2(−1) − Li2(−e−y),

Li3(−ey) = 1

3
y3Li0(−1) + 2yLi2(−1) + Li3(−e−y) (23)

with the values Li0(−1) = − 1
2 and Li2(−1) = −π2

12 [57,58].
For small n, such relations are obvious because of the validity
of Li0(z) = z/(1 − z) and Li1(z) = − ln(1 − z). The factors
(20) ruling the Onsager coefficients (16) are

C0(0, y) = y − 2Li1(−e−y) = y + 2 ln(1 + e−y),

C1(0, y) = π2

3
+ 2yLi1(−e−y) + 4Li2(−e−y),

C2(0, y) = π2

3
y − 2y2Li1(−e−y) − 8yLi2(−e−y)

− 12Li3(−e−y) (24)

in agreement with the results in Ref. [22].
Very interesting are the classical high-temperature and the

quantum low-temperature limits. In the high-temperature limit
|μ| � kBT (y → 0), one finds

C0(0, 0) = −2Li1(−1) = 2 ln 2,

C1(0, 0) = 0,

C2(0, 0) = −12Li3(−1) = 12η(3), (25)

where η(3) = 3
4ξ (3) = 0.90154 is directly related to the

Riemann zeta function ξ (z) [59]. For graphene-like materials
and high temperatures the three most important transport and
thermal properties (11), (12), and (18) become

σ = 4 ln 2
e2

h

kBT

γ
,

κ = kB

πγ h̄
(kBT )212η(3),

L =
(

kB

e

)2

6
Li3(−1)

Li1(−1)
=

(
kB

e

)2 6η(3)

ln 2
= 7.804

(
kB

e

)2

= 5.79 × 10−8 W � K−2 (26)

with the conductance quantum e2/h = (1/25813) �−1, the
Boltzmann constant kB = 1.38 × 10−23 J K−1, and the quan-
tity (kB/e)2 = 0.742 × 10−8 W � K−2. Consequently, the
Lorenz number of the graphenelike electron gas is more than
twice that of a 3D electron gas in Drude or Drude-Sommerfeld
approach. Applying a typical broadening value γ = 100 meV,
one observes at room temperature 2D in-plane values of
σ = 2.88 × 10−5 �−1 and κ = 4.79 × 10−10 W K−1. For
comparison with 3D literature values, one may divide the
2D quantities by the effective thickness d = 3.35 Å of a
graphene layer [60], resulting in σ/d = 0.86 × 105 (�m)−1

and κ/d = 1.43 W m−1 K−1. The “3D” electrical conductiv-
ity of graphene is much too large by five orders of magnitude
in comparison to experiment [61], including the lattice contri-
bution, while the “3D” thermal conductivity is by about three
orders of magnitude smaller than measured values [62], in
agreement with the expectation that the phonon contribution is
predominant. However, for much larger scattering times, e.g.,
γ → 1 meV, the situation changes drastically. The thermal
electronic part comes in the range of the vibronic contribution.

165420-4



THERMAL PROPERTIES OF DIRAC FERMIONS IN … PHYSICAL REVIEW B 104, 165420 (2021)

In the low-temperature limit |μ| � kBT , i.e., y → ∞, it
holds Lin(−e−y) = −e−y and, therefore,

C0(0, y) = y, C1(0, y) = π2

3
, C2(0, y) = π2

3 y,

C2(0, y)C0(0, y) − C2
1 (0, y)

C2
0 (0, y)

= π2

3 . (27)

The interesting quantities for an electron or hole gas in
graphenelike materials in the quantum limit are

σ = 2
e2

h

|μ|
γ

,

κ = kB

πγ h̄
(kBT )|μ|π

2

3
,

L = π2

3

(
kB

e

)2

. (28)

The conventional Wiedemann-Franz law, as derived within
the Drude-Sommerfeld theory, is recovered analytically, i.e.,
the low-temperature Lorenz number L of graphene is very
close to the room-temperature value of many metals [32]. The
electrical conductance approaches a temperature-independent
value, which however is ruled by the band occupation accord-
ing to |μ|/γ . The heat conductance vanishes linearly with
the temperature but also with the chemical potential measured
with respect to the Dirac point.

F. Limits of electronic heat capacity

In the graphene limit without SOC and external electric
field, x = 0, the heat capacity (7) is dominated by the special-
ization using (21) and (23)

C̃(0, y) = 2
π2

3
y − 4yLi2(−e−y) − 12Li3(−e−y) (29)

with

lim
y→0

C̃(0, y) = −12Li3(−1) = 12η(3) = 10.818

and

lim
y→∞ C̃(0, y) = lim

y→∞
2π2

3
y → ∞.

For graphene, in the high-temperature limit, the heat capac-
ity (7) increases quadratically in temperature, as CA(T ) =
0.81 × 10−3kB( T

T0
)2. This behavior is different from a conven-

tional electron gas with a square-root-like DOS resulting in a
linear temperature variation [32,39,45], because of the linear
energy variation of the DOS (4) in 2D-Dirac systems. In the
low-temperature limit, the graphene heat capacity vanishes
linearly.

In the limit of undoped Xenes silicene, germanene,
stanene, and plumbene, y = 0, the heat capacity is ruled by

C̃(x, 0) = 2x3

ex + 1
− 6x2Li1(−e−x ) − 12xLi2(−e−x )

− 12Li3(−e−x ) (30)

with

lim
x→0

C̃(x, 0) = −12Li3(−1) = 12η(3) = 10.82

and

lim
x→∞ C̃(x, 0) = lim

x→∞ 6x2e−x = 0.

FIG. 2. Electronic heat capacity CA(T ) at constant area A vs
temperature T for (a) graphene/silicene, (b) germanene, (c) stanene,

and (d) plumbene in units of kB
2
π

( kBT0
√

A
h̄vF

)2 = 0.75–10.30 × 10−4kB

(graphene,..., plumbene) with T0 = 300 K. The occupation of the
bands is varied with |μ| = 0, 30, and 60 meV (red-dashed, blue-dot-
dashed, and green-dotted lines, respectively).

Consequently, the heat capacity vanishes exponentially with
temperature lowering, but increases quadratically with rising
temperature in agreement with the thermally induced free
carrier distribution.

III. RESULTS AND DISCUSSIONS

A. Heat capacity

By using Eqs. (7) and (8), the electronic contribution to the
heat capacity CA(T ) is calculated. The results are presented
in Figs. 2 and 3. Here and in the following, the results for
silicene are not separately reported as they are superimposed
to the ones for graphene. Therefore the reference to silicene is
added in figures showing the results for graphene.

FIG. 3. Electronic heat capacity CA(T ) (in units of kB
2
π

( kBT0
√

A
h̄vF

)2)
of germanene vs (a) chemical potential |μ| and (b) bias voltage
|U |. The three curves in (a) correspond to the temperatures T =
0 (red-dashed), 300 (blue-dot-dashed), and 600 K (green-dotted).
In (b), three different occupations |μ| = 0 (red-dashed), |μ| = 20
(blue-dot-dashed), and |μ| = 40 meV (green-dotted) are studied at
room temperature.
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Figure 2 illustrates the temperature dependence of the
heat capacity for all Xenes but different doping situations
expressed by the chemical potential μ. A general tempera-
ture dependence is visible. According to the discussion of
formulas (7) and (29), for finite μ, CA(T ) vanishes linearly
with small T but increases quadratically with rising T . In
contrast to predictions in the literature for graphene [58] and
silicene [33], the appearance of a peak, due to the Schottky
anomaly [39] in a two-level model, does not occur. Rather,
in agreement with the limiting cases of (7) with (29) one
observes in Fig. 2 a nearly linear variation of the normalized
CA(T ) ∼ 2π2

3
|μ|

kBT0

T
T0

for low temperatures T → 0 K but a
quadratic increase ∼10.818(T/T0)2 for high temperatures [(7)
with (30)]. These findings are in agreement with a similar
study on germanene [34]. In any case, the level occupation
|μ| and, therefore, the carrier concentration n ∼ |μ|2 only
play a minor role, independent of the actual temperature. In
addition, the normalization factor makes the dependence of
the heat capacity on the specific Xene almost negligible, with
the exception of plumbene, where the sizable gap affects the
heat capacity behavior for T below 400 K, if no doping is
present. The dependence of the normalized CA(T ) curves on
the Xene in Fig. 2 is also illustrated by expression (8). The
SOC shifts the lower boundary of the integral in (8) toward
larger values and, therefore, reduces the value of the integral.
Consequently, the normalized curves are reduced going from
graphene to plumbene. Thereby, for the low-gap materials, the
effects of the occupation of the bands are of minor influence
on the heat capacity. According to the prefactor 2

π
( kBT0

√
A

h̄vF
)2kB

of 0.75–10.30 × 10−4kB at T0 = 300 K in (7), the electronic
contribution CA(T ) ≡ Cel

A (T ) to the heat capacity of Xenes
is much smaller than the vibrational contribution Cvib

A (T ) ∼
kB. Their ratio is roughly determined by Cvib

A (T )/Cel
A (T ) ≈

(vF /ν)2 [63,64], where ν is the phonon group velocity. The
group velocities of the longitudinal-acoustic phonon branch
in heavier Xenes, germanene and stanene, are 0.7 or 0.5 ×
103 m s−1, while the Fermi velocity vF is around 0.5 ×
106 m s−1 [65,66]. According to the simple ratio square of
the velocities, the phonon contribution to the specific heat
can approximately be six orders of magnitude larger than the
electronic contribution [64], hence even larger than in a 3D
metal, where anyway the phonon contribution dominates for
not too low temperatures.

Because of the smallness of the electronic contribution to
CA(T ), its dependence on the band occupation and the external
electric field is described in Fig. 3 only for germanene as
example. The relatively weak influence of the occupation with
CA(T ) ∼ |μ| for low temperatures is described in Fig. 3(a)
for germanene. There is also a rapid increase with temper-
ature as already seen in Fig. 2. With increasing number of
carriers n ∼ |μ|2 (in the low-T -limit) the heat capacity also
increases. The field dependence in Fig. 3(b) is dominated by
||U | ± λSO|/kBT , the lower integral boundary in (8). As a con-
sequence of the decrease (increase) of the contribution with
the +(−) sign, in total a tendency for partial compensation
of the field effects exist. A variation of the total electronic
contribution is rather weak with the electric field. Moreover,
the transition of the field-modified germanene from the topo-
logical QSH phase into the trivial phase above the critical

FIG. 4. Electrical conductance σ vs temperature T for
(a) graphene/silicene, (b) germanene, (c) stanene, and (d) plumbene
in units of 2 e2

h
kBT0

γ
. The band occupation is varied with |μ| = 0

(red-dashed), 30 (blue-dot-dashed), and 60 meV (green-dotted). The
insets show the high-temperature convergence towards the same red
independently of the occupation.

field strength U = λSO [37,67] has no influence on the heat
capacity.

B. Electrical conductance

The in-plane electrical conductance σ is plotted
versus temperature in Fig. 4 for graphene/silicene,
germanene, stanene, and plumbene in units of 2 e2

h
kBT0
γ

=
2.002 × 10−5 �−1 for γ = 100 meV and T0 = 300 K. In
the case of λSO = 0, i.e., graphene in Fig. 4(a), it holds
from (24) σ = 2 e2

h
|μ|
γ

{1 + 2kBT
|μ| ln[1 + exp(−|μ|/kBT )]}.

Consequently, this conductance linearly vanishes in the
low-temperature limit for μ = 0. For doped graphene,
the low-temperature value of σ is ruled by the chemical
potential |μ| for T = 0 K and, for increasing T , we find
a subsequent linear behavior σ ∼ 2kBT ln 2. A similar
temperature behavior as for graphene is observed for silicene,
germanene, stanene, and plumbene despite the finite λSO,
when μ �= 0. In the case of these Xenes, the low-temperature
limit is ruled by a constant value whose magnitude depends
on the doping level, while the extension of the constant
region above T = 0 K is ruled by the gap value ∼λSO. The
high-temperature trend is independent of the Xene and its
doping. The electrical conductance shows the same linear
behavior ∼2kBT ln 2. Previous tight-binding studies found an
opposite high-temperature behavior of σ for increasing T in
silicene [33], while more recent studies of germanene [34]
agree with the results of Fig. 4(a).

The absolute values of the 2D conductance of graphene
are difficult to compare with experimental results. This is
perhaps easier for a derived quantity, the carrier mobility
μm = σ/en with n as the density of holes or electrons. In
the low-temperature limit the carrier density is given by
n = |μ|2/(π h̄2v2

F ) and the conductance by the Drude-like
expression (28) σ = e2|μ|/(π h̄γ ), resulting in a mobility
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FIG. 5. Electrical conductance σ of germanene vs (a) chemi-
cal potential |μ| and (b) bias voltage |U |. In (a) the three curves
correspond to the temperatures T = 10 (red-dashed), 300 (blue-dot-
dashed), and 600 K (green-dotted) and U = 0. In (b), three different
occupations |μ| = 0 (red-dashed), 20 (blue-dot-dashed), and 40 meV
(green-dotted) are studied at room temperature T = 300 K.

μm = eh̄v2
F /(γ |μ|) for T → 0K. With the Fermi velocity of

graphene it holds μm = ( 100 meV
γ

)( 100 meV
|μ| )453.3 cm2 V−1 s−1.

That means in the limit of low doping n, i.e., small |μ| and/or
small broadening parameter γ (large scattering times), the
mobility derived within the electronic structure model (1)
is able to explain the measured values between 3000 and
10 000 cm2 V−1 s−1for n = 5 × 1012 cm−2, i.e., |μ| =
216 meV, and γ = 14.3–4.3 meV [61], or even 200 000
cm2 V−1 s−1 for n = 2 × 1011 cm−2, i.e., |μ| = 8.7 meV, and
γ = 2.6 meV [68].

In Fig. 5(a), the influence of the doping level is more
clearly illustrated in the case of germanene. The electrical
conductance increases with the number of carriers indepen-
dent of temperature. The temperature determines the absolute
values of σ especially in the limit of small carrier densities,
μ → 0. Consequently, for low doping, i.e., for a classical
2D electron gas, the conductance is rather temperature-
dependent. For higher chemical potentials, for degenerate
electron gases with |μ| > λSO, a strong conductance increase
occurs, which is nearly linear in μ following (28). The in-
fluence of an external electric field on the conductance in
Fig. 5(b) can be again discussed in terms of the variation of
the effective spin-orbit interaction λξs (2). It is ruled by the
integral C0(x, y) in (17). With rising parameter x = |λξs|/kBT ,
the integral value is reduced by the shift of the lower integral
limit toward larger values and the reduction of the integrand
by the term proportional to x2. The effect of finite x values
also depends on the doping level, i.e., on the y value, y =
|μ|/(kBT0). It rules the absolute value of σ . Thereby, for U <

λSO, the curves σ versus U show a plateau, while for larger
bias voltages U > λSO a decrease appears. The bias opens and
closes the gap and affects the band distances by varying λξs.

C. Thermal conductance

The temperature dependence of the thermal conductance
of the five Xenes graphene, silicene, germanene, stanene and
plumbene is illustrated in Fig. 6.

In agreement with the analytical limits (26) and (28), one
observes an almost linear increase with temperature in the
low-temperature limit. Independent of μ, the thermal con-

FIG. 6. Thermal conductance κ of (a) graphene/silicene, (b) ger-
manene, (c) stanene, and (d) plumbene vs temperature T in units
of kB(kBT0 )2/(πγ h̄) = 100 meV

γ
× 4.46 × 10−11 W K−1 with T0 =

300 K. Curves for three occupation levels |μ| = 0 (red-dashed),
30 (blue-dot-dashed), and 60 meV (green-dotted) are presented. The
insets show the crossing of the curves for different occupations at
low temperatures.

ductance κ vanishes with T → 0 [see Eq. (28)]. However,
for higher temperatures kBT � |μ|, this increase becomes
quadratic. The quadratic behavior is nearly found in the
entire temperature range for μ = 0. In general, the lower-
temperature slopes of κ slightly increase with the occupation
level |μ|, while in the high-temperature limit κ is slightly
reduced with respect to the μ = 0 case. As a consequence
(see insets in Fig. 6) the κ-curves for zero chemical potential
and finite μ values cross each other for temperatures between
100–250 K, somewhat in dependence of the Xene material.

The absolute values decrease slightly along the column
C → Si → Ge → Sn → Pb. The effect becomes much more
pronounced for a larger spin-orbit coupling constant of λSO =
250 meV, close to that of plumbene [16,69]. Then, κ is
drastically reduced in the displayed temperature range as a
consequence of the significant SOC-induced gap, which is
large compared to the chosen kBT and μ values. Even if
μ = 0, for finite temperatures small amounts of carriers are
still available to conduct heat. The extremely small reduc-
tion with rising value λSO in the case of the four Xenes
graphene, silicene, germanene, and stanene in Figs. 6(a)–6(c)
is due to similar effects as discussed above for the heat ca-
pacity, whereas a more significant reduction of κ occurs for
plumbene. This is mainly due to the low carrier densities in
plumbene for the same μ. They are only temperature-induced.
The general temperature dependence is in agreement with
other calculations for germanene and stanene [22,34] but con-
tradicts earlier numerical studies for silicene [33]. In any case,
a temperature dependence with a pronounced maximum near
or slightly below room temperature as displayed in Ref. [33]
cannot be confirmed by our study.

In order to compare our results with experimental data, the
2D values in Fig. 6(a) for graphene have to be re-estimated
to a corresponding 3D quantity dividing by the effective
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FIG. 7. Thermal conductance κ of germanene vs (a) chemi-
cal potential |μ| and (b) bias voltage |U |. In (a) the three curves
correspond to the temperatures T = 0 (red-dashed), 300 (blue-dot-
dashed), and 600 K (green-dot) and U = 0. In (b), three different
occupation levels |μ| = 0 (red-dotted), 20 (blue-dot-dashed), and
40 meV (green-dotted) are studied at room temperature.

graphene thickness d = 3.35 Å. This results approximately in
a value of κ/d = 1.13 × 100meV

γ
W m−1 K−1 at room tempera-

ture and chemical potentials μ below 100 meV. Even for small
broadening parameters of about 5 meV one finds electronic
contributions to the in-plane thermal conductivity which are
by two orders of magnitude smaller than experimental values
of 2000–4000 W m−1 K−1 [62]. On the other hand, analytical
studies including parameters for stanene suggest negligibility
of the electronic part compared to the phonon thermal con-
ductance only in the range below room temperature, whereas
in the high-temperature range above 350 K the electronic
contribution dominates [22].

The dependence of the thermal conductance κ on the dop-
ing level is displayed in Fig. 7(a). For vanishing |μ| the
high-temperature limit (26) is generally realized. It shows
a nonmonotonous, almost quadratic temperature behavior
in agreement with studies for stanene [22]. For larger μ

values, apart from almost vanishing κ values for T = 0 K
(see Ref. [30]), a nonmonotonous variation of κ versus μ is
visible. Thereby, the change of the absolute values remains
small. With increasing chemical potential the κ values are
first reduced. However, the curves at larger |μ| are closer to
the opposite temperature limit (28). Similar tendencies are
also visible in Fig. 7(b) by varying the effective spin-orbit
coupling. The field modification of λSO to λξs (2) by a finite U
gives rise only to weak variation of the germanene properties
expressed by a SOC constant of λSO = 12 meV. Only for
larger U values, i.e., large effective λξs ones, κ is reduced as
discussed in Fig. 6. The U dependence of κ is similar to that
of σ in Fig. 5(b).

D. Conductance ratio

The Lorenz numbers L = κ/(σT ) of the 2D carrier gases
in graphene, silicene, germanene, stanene, and plumbene are
plotted in Fig. 8 as a function of temperature. In units of
(kB/e)2 we find an increase from about π2

3 ∼ 3.3 at low
temperatures, i.e., the Drude-Sommerfeld value, to values of
approximately 7.8 at very high temperatures, more precisely
for |μ| � kBT and |λSO| � kBT . Thereby, the influence of the
Xene via the SOC constant λSO or the occupation level |μ| is

FIG. 8. Lorenz number L (18) in units of (kB/e)2 vs tempera-
ture T for (a) graphene/silicene, (b) germanene, (c) stanene, and
(d) plumbene and four occupation levels |μ| = 5 (red-dashed),
15 (blue-dot-dashed), 30 (green-dotted), and 60 meV (yellow-solid).
The insets illustrate how the maxima of L for low occupation levels
in the temperature interval somewhat below T = 200 (stanene) and
800 K (plumbene) depend on λSO.

seemingly more pronounced than in the cases σ and κ versus
T . In all panels, after running through a minimum at extremely
low temperatures, the Lorenz number tends to increase with
rising temperature to values, which are higher by factors 2–3
than that of a classical 3D Drude gas. Nevertheless, in the
low-temperature limit the L value of a Drude-Sommerfeld
electron gas is reached. However, the shape of the curves
L versus T significantly depends on the occupation level μ

and the gap value 2λSO. For a degenerate 2D carrier gas
with the chemical potential μ in a conduction or valence
band, |μ| > λSO, and not too high temperatures all curves ex-
hibit values L < π2/3(kB/e)2 (28). The true increase toward
L = 6Li3(−1)/Li1(−1)(kB/e)2 ≈ 7.804(kB/e)2 (26) happens
for all occupations at higher temperatures, approximately
for kBT > |μ|. Dramatic changes happen for relatively large
gaps, e.g., in germanene, stanene, and plumbene, and low
doping |μ| < λSO, i.e., in the case of classical carrier gases.
The conductance ratio can exceed the limiting value of 7.804
in units of (kB/e)2. A pronounced maximum appears in the
range of about 50–200 K, i.e., for kBT < λSO.

The variations of the Lorenz number with the band occu-
pation |μ| and the field modification of the spin-orbit coupling
by the bias U are visible in Fig. 9. Figure 9(a) shows an unex-
pected behavior with a peak near μ = 0 meV, i.e., vanishing
doping and the chemical potential in the middle of the gap of
germanene. At the Dirac point, the low-temperature expansion
breaks down and the details of the polylogarithmic functions
become important [see (26)]. The absolute height and width
of this peak are determined by the actual temperature. In
addition, for lower temperatures the peak is accompanied by
a dip below L = π2/3(kB/e)2 (28) but converges with rising
chemical potential in the conduction or valence bands to this
value of L, behaving like graphene where λSO = 0 and μ is far
from the Dirac point, i.e., μ � kBT . The effective coupling
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FIG. 9. Lorenz number L of germanene vs (a) chemical poten-
tial |μ| and (b) bias voltage |U |. In (a) the temperatures T = 20
(red-dashed), 100 (blue-dot-dashed), 300 (green-dotted), and 600 K
(yellow-solid) are considered for U = 0. In (b), the three occupa-
tion levels |μ| = 0 (red-dashed), 20 (blue-dot-dashed), and 40 meV
(green-dotted) are studied at room temperature.

constants λξs, fixed by U , hardly affect L. The influence of the
variation of the effective SOC constant λξs by a bias voltage
U in Fig. 9(b) mainly indicates the suppression of the Lorenz
number L at room temperature with rising μ. The topological
transition of germanene from U < λSO to U > λSO [37] has
only a minor influence, which is indicated by an increase of L
for large bias voltages.

In general, the Wiedemann-Franz law LT = κ/σ illus-
trates that the charged carriers of a system contribute to both
the electrical transport and the heat transport and that the heat
conductivity increases with temperature by a factor LT more
than the electrical conductivity. Whereas in the majority of
3D metals [32] this increase is indeed linear with a constant
Lorenz number L, the degenerate carrier gases in the 2D
Xenes show a strong increase of L with rising temperature T
with variations related to the fundamental gap and the doping
level. This observed fact may be interpreted as a clear ten-
dency that, above room temperature, the studied 2D crystals
are better thermal conductors than 3D metals for a given
electrical conductivity.

IV. SUMMARY AND CONCLUSIONS

Applying an electronic structure model including spin-
orbit coupling, the electronic contributions to the heat capacity
and thermal conductance are investigated by analytical and

numerical approaches. For comparison, also the electrical
conductance is investigated. The electronic structure model
is valid for low-energy Dirac-like excitations in the electron
or hole gases in Xenes such as graphene, silicene, germanene,
stanene, and plumbene. The scattering properties in the carrier
gases, due to doping μ or temperature T , are modeled by a
broadening parameter γ , which represents the reciprocal scat-
tering time of the carriers, apart from the Planck’s constant.

We derive analytical expressions for the heat capacity,
the electrical conductance, the thermal conductance, and the
Lorenz number in terms of incomplete Fermi-Dirac integrals.
In the limit of vanishing spin-orbit coupling constants, i.e.,
in the graphene limit, analytical expressions in terms of com-
plete Fermi-Dirac integrals or the polylogarithm functions are
derived. The detailed behavior of the four studied quantities
versus temperature and occupation level is discussed. This
also holds for the material dependence via the SOC constant
and the influence of the external bias U . The absolute values
of the electron contributions to the thermal quantities, such as
thermal conductance and Lorenz number are small compared
to measured ones, at least for graphene, thus confirming that
the phonon contribution is the dominant one. Very interesting
is the resulting conductance ratio divided by the absolute tem-
perature, the Lorenz number L. In contrast to what one knows
from the classical or semiclassical electron gases in 3D, we
observe special characteristics of the 2D Dirac fermion sys-
tems. At room or higher temperatures, depending on the actual
values of λSO and μ, the L number converges to the high-
temperature limit, which is larger by a factor 2–3 than that
of a Drude-Sommerfeld gas. In general, it shows variations
with temperature, occupation and material. Consequently, the
thermal conductance in the 2D quantum materials does not
follow the classical Wiedemann-Franz law, at least not at
higher temperatures. This is especially a consequence of the
band linearity around the Dirac point in wide ranges of the
Brillouin zone around K or K ′ corner points.
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