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Downconversion of quantum fluctuations of photonic heat current in a circuit
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We discuss the nonzero frequency noise of heat current with the explicit example of energy carried by thermal
photons in a circuit. Instead of the standard circuit modeling that gives a convenient way of predicting time-
averaged heat current, we describe a setup composed of two resistors forming the heat baths by collections of
bosonic oscillators. In terms of average heat transport this model leads to identical results with the conventional
one, but besides this, it yields a convenient way of dealing with noise as well. The nonzero-frequency heat current
noise does not vanish in equilibrium even at zero temperature, a result that is known for, e.g., electron tunneling.
We present a modulation method that can convert the difficult-to-measure high-frequency quantum noise down
to zero frequency.
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I. INTRODUCTION

The quantum noise of heat current, i.e., noise at nonzero
frequencies, is an intriguing topic [1–7]. It has been demon-
strated theoretically for several processes, including heat
transport by electrons, phonons, and between the two, that
this noise does not vanish even at zero temperature, thus jeop-
ardizing the validity of the fluctuation-dissipation theorem.
Energy can be transported by various mechanisms. In con-
densed matter systems the most common carriers of energy
in the form of heat are electrons and phonons. Outside this
domain radiation by photons in different frequency regimes
provides an important channel of energy exchange and ther-
malization. But even within solid-state systems, radiation
plays an important role, which is the topic of the current pa-
per. In electrical circuits this mechanism corresponds to heat
transmitted by thermal noise, which can also be interpreted
as emission and absorption of thermal microwave photons
[8–11]. In this context a straightforward way to treat the
problem of average heat current in linear circuits is to employ
a circuit theory where quantum noise emitted by dissipative
elements induces Joule heating elsewhere in the said circuit
[8,12,13]. To study noise of this heat current, various methods
have been employed [14–16], including full-counting tech-
niques with treatment of circuits by Keldysh Green functions
but focusing on zero-frequency noise. Here we address the
archetypal Johnson-Nyquist setup of two resistors coupled to
each other [17,18] either directly or via a reactive element.
We build up the resistors of bosonic oscillators [19–23], as
shown in Fig. 1(a), this way obtaining a microscopic Hamilto-
nian amenable for investigating noise at arbitrary frequencies,
specifically finding the noise spectrum of heat in these con-
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figurations. Observing the quantum heat current noise is an
experimental challenge. To overcome it, we propose to shift
the high-frequency noise to low or zero frequency by modu-
lating the coupling between the two heat baths periodically.
This mixing principle, familiar for electrical measurements
[25–27], has been proposed by Averin for fermionic heat noise
[5]. As pointed out by several authors [28], it is important to
specify what quantity to measure in order to make precise
theoretical predictions. In this respect heat current noise af-
ter the downconversion boils down to a measurement of the
time-dependent temperature of the mesoscopic heat bath (re-
sistor). Concretely we propose variation of a reactive element
between the resistor baths to achieve this goal.
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FIG. 1. Elements for radiative heat transport in a circuit. (a) We
model the resistors by a collection of bosonic oscillators. (b) The
basic setup of two resistors R1 and R2 at temperatures T1 and T2,
respectively. (c) Same as (b) but with a parallel LC circuit with
inductance L and capacitance C as frequency-dependent nondissi-
pative elements between the resistors, representing, e.g., a classical
superconducting quantum interference device (SQUID) [24].
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II. MODELING THE SYSTEM OF TWO RESISTORS

The basic systems to be described in this work are shown
in Fig. 1. We consider resistor R2 with phase operator ϕ̂2

across it and subject to current operator î2 injection, due to
the current produced by resistor R1 arising from its thermal
noise at temperature T1. Its effective Hamiltonian, describing
the system and its coupling to the bath R1, is then

Ĥ = Ĥ2 − î2�̂2 ≡ Ĥ2 + V̂ , (1)

where Ĥ2 = ∑
k h̄ωk ĉ†

k ĉk is the Hamiltonian of the bare resis-
tor R2 with oscillator energies h̄ωk and ladder operators ĉk, ĉ†

k ,
and �̂2 = h̄

e ϕ̂2. To find the properties of the circuits we write
the charge operator of the oscillators forming resistor R1 and
phase operator of the oscillators of R2 as a linear combination
with coefficients μ

(1)
j and λ

(2)
k in the interaction picture as

q̂1(t ) =
∑

j

ıμ
(1)
j (b̂ je

−ıω j t − b̂†
je

ıω j t ), (2)

ϕ̂2(t ) =
∑

k

λ
(2)
k (ĉke−ıωkt + ĉ†

keıωkt ). (3)

Here the ladder operators for resistor R1 are b̂ j, b̂†
j , and the

superscript (i) refers to the resistor Ri.
Let us consider the basic setup [17,18] as shown in

Fig. 1(b). We aim to calculate the photonic heat transport,
its mean value and nonzero frequency noise, based on the
model here. The current operator î2 through R2 then reads
î2 = R1

R1+R2
dq̂1/dt , i.e.,

î2(t ) = R1

R1 + R2

∑
j

μ
(1)
j ω j (b̂

†
je

ıω j t + b̂ je
−ıω j t ). (4)

As a result, the coupling Hamiltonian V̂ is given by

V̂ (t ) = − R1

R1 + R2
(5)

×
∑

j,k

λ
(2)
k μ

(1)
j ω j (b̂

†
je

ıω j t + b̂ je
−ıω j t )(ĉ†

keıωkt + ĉke−ıωkt ).

This is in the form that one obtains by scattering theory
imposing energy conservation [2,29]. In order to establish
consistency between the oscillator bath model and the actual
circuit, we request the current î = dq̂1/dt noise of resistor R1,
Si(ω) = ∫ ∞

−∞ dteıωt 〈î(t )î(0)〉, to be equal to the quantum cur-
rent noise of that resistor, i.e., Si(ω) = 2

R1

h̄ω
1−exp(−β1 h̄ω) , where

β1 = 1/(kBT1) is the inverse temperature of R1. Similarly we
set the voltage v̂ = d�̂2/dt noise of resistor R2, Sv (ω) =∫ ∞
−∞ dteıωt 〈v̂(t )v̂(0)〉, equal to Sv (ω) = 2R2

h̄ω
1−exp(−β2 h̄ω) with

similar notations. These conditions lead to the expressions

μ
(1)
j =

(
h̄

πν1(ω j )ω jR1

)1/2

, λ
(2)
k =

(
h̄R2

πν2(ωk )ωk

)1/2

, (6)

where νi(ω) is the oscillator density of states in Ri with
i = 1, 2. The operator of heat current to R2, ˙̂H2 = ı

h̄ [Ĥ, Ĥ2] =

ı
h̄ [V̂ , Ĥ2], reads then

˙̂H2 = ı
h̄
√

r0

2π

∑
j,k

√
ω jωk√

ν1(ω j )ν2(ωk )

×(b̂†
je

ıω j t + b̂ je
−ıω j t )(ĉ†

keıωkt − ĉke−ıωkt ), (7)

with r0 = 4R1R2/(R1 + R2)2.

A. Quantum of thermal conductance

According to the Kubo formula, the expectation value of
heat current Q̇ ≡ 〈 ˙̂H2〉 to R2 under stationary conditions is

Q̇ = − ı

h̄

∫ 0

−∞
dt ′〈[ ˙̂H2(0), V̂ (t ′)]〉0, (8)

where 〈·〉0 denotes the expectation value of a quantity
for the noninteracting resistor at a given temperature.
Since 〈b̂†

j b̂ j〉0 = n1(ω j ) with n1(ω) = 1/(eβ1 h̄ω − 1) the Bose-

Einstein distribution of resistor R1, and similarly 〈ĉ†
k ĉk〉0 =

n2(ωk ) for resistor R2, the heat current is given by

Q̇ = r0
πk2

B

12h̄
(T 2

1 − T 2
2 ), (9)

which is equal to the expression obtained by standard circuit
theory [8,12,13], thus providing a sanity check of our model.
Equation (9) yields heat conductance Gth = dQ̇/dT1|T in the
form Gth = r0GQ, where GQ = πk2

BT/(6h̄) is the thermal
conductance quantum at temperature T [30].

B. Equilibrium quantum heat current noise

The focus in this paper is the equilibrium noise [31] of heat
current [15,16]. With the same operators, this noise at (angu-
lar) frequency ω, SQ̇(ω) = ∫ ∞

−∞ eıωt 〈 ˙̂H2(t ) ˙̂H2(0)〉, is given by

SQ̇(ω) = h̄2r0

2π

∫ ∞

−∞
d	 	(	 + ω)n1(	)[1 + n2(	 + ω)].

(10)

The symmetrized heat current noise Ssymm
Q̇

(ω) ≡ (SQ̇(ω) +
SQ̇(−ω))/2 at equal temperatures T1 = T2 ≡ T for two resis-
tors reads

Ssymm
Q̇

(ω) = r0

24π h̄
[(2πkBT )2 + h̄2ω2]h̄ω coth

(
h̄ω

2kBT

)
.

(11)

This result exhibits nonvanishing noise at ω �= 0 even at T =
0, a result known for some other systems [2–6] but not for the
present one previously. At ω = 0 it reproduces the fluctuation-
dissipation theorem [1,31]. We note that identical results here
and in what follows for the physical quantities Q̇ and SQ̇ can
be obtained with a similar strategy by replacing î2�̂2 in Eq. (1)
with v̂2q̂2, where v̂2 is the operator of voltage induced by R1

on R2, and q̂2 the charge operator for oscillators forming R2.

III. ADDING A REACTIVE COUPLING ELEMENT

Next we investigate the influence of frequency-dependent
dissipationless impedance in the circuit. This element can
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then filter the heat current and it will be used as one of the
examples in illustrating the noise downconversion toward the
end of the paper. Taking the circuit in Fig. 1(c) with paral-
lel inductance L and capacitance C, we find the differential
equation for the current îL through the inductor given with the
help of î = dq̂1/dt of the noise source with q̂1 from Eq. (2)

as d2iL
dt2 + 1+ CL̇

L (R1+R2 )
C(R1+R2 )

diL
dt + 1

LC iL = 1
LC

R1
R1+R2

i(t ). Here L̇ is the
rate of change of the inductance due to, e.g., variation of
the magnetic flux through the superconducting quantum in-
terference device (SQUID). For periodic sinusoidal variation
of L at driving frequency ω0/2π , we have |L̇| � ω0L. Thus
we may ignore the direct influence of L̇ in this equation if
C 	 1/(ω0(R1 + R2)). Since, as it will turn out later, the
modulation frequency will be of the order of kBT/(2π h̄)
in order to obtain meaningful downconversion, we have the
condition C 	 2π h̄/(kBT (R1 + R2)). This yields C 	 1 pF
at T = 10 mK and for R1 + R2 = 100 	, which is a forgiv-
ing bound since the typical junction capacitances are of the
order of 1–10 fF. Then ignoring the direct influence of L̇, the
solution of the circuit equation for î2(t ) is, with the help of
Eq. (3),

i2(t ) = R1

R1 + R2

∑
j

μ
(1)
j ω j

×
{

1 − LCω2
j

(1 − LCω2
j ) + ı

ω j L
R1+R2

b̂†
je

ıω j t + H.c.

}
,

(12)

which is exact for a stationary LC circuit and approximately
correct for sufficiently slowly varying L as described above.
Since the relevant angular frequencies ω j are again of the
order of kBT/(2π h̄), it turns out that this equation is well
approximated by

i2(t ) = R1

R1 + R2

∑
j

μ
(1)
j ω j

{
1

1 + ıω j/ωL
b̂†

je
ıω j t + H.c.

}
,

(13)

with the same condition for the capacitance C as above. Here
ωL = (R1 + R2)/L. This is the equation for a pure inductance
L between the two resistors, and exact for that case at arbitrary
frequencies of modulation as well; thus at the end we only
need to consider this simplified circuit both in the stationary
and modulated cases as long as the condition given for C is
satisfied. Using Eqs. (13) and (3), the coupling Hamiltonian is
given by

V̂ = − R1

R1 + R2

∑
j,k

(ĉ†
keıωkt + ĉke−ıωkt )

×
(

μ
(1)
j ω j

1 + ıω j/ωL
b̂†

je
ıω j t + μ

(1)
j ω j

1 − ıω j/ωL
b̂ je

−ıω j t

)
.

(14)

The operator of heat current to R2 for the circuit of Fig. 1(c)
reads then

˙̂H2 = ı
h̄
√

r0

2π

∑
j,k

√
ω jωk√

ν1(ω j )ν2(ωk )
(ĉ†

keıωkt − ĉke−ıωkt )

×
(

1

1 + ı
ω j

ωL

b̂†
je

ıω j t + 1

1 − ı
ω j

ωL

b̂ je
−ıω j t

)
. (15)

A. Average heat current

The expectation value of the above operator which gives
the heat current to R2 is given by

Q̇ =
∫ ∞

0

dω

2π

4R1R2

|R1 + R2 + ıωL|2 h̄ω[n1(ω) − n2(ω)], (16)

again obtained by Eq. (8). This is again the same result as
that from the circuit theory, and it shows that the presence
of nonvanishing inductance decreases the heat current, as ex-
pected. In order to solve the above integral analytically, we
assume a small inductance such that kBT L/h̄ 	 (R1 + R2).
Using the Taylor expansion for the integrand 4R1R2/|R1 +
R2 + ıωL|2 
 r0(1 − (L/(R1 + R2))2ω2), the heat current be-
tween the two resistors via an inductor reads

Q̇ = r0
πk2

B

12h̄
(T 2

1 − T 2
2 ) − r0

π3k4
B

30h̄3

L2

(R1 + R2)2
(T 4

1 − T 4
2 ).

(17)

The first part is the heat current between two bare resistors of
Eq. (9). The thermal conductance then reads

G(L)
th = r0GQ

{
1 − 1

5

(
2πkB

h̄

L

R1 + R2

)2

T 2

}
. (18)

Here G(L)
th denotes the thermal conductance of this particular

circuit.

B. Heat current noise

With the same procedure as before, we obtain the sym-
metrized noise of heat current. In this circuit, we find that
the lowest-order correction to the result of Eq. (11) is
−δSsymm

Q̇
(ω), where

δSsymm
Q̇

(ω) = h̄r0

4π

L2

(R1 + R2)2

×
{

1

30

(
2πkBT

h̄

)4

+ 1

12

(
2πkBT

h̄

)2

ω2 + 1

20
ω4

}

× h̄ω coth

(
h̄ω

2kBT

)
. (19)

Like the average thermal conductance, also the noise is sup-
pressed by the inductive filter in between.

IV. EXPERIMENTAL ASPECTS

We have shown that, in both the configurations that we
studied here, the noise of heat current at nonzero frequencies
does not vanish even at zero temperature. A question arises
whether these setups are realistic for experiment. The answer
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FIG. 2. Illustration of the principle and a potential practical re-
alization of quantum heat noise downconversion. On the principal
diagram on the left, the resistors are connected by a parallel LC
circuit, with variable inductor. This configuration can be realized as
a SQUID, which is modulated by magnetic field B(t ).

is positive: these configurations were proven to provide ad-
equate description of the circuit in the experiments [10,11]
without including extra reactive elements modeling it. This is
confirmed by the following estimates. The geometric induc-
tance of a line of length 100 μm yields an inductance leading
to impedance of ∼0.1 	 at thermal frequencies at 100 mK.
This impedance is well below a typical series resistance of
Ri = 100 	. On the other hand, the parallel shunting capac-
itance for a similar circuit leads to an impedance of order
100 k	 � Ri. Therefore, such parasitic impedances can be
neglected in our analysis and in the basic experiments on
microcircuits at subkelvin temperatures. The same applies
to the downconversion measurements to be proposed below,
since modulation frequencies are of the same order as temper-
ature. Another question is how to observe the quantum heat
current noise at high frequencies. This is a most challenging
experiment; here we propose a mixing method to shift the
high-frequency noise to low or zero frequency [5], where
measuring such noise would be easier.

V. DOWNCONVERSION OF HEAT CURRENT

According to the setup shown in Fig. 2, i.e., coupling two
resistors via an inductor, the inductance is varied such that
L(t ) = L0[1 + η cos(ω0t + φ)], where η is the amplitude of
the modulation and φ is the random phase of the drive with
respect to system dynamics. In this case, we have the contri-
bution from the ac drive as well. After averaging over φ the
symmetrized heat current noise of the inductance modulation
at frequency ω = 0, SQ̇(0), at equal temperatures of the two
resistors reads

SQ̇(0) = 2kBT 2G(L)
th + η2

2
δSsymm

Q̇
(ω0), (20)

where δSsymm
Q̇

(ω0) is given in Eq. (19) with L = L0. Specifi-
cally for T → 0, we find

SQ̇(0) = η2h̄2r0

160π

L2
0

(R1 + R2)2
ω5

0. (21)

VI. DISCUSSION

The results obtained here for high-frequency noise of heat
current are in line with those derived for electron and phonon
transport elsewhere. All these systems demonstrate nonva-
nishing noise at zero temperature, which is an intriguing
property not easily accountable with the standard fluctuation-
dissipation theorem. Not dwelling further on this last point,
we focus finally on the experimental feasibility of observing
these nonzero frequency fluctuations discussed above. The
direct measurement of heat current noise is a challenging task
even at low frequency, but much more so at high frequencies.
Even the measurement principle for noise at these frequencies
is not obvious: one needs to do it at gigahertz frequencies to
make the frequency-dependent contribution dominant over the
thermal one [see Eq. (11)] even at a temperature of 10 mK
achievable by standard techniques. The downconversion of
this noise, summarized by Eqs. (20) and (21), can, however,
be achieved in present-day experimental circuits operating at
low temperatures. Varying the reactive impedance in between
fixed resistors (Fig. 2) could be realized by a standard tech-
nique, by varying the magnetic flux through a SQUID that
acts as a tunable inductor. Another option, not analyzed here,
would be to vary the resistance of one of the two resistors.
Since the electrical conductance of two-dimensional materials
can be easily controlled by gate voltage due to Coulomb
repulsion, the resistors could be formed either out of semicon-
ducting two-dimensional electron gas [32] or out of graphene.
Finally, the measurement of heat current noise can in practice
be realized as in Ref. [33], by detecting the variations of the
effective temperature of a nanocalorimeter using a fast tunnel
junction thermometer.
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