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A prominent characteristic of two-dimensional higher-order topological insulators (2D-HOTISs) is the topo-
logically protected corner modes associated with gapped edge states. Opening the gap of bulk and edge states is
a key to realizing 2D-HOTIs. In this paper, we theoretically propose that 2D-HOTIs can be realized on porous
network models. We consider two porous network models, the graphenylenelike and the porous-honeycomb
models, which respectively contain 12 and 18 atoms in supercells. These superstructures can open the bulk gap
as well as the edge gap and induce HOTIs. Experimentally, graphene nanomesh, other 2D porous materials, and
organic molecules naturally host supercells with regular nanoholes, which can be candidates to realizing HOTIs.
Our studies reveal that 2D-HOTIs can be realized on some 2D porous network models and provide a promising

route to explore HOTI states in real materials.
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I. INTRODUCTION

Theoretical predictions and experimental realizations of
topological insulators (TIs) have demonstrated the existence
of robust boundary states and revealed the bulk-boundary
correspondence. Several representative TI models have been
theoretically proposed and experimentally achieved, such
as quantum anomalous Hall states [1-3], quantum spin
Hall (QSH) states [4-6], and topological crystalline in-
sulators [7,8]. Intriguingly, topological states have been
explored in some graphene-based systems, such as quasi-one-
dimensional graphene nanoribbons with specially designed
structures [9-12], Kekulé-distorted graphene [13-15], and
porous graphene [16], most of which host supercells. Dif-
ferent from the representative TIs, their topological nature
originates from the geometric configurations of superstruc-
tures. For example, the topology of quasi-one-dimensional
graphene nanoribbon can be destroyed by its edge, width, and
end termination [9] and, in the porous graphene, the size and
distance of regular holes have an impact on the topological
states [16]. For these graphene-based systems, the specially
designed supercells with nanoscale can modify the band struc-
tures, open a new bulk gap, and finally induce the conventional
(or first-order) topological states.

In stark contrast to conventional TIs [17,18], two-
dimensional higher-order TIs (2D-HOTIs) host both gapped
edge and robust corner states [19-33], which indicates
the existence of an anomalous bulk-boundary correspon-
dence, i.e., the bulk-corner correspondence. Consequently,
the key to realizing 2D-HOTIs is to open both the bulk
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and edge gaps and obtain robust corner states. Lattice
dimerization in spinless systems [19,20,27,29,30] and in-
plane Zeeman field in QSH systems [31-33] can open both
bulk and edge gaps and achieve HOTIs—for example, the
Benalcazar-Bernevig-Hughes model [19,20] and Kekulé dis-
torted graphene [29,30], in which the HOTIs are characterized
by quantized quadrupole momentum. The quadrupole mo-
mentum can be calculated on the basis of the nested Wilson
loop [19,20] as well as parities at high symmetric points
in inversion symmetry protected systems [29]. Numerous
2D-HOTIs models have been proposed theoretically; how-
ever, few works report the realization of 2D-HOTTIs in real
materials. To date, 2D-HOTIs in some real materials have
been predicted theoretically, such as the graphdiyne [34,35]
and y graphene [36], on account of the C — C single bonds
mixing with the C = C triple bonds, which detunes the
nearest-neighbor (NN) hopping potentials, in analogy to
Kekulé-distorted bonds.

In this paper, we theoretically propose several 2D porous
network models to achieve HOTTIs, which are induced by the
specially designed supercells instead of lattice dimerization
or in-plane magnetic field. We introduce two triangle lat-
tice models with superstructures—the graphenylenelike and
porous-honeycomb models, whose supercells contain 12 and
18 atoms, respectively. The present superstructures can open
the bulk gap as well as the edge gap, and induce HOTIs.
These HOTTIs can be characterized by the robust corner states
and the quantized bulk quadrupole momentum. Because the
present models have inversion symmetry, the bulk quadrupole
invariant can be calculated on the basis of parities at high
symmetric points [29]. In real materials, graphene nanomesh,
other 2D porous materials and some organic molecules nat-
urally possess superstructures, which can be candidates to
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FIG. 1. Schematic structure of graphenylenelike (a) and porous-
honeycomb (b) models on a triangle lattice, where the gray dashed
circles contain intracellular configuration. In graphenylenelike lat-
tice, there are 12 atoms in a unit cell and 18 atoms as a unit cell in
a porous graphene model. The graphenylenelike model differs from
the graphenylene [37], for there are two types of NN bonds (C — C
single bonds and C = C double bonds) in graphenylene. However,
the graphenylenelike model only hosts one type of NN bond with
uniform length. Here, a; and a, are the lattice vectors.

realize 2D-HOTTIs. On the other hand, HOTIs can be explored
in 2D artificially porous microstructures as well. Our studies
shed light on the realization of HOTIs on 2D porous networks
and may provide a prospective approach to achieve 2D-HOTTIs
in real materials.

II. POROUS NETWORK MODELS

Graphene is a semimetal in which the energy bands touch
at high symmetric points K and K’ [38,39]. However, in
porous graphene, the superstructure with regular arrays of
nanoholes can induce band gaps and modify the electron
propagation [16], for there are no hopping processes in the
region of nanoholes. Hopping processes of some specially de-
signed superstructures may open both the bulk and edge gaps.
Here, we consider two porous network models on triangle
lattice—the graphenylenelike and the porous-honeycomb lat-
tices whose supercells contain 12 and 18 atoms, respectively
(shown in Fig. 1). The tight-binding Hamiltonian is given by

H =1t lala+Hcl, (1

(rr’)

where al’ (ar) denotes the creation (annihilation) operator at
site r, {...) indicates the NN pairs of sites, and ¢ is the NN
hopping potential, respectively. For simplicity, we set # = 1.0.

The models host both time-reversal symmetry and inver-
sion symmetry, i.e., TH(k)T' = H(—k) and PH(k)P' =
H(—k), where H (k) is the Hamiltonian in momentum space
and 7 and P denote the time-reversal and inversion opera-
tors, respectively. On account of the time-reversal symmetry,
Berry curvature satisfies F(—k) = —F(k), but the inversion
symmetry requires F(—k) = F (k). Consequently, the Berry
curvature is F = 0 everywhere in the Brillouin zone, which
is in sharp contrast to Chern insulators and QSH states [40].
Chern numbers of these two porous models naturally equal
zero for C = 5= [, d’k F(k) [41].

III. ENERGY BANDS AND GAPPED EDGE STATES

By Fourier transformation and numerical diagonalization
of the Hamiltonian of both lattice models on torus geometry,
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FIG. 2. Energy bands of the present models. Bulk energy bands
on torus geometry are shown in (a) graphenylenelike model and
(b) porous-honeycomb model. The parities at high symmetric points
are marked in the bands with “+” or “—.” Energy bands on cylinder
geometry of both lattice models are shown in (c) and (d). Gapped
edge states emerge and are marked with red. We also mark the bands
with numbers “1,” 2,7 “3,”....

we obtain the bulk energy spectrum in the first Brillouin zone
(shown in Fig. 2). For the graphenylenelike model [shown in
Fig. 1(a)], the bulk gap opens between the third and the fourth
bands [at quarter filling, shown in Fig. 2(a)]. In the porus-
honeycomb model [shown in Fig. 1(b)], the bulk energy bands
are gapped at half filling. On account of both models with
inversion symmetry, we can obtain the parities (the eigenvalue
of inversion operator P) n = +1 or —1. Based on these pari-
ties, the dipole invariant p = (p,, py) can be expressed as [40]

n"(M)

n(T)’
where 1" indicates the parity of the nth band and i = x or y is
the direction of the reciprocal lattice vector. The quadrupole

momentum Q is defined based on the dipole momentum of the
nth band p? [29],

1 0
pi=) r P =5(gimed2), (D7 = ©)

Qij =Y _ pipl. 3)

The quantized quadrupole momentum associated with zero
dipole momentum [29] can be used to identify the HOTIs in
several triangle lattice models with inversion symmetry, such
as the Kekulé-distorted graphene [29], the y graphene [36],
etc.

The energy bands of both models on cylinder geometry are
illustrated in Figs. 2(c) and 2(d). There are clear edge states
in the energy gap. Simultaneously, the edge states are gapped,
which is reminiscent of the 2D-HOTIs. In order to identify
these novel edge-gapped states, we calculate the quadrupole
invariant Q,, defined in Eq. (3). We first obtain the diploe
momentum (py, py) of both lattice models with the aid of par-
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FIG. 3. Density profiles of topological states localized around
corners. Here, we consider the graphenylenelike (a),(c) and porous-
honeycomb (b),(d) lattice models on parallelograms and hexagonal-
shaped planes. The inset of every figure displays part of the energy
eigenvalues, including obtuse corner states (colored with blue), acute
corner states, and edge states (colored with purple).

ities at high symmetric points [shown in Figs. 2(a) and 2(b)].
Even though the bulk energies are degenerate at I point in
our present models, the eigenvalues of inversion symmetry at
degenerate bands are the same [shown in Figs. 2(a) and 2(b)].
These degenerate energy bands with the same parity have been
reported in Refs. [29,36]. We find the total dipole momentum
of both models are vanished, i.e., (py, py) = (0, 0). According
to Eq. (3), we obtain the total quadrupole momentum of the
present models as Q,, = 1/2, which indicates the existence
of HOTI states on these porous network models.

IV. ROBUST CORNER STATES

In stark contrast to the conventional TIs, 2D-HOTTIs satisfy
bulk-corner correspondence. The present edge-gapped states
are identified as a HOTI state on the basis of the quantized
bulk quadrupole momentum. Consequently, topologically
protected states emerge at corners with open boundary condi-
tion. By numerically diagonalizing the Hamiltonian [Eq. (1)]
of both models with open boundary condition in real space, we
can obtain the energy spectra and density distributions. The
density profiles of the topologically protected corner states
are illustrated in Fig. 3 on the parallelograms and hexagonal-
shaped planes. Here, these corner states are identified with
the help of the energy spectra (the inset ones in Fig. 3). Both
the lattice models in parallelograms host twofold degenerate
corner states [displayed in the insets of Figs. 3(a) and 3(b)],
which are localized around the corners with obtuse angles,
in analogy to the graphdiyne [34,35] and y graphene [36].
From the insets of Figs. 3(c) and 3(d), we find there are sixfold
degenerate states localized around the corners of these models
in hexagonal-shaped planes. In addition, the corner states can
also emerge around the acute corners. We present the acute

FIG. 4. Robust corner states against defects. Panels (a) and
(c) display the corner states localized around obtuse parts. Panels
(b) and (d) show the corner states around corners induced by the
defects. The inset in every figure displays part of the energy eigen-
values, including obtuse corner states (colored with blue), corner
states around defects (colored with red), and edge states (colored
with purple).

corner states and the edge states (colored with purple in Fig. 3)
in Appendix A.

In 2D-HOTIs, topologically protected corner states are
very robust to defects or disorders, unless the strong defects
or disorders completely destroy the corners. We consider the
lattice model with a defect (shown in Fig. 4). By exact diago-
nalization of the real-space Hamiltonian, we obtain the corner
states around obtuse parts [shown in Figs. 4(a) and 4(c)],
which suggest that corner states are robust against the defects.
Moreover, we find several localized corner states are around
the defects [shown in Figs. 4(b) and 4(d)] on account of the ap-
pearance of corners, which stresses once more the existence of
topologically protected corner states in both present models.

These robust corner states originate from the domain wall
states at the intersection of two edges because of the dif-
ferent hopping processes along the edge or the corner. For
simplicity, we display the various hopping processes of the
graphenylenelike model in schematic Fig. 5. Along the edge
(with the same direction), there are five hopping processes
in every unit cell (details in Fig. 5) and seven hopping pro-
cesses along the corner. These different hopping processes
can create a robust domain wall state and the similar origin
of topological corner states has been reported in graphdiyne
and y graphyne. For the porous-honeycomb model, there is
also a domain wall emerging at corners. Simultaneously, we
find these corner states do not exactly require the crystalline
symmetries, such as threefold rotational symmetry (Cs3), six-
fold rotational symmetry (Cg), inversion symmetry (P), and
mirror symmetry (M) (details in Appendix C), which means
that the corner states remain present when breaking Cs, Ce, P,
and M symmetry. The corner states, as domain-wall modes
between two edges, must be robust against the perturbations.
These robust corner states have emerged in the graphdiyne and
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FIG. 5. Schematic figure of the domain wall states at the inter-
section of two edges in a graphenylenelike model. There are five
hopping processes along the edge colored with green and orange;
however, there are seven hopping processes at the corner. A domain
wall emerges which can localize the corner state. Meanwhile, the
arrows denote the hopping processes along one direction and an
electron can hop against the arrows as well.

the y graphyne models protected without crystalline symme-
tries. Even though the present HOTI is not required inversion
symmetry, the quadrupole momentum can still be calculated
based on the parities in the systems with inversion symmetry.

These corner states do not depend on the crystalline
symmetries; however, opening bulk and edge gap is very
necessary. For these porous models, HOTI stems from the
specially designed supercells, instead of the lattice dimeriza-
tion, which is in contrast to Kekulé graphene and breathing
Kagome lattice. However, tuning the lattice dimerization may
lead to other phases. Hence we also explore the topological
phase transition by tuning the intercellular hopping process
t; (details in Fig. 6). For these two porous network models,
when #; is smaller than 0.5, the phase belongs to the normal
insulator; however, when ¢, is larger than 0.5, the HOTI phase
emerges. By tuning 7, there are only two phases appearing,
and this HOTI phase can be characterized by the robust corner
state and the quantized quadrupole momentum.

(b)

FIG. 6. Topological phase transitions of these two porous net-
work models. A is the band gap. “NI” and “HOTI” denote the
normal insulator phase and the higher-order topological phase, re-
spectively. The insets display the structure of graphenylenelike and
porous-honeycomb models with intracellular hopping process ¢ and
intercellular hopping process t;.

V. HOTIs IN GRAPHENE NANOMESH

We have demonstrated the existence of HOTIs in two
porous network models, the graphenylenelike and the porous-
honeycomb lattices. In real materials, graphene nanomesh as
a type of carbon network may be a candidate to realizing
HOTIs. Graphene nanomesh belongs to the porous lattice
with regular nanoholes in a graphene sheet [42—44], which
hosts superstructures. Experimentally, nanoholes in graphene
nanomesh [44] can be specially designed by manually tuning
the size of nanoholes, the distance between two nanoholes,
etc. Here, we model three graphene nanomesh structures with
various sizes of nanoholes [shown in Figs. 7(a)-7(c)] using
a tight-binding description. We set + = —2.8 eV, which is
the NN hopping integral in graphene. The energy bands on
torus geometry are obtained by numerically diagonalizing the
Hamiltonian [in Eq. (1)]. We find the bulk gaps of these
models are opened at half filling, which indicates the appear-
ance of insulator states. Simultaneously, parities of each band
can be respectively calculated with the marked signs “+” or
“—> displayed in Figs. 7(d)-7(f). According to the definition
of dipole and quadrupole momentum [in Egs. (2) and (3)],
we can obtain the vanished dipole momentum and quantized
quadrupole momentum Q., = 1/2 of these three models at
half filling, suggesting the existence of HOTIs. Furthermore,
the robust corner states are displayed in Appendix C.

Different from the graphdiyne [34,35] and vy
graphene [36], there is no lattice dimerization or bond
distorted in graphene nanomeshes. In specially designed
graphene nanomeshes, superstructures can open both the
bulk and edge gaps and induce HOTIs. Consequently, we
provide a promising scheme to realize 2D-HOTIs. Based
on our proposals, experimentally, graphene nanomeshes
can be a potential candidate to realizing 2D-HOTI. Besides
graphene, numerous 2D materials have been discovered,
such as silicene [45], germanene [46], arsenene [47],
antimonene [48], borophene [49], etc. Consequently,
2D-HOTIs can be realized in other 2D porous materials
as well. On the other hand, several organic materials
naturally host superstructures, such as polycyclic aromatic
hydrocarbons [50], annulenes [51], and fullerenes [52],
which can be used to realize HOTIs. Besides real materials,
porous network models can be simulated in some 2D artificial
microstructures and the HOTIs may be realized in these
artificial porous networks.

VI. SUMMARY AND DISCUSSION

We theoretically propose a feasible scheme to realize HO-
TIs on 2D porous networks. We consider two porous network
models on a triangle lattice—the graphenylenelike and the
porous-honeycomb models. These supercells with specially
designed nanoholes can open the bulk gap as well as the edge
gap, which induce HOTTIs. These HOTIs can be characterized
by robust corner states and quantized quadrupole invariant. In
real materials, we investigate the band structure of graphene
nanomesh and demonstrate the appearance of HOTIs which
are induced by superstructures. The geometric configuration
of supercells plays a crucial role in our models, and the present
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FIG. 7. Graphene nanomesh models and their bulk energy bands. (a)—(c) Crystal structures of graphene with regular nanoholes in a triangle
lattice. The red circles contain several intracellular configurations which are viewed as supercells. Gray lines with arrows denote the lattice
vectors and are marked with a; and a,. Panels (d)—(f) show the bulk energy bands on torus geometry marked with signs of parities at high

symmetric points. The parities at high symmetric points are marked with “+” or “—.

idea can be extended to other 2D materials which naturally
host superstructures as well.

Our findings can open up several future research paths on
2D materials with superstructures. First, flat bands have been
reported in porous graphene [53]. Exploration of topological
flat bands and strongly correlated physics in porous models
will be a significant issue. There are three narrow bands in
Fig. 7(f), colored with blue. By tuning the hopping parameters
or the geometry of nanoholes, a nearly topological flat band

(a)

(b)

(c) (d)

FIG. 8. Boundary states in graphenylenelike and porous-
honeycomb models. (a) Acute corner states and (b) edge states in the
graphenylenelike model. (c) Acute corner states and (d) edge states
in the porous-honeycomb model. The inset in every figure displays
energy eigenvalues of obtuse corner states (colored with blue), acute
corner states (colored with orange), and edge states (colored with

purple).

i

is possibly acquired. Secondly, charge fractionalization has
been investigated in HOTIs [19,20]. Theoretical and exper-
imental explorations on fractional charge in porous systems
may be another attractive issue. Thirdly, an interesting prop-
erty of 2D HOTIs is the existence of the one-dimensional
symmetry protected topological phase on the boundary, for
example, the Benalcazar-Bernevig-Hughes model [19,20].
One-dimensional symmetry protected topological phases may

FIG. 9. Robust corner states against C; and Cg symmetries.
(a) Anisotropically intercellular hopping processes (1, t;, and #3) in
the graphenylenelike model and the robust corner state is displayed
in (b). (c) Anisotropically intercellular hopping processes (#;, #,, and
t3) in the porous-honeycomb model and the robust corner state is
displayed in (d). The insets in (b) and (d) denote energy eigenvalues
of corner states. Here, along the black bonds, the hopping potential
is t = 1. We choose t; = 1.2, t, = 1.0, and #; = 0.8 for these two
models.
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FIG. 10. Robust corner states against inversion and mirror sym-
metries. (a) Anisotropically intracellular hopping processes (1) in
the graphenylenelike model and the robust corner state is displayed
in (b). (c) Anisotropically intracellular hopping processes (#;) in the
porous-honeycomb model and the robust corner state is displayed in
(d). The insets in (b) and (d) denote energy eigenvalues of corner
states. Here, along the black bonds, the hopping potential is t = 1.
We choose #; = 0.9 for these two models.

appear in some 2D porous network models. Lastly, the ge-
ometry and irregular arrangement of nanoholes may have an
impact on topological states. Which types of superstructures
can host topological states remains unclear.
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APPENDIX A: BOUNDARY STATES IN
GRAPHENYLENELIKE AND
POROUS-HONEYCOMB MODELS

We have shown the real-space density distribution
of the robust corner states in graphenylenelike and
porous-honeycomb models and these corner states with
twofold degeneracy in both models. Here, we show the corner
states localized around the acute parts of lattices in real space
in Figs. 8(a) and 8(c). These acute corner states host twofold
degeneracy as well. Except for the corner states, edge states
appear in the energy spectra [as shown in Figs. 8(a) and 8(c)].
We also display the density distributions of the edge states for
these two models in Figs. 8(b) and 8(d).

©
90:.1500: 1510
o H

FIG. 11. Robust corner states in graphene nanomesh. There are
42 and 30 atoms in CICGs of (a) and (b), respectively. The inset
in every figure displays energy eigenvalues of corner states (colored
with blue).

APPENDIX B: ROBUST CORNER STATES WITHOUT
CRYSTALLINE SYMMETRIES

In the main text, we argue that the present HOTTIs originate
from the topological domain wall states and do not depend
on the crystalline symmetries. Here, we show these robust
corner states emerge in systems without C3, Cg, P, and M
symmetries. First, we consider models with anisotropically
intercellular hopping potentials along various directions [dif-
ferent hopping potentials 7, #;, and 73 shown in Figs. 9(a)
and 9(c)]. Both the models are absent of C3 and Cg sym-
metries; however, the robust corner states are still localized
around corners [displayed in Figs. 9(b) and 9(d)], which man-
ifest these HOTT states and are not protected by C; and Cq
symmetries. Secondly, we tune the anisotropically intracellu-
lar hopping potentials [details shown in Figs. 10(a) and 10(c)]
which break the inversion and mirror symmetry in both mod-
els. Nevertheless, the corner states still exist, which suggests
these HOTIs do not depend on the inversion and mirror
symmetry.

APPENDIX C: ROBUST CORNER STATES IN
GRAPHENE NANOMESH

HOTIs have been theoretically predicted in porous
graphenes on the basis of the gapped edge states on cylinder
geometry and quantized quadrupole invariant on torus geom-
etry. Here, we choose graphene nanomesh with 42 and 30
atoms and consider the density distribution of corner states.
We numerically diagonalize the real-space Hamiltonian with
open boundary and obtain the energy spectra and sing-particle
states. Twofold degeneracy zero-energy states emerge in the
gap which suggests the existence of corner states of both mod-
els. We display the density distribution of these zero-energy
states in Fig. 11 and they are indeed the corner states; most
of the densities are localized around corners. These numeri-
cal results reveal the existence of HOTIs again in graphene
nanomesh.
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