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Thermal valve in helical liquids controlled by the Rashba effect
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In the context of one-dimensional fermionic systems, helical Luttinger liquids are characterized not only
by intriguing spin properties but also by the possibility of being manipulated by means of electrostatic gates,
exploiting finite Rashba coupling. We use this property to show that a heterostructure composed of a helical
Luttinger liquid, contacted to two metallic leads and supplemented by top gates, can be used as a tunable thermal
valve. By relying on bosonization techniques and scattering of plasmonic modes, we investigate the performance
of this valve with respect to electron-electron interactions, temperature, and properties of the gates. The maximal
modulation of the thermal conductance that the proposed device can achieve is, for experimentally relevant
parameters, around 7%. Such variation can be both positive or negative. Moreover, a modification in the geometry
of the gate can lead to particular temperature dependencies related to interference effects. We also argue that the
effects we predict can be used to establish the helical nature of the edge states in two-dimensional topological
insulators.
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I. INTRODUCTION

Interacting one-dimensional (1D) electronic channels have
attracted great theoretical and experimental interest during
the last decades. Due to the reduced spatial dimensionality,
Coulomb interactions play a prominent role [1–3], result-
ing in a non-Fermi liquid behavior and in peculiar effects
such as charge fractionalization or spin-charge separation
[4–13]. The scenario is even richer when spin-orbit coupling
(SOC) is present [14–17]. In particular, the so-called helical
liquids can emerge. Such states are described in terms of
a couple of 1D channels whose propagation direction and
spin degree of freedom are tightly bound. This property,
called spin momentum locking, has been predicted and ex-
perimentally verified in several and diverse systems. Among
them, the edge states of two-dimensional topological insu-
lators based on HgTe/CdTe heterostructures [14,15,18,19],
strong SOC nanowires [20–23], Bismutene flakes [24], and
high quality graphene samples with large dielectric substrate
and enhanced SOC contributions [25]. As in most 1D sys-
tems, interaction effects are visible even in helical liquids.
Fingerprints related to electronic correlations have already
been reported by means of transport [21,26] and spectroscopic
measurements [24].

A specific and promising property of the systems just men-
tioned is that the strong SOC allows for the manipulation
of a Rashba-like contribution [27–30]. To this end, external
electric fields, induced for example by properly patterned side
or top gates, can be used. The possibility to locally modify the
SOC component by electrical means can be of interest both for
fundamental studies and for possible applications for quantum
technological purposes, in particular in spintronics [31–33].

In this context, a recently emerging field of research re-
volves around the exploitation of thermal gradients, instead
of voltage drops, in nanodevices. The heat and energy flows
in nanostructures [34–43] have hence been addressed. In-
teresting results have already been obtained within different
platforms (using both normal and superconducting nanostruc-
tures), demonstrating the coherent control and manipulation
of heat flux [34,40,44]. These realizations are often based
on hybrid systems with diffusive transport properties. How-
ever, measurements in the quantum point contact geometry
in ballistic channels driven by thermal gradients have also
been reported [34,45,46]. The study of the transport properties
characterizing helical liquids in the presence of thermal gradi-
ents has recently been carried out as well, focusing mostly on
noninteracting systems and on Josephson-like configurations
with superconducting leads [47–52]. In the absence of SOC,
on the other hand, the violation of the Wiedemann-Franz (WF)
law, as expected for a non-Fermi liquid system, has been
predicted [53–57] and reported [58] in 1D systems.

In this work, we consider at the same time the effects of
Rashba coupling and electron-electron interactions. In partic-
ular, we show how the Rashba contributions can be used to
manipulate the transport properties of an interacting helical
liquid in the presence of a thermal gradient. We mostly focus
on the energy flow. Specifically, we consider an inhomoge-
neous helical Luttinger liquid (HLL) [11,27,59], subject to a
thermal gradient, where one or more capacitively coupled top
gates can induce variations in both the interaction strength (via
screening effect) and the Rashba coupling.

Focusing on a thermally biased two-terminal configuration,
we show that the thermal conductance can be manipulated
by varying the Rashba coupling strength. This effect can be
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exploited to engineer a thermal valve and therefore to selec-
tively suppress (or enhance) the energy flow. We characterize
this behavior by evaluating the efficiency of the thermal valve
in different configurations. In particular, we discuss how the
performance of the thermal valve can be affected by different
covering ratios of a top gate with respect to the length of the
interacting helical liquid. We show that the choice of the best
configuration depends on the interaction strength, which also
influences the tunability of the gate-induced Rashba effect.
Interestingly, we demonstrate that the performance of the
thermal valve can be further improved in a configuration with
more than one top gate.

It is worth mentioning that other platforms, involving
superconducting elements, have been recently proposed as
efficient thermal valves [44,60–62]. These systems show great
performances at cryogenic temperatures (well below the criti-
cal temperature of the inherent superconducting compounds).
However, the associated efficiencies are found to be compara-
ble with the ones described in this work, where the working
principle can also be used at higher temperature since it is not
based on superconducting correlations.

The rest of the paper is organized as follows. In Sec. II,
we present the model and the solution of the equations of
motion for an inhomogeneous helical system. In Sec. III, we
discuss the results, focusing on the transport properties in the
presence of a thermal bias in a two-terminal configuration.
We argue that a gate tunable thermal valve can be designed by
exploiting the properties of an interacting helical liquid. We
also reverse the argument and show that a thermal transport
experiment can be useful in determining if the edge states
are helical. Section IV is devoted to a summary of our main
results. Technical details can be found in the appendices.

II. MODEL

A. General setting

We consider an inhomogeneous helical system with spa-
tially varying electron-electron interactions. The helical liquid
consists of two one-dimensional counterpropagating elec-
tronic channels with opposite spin polarization, described in
terms of the spinor �(x) = (ψ↑(x), ψ↓(x))T . At low energies
the spectrum is linear [14,15,63] and the Hamiltonian density
can be written as Hhll(x) = H0(x) + Hint (x), with the free
contribution (hereafter we set h̄ = kB = 1)

H0(x) = −ivF�
†(x)∂xσ3�(x), (1)

where vF is the Fermi velocity and σi (i = 1, 2, 3) are Pauli
matrices acting on the spin degree of freedom. The second
contribution is related to electron-electron (e-e) interactions.
Assuming short range correlations [1,3,63], it can be written
in terms of density-density operators and it reads

Hint (x) = g(x)ρ↑(x)ρ↓(x), (2)

where ρσ (x) = ψ†
σ (x)ψσ (x) is the electronic density with

spin index σ =↑,↓. This term describes interchannel in-
teractions, determined by the spatially dependent coupling
g(x) [11,27,59]. We notice that in the expression above
we have neglected intrachannel density-density interactions
∝ρσ (x)ρσ (x) since the corresponding coupling strength is
usually vanishingly small [64,65]. We underline, however,

FIG. 1. Sketch of the setup. The helical system, consisting of
spin up (red) and spin down (blue) counterpropagating channels, is
contacted with two leads (gray). A top gate (yellow) covers a fraction
r of the helical system and can induce, and therefore can tune, a finite
Rashba interaction.

that inclusion of (small) finite intrachannel interactions does
not qualitatively affect the results discussed below, resulting
solely in a quantitative renormalization of the propagation ve-
locity [26,27]. The parameter g(x) entering Eq. (2) describes
the coupling strength of e-e interactions and is assumed space
dependent. As sketched in Fig. 1, we consider three differ-
ent regions. Two metallic leads (depicted in gray) extending
for x < −l/2 and x > l/2. Physically, they can model two
noninteracting electron reservoirs [4,11] connected to the
central helical system [4,11,59]. These reservoirs can be effec-
tively modeled as one-dimensional noninteracting channels
described by Eq. (1) with g(x) = 0. Conversely, the helical
liquid, located within −l/2 � x � l/2, exhibits a finite e-e
interactions, modeled by 0 < g(x) < 1.

Moreover, in between the two leads, a centered top metallic
gate (depicted in yellow in Fig. 1) covers a fraction r of
the helical system and allows for the local control of the
electric field. The latter generates a space-dependent voltage-
induced Rashba SOC ᾱR(x) � 0 [27,66,67] which results in
the Hamiltonian density [27,28]

HR(x) = − i

2
�†(x) {ᾱR(x), ∂x} σ2�(x). (3)

In particular, we consider a uniform and tunable ᾱR(x) =
αR � 0 under the top gate and ᾱR(x) = 0 elsewhere (see
Fig. 1). Moreover, the presence of a top gate can result in a
possible screening effect that can lower the strength of e-e
interactions. We will take into account this possibility by con-
sidering two different values of the e-e interaction strength.
As sketched in Fig. 1, we consider a coupling constant
g = gh � 0 for the regions which are not covered by the gate
and a (possibly) smaller 0 � gR � gh for the regions right
under the gate.

B. Inhomogeneous helical Luttinger liquid

Following Ref. [27], the full Hamiltonian density

H(x) = H0(x) + Hint (x) + HR(x) (4)

can be diagonalized by introducing a new fermionic spinor
X (x) = (χ+(x), χ−(x))T . It is related to the original one by
the relation

�(x) = e
i
2 σ1θR (x)X (x) (5)
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with the Rashba angle defined by

θR(x) = arctan
αR(x)

vF
. (6)

It is thus possible to write

H0(x) + HR(x) = − i

2
X †(x)v(x)σ3∂xX (x), (7)

where

v(x) = vF

√
1 +

(
αR(x)

vF

)2

(8)

represents a renormalized velocity due to the Rashba coupling
[27].

The density-density e-e interactions can be handled in this
new basis using the bosonization technique [1,4,11,27], i.e.,
by expressing the fermionic fields as vertex operators of two
bosonic fields

χ± = ei
√

π[�(x)±�(x)]

√
2πa(x)

, (9)

which fulfill the commutation relation [�(x), ∂y�(y)] =
−iδ(x − y). We have introduced a space-dependent cutoff
a(x) = v(x)/Ec that is expressed in terms of the ultraviolet
energy cutoff Ec [27]. The whole Hamiltonian can then be
expressed in the quadratic form [27]

H �
∫

u(x)

2

[
K (x)(∂x�(x))2 + (∂x�(x))2

K (x)

]
dx, (10)

where the inhomogeneous Luttinger parameter

K (x) =
√

2πv(x) − g(x)v2
Fv(x)−2

2πv(x) + g(x)
(11)

quantifies the effective interaction strength and

u(x) = v(x)

√(
1 − g(x)v2

F

2π v(x)3

)(
1 + g(x)

2π v(x)

)
(12)

represents the space-dependent propagation velocity of the
plasmonic modes. We stress that for free fermions g(x) = 0,
so that we get K (x) = 1 regardless of αR. By contrast, a finite
g(x) > 0 leads to a Luttinger parameter 0 < K < 1. Interest-
ingly, in this case, the presence of Rashba coupling αR > 0
further modifies the effective interaction strength. In particular
it increases the value of K , effectively reducing e-e strength.

It is worth noting that we assume the spatial variations of
parameters g(x) and αR(x) to be smooth with respect to the
Fermi wavelength, in order to neglect electronic backscatter-
ing, but abrupt with respect to wavelength of the low-energy
plasmonic modes. Consistently with this constraint, in ob-
taining Eq. (10), we have neglected the backscattering terms
proportional to sin θR(x)2(χ†

+χ− + H.c.) [27,30].

C. Scattering states of the inhomogeneous system

A convenient way to address the effects of the spatial
inhomogeneities of the Hamiltonian in Eq. (10) is to study the
scattering problem of the plasmonic modes [11,55,59,68,69].

For each scattering state with energy ω, the equation of motion
of the bosonic field �(x) reads

−ω2�(x) = u(x)K (x)∂x

[
u(x)

K (x)
∂x�(x)

]
. (13)

In the presence of a discontinuity of the two parameters u(x)
and K (x) at x = x̄, the transmission and reflection coefficients
can be determined by imposing the continuity of �(x) and
u(x)K (x)−1∂x�(x) for x = x̄. In particular, distinguishing be-
tween scattering from the left (→) and from the right (←), we
find

r→/← = ∓ exp

[
±2iωx̄

uL/R

]
KL − KR

KL + KR
, (14)

t→/← = 2
KR/L

KL + KR
exp

[
iωx̄

(
1

uL
− 1

uR

)]
, (15)

where uL and KL (uR and KR) are the values of velocity and
Luttinger parameter to the left (right) of x = x̄. The transfer
matrix associated with this discontinuity point thus reads

Tx̄ =
(

t→t← − r→r← r←
−r→ 1

)
1

t←
. (16)

In the presence of n � 1 multiple inhomogeneities (spatial
variations of parameters) located at x̄ j (with x̄ j+1 > x̄ j), the
transfer matrix for the whole system reads T = Tx̄n . . . Tx̄2 Tx̄1 .
A straightforward computation of the corresponding scatter-
ing matrix gives the squared modulus of the transmission
coefficient |t (ω)|2 through the whole helical region, i.e., from
one lead to the opposite one. In Appendix A, we provide the
full analytical expression for |t (ω)|2 in the presence of a single
Rashba gate, that is for the setup depicted in Fig. 1.

It is important to stress that the (two terminal) electrical
conductance of the helical system is given by G0/2 = e2/h,
regardless of the presence of inhomogeneities of K (x) and
u(x) [4,9,10,68,70]. The latter are known to affect the electri-
cal transport properties only at finite frequency [10,11,59,68].
By contrast, the thermal conductance does depend on the
inhomogeneities of the system [54,55]. This opens up the pos-
sibility to externally control the thermal transport properties
of the system by selectively varying the Rashba SOC in some
finite spatial regions, thus realizing a tunable thermal valve, as
we will discuss in the next section.

III. RESULTS AND DISCUSSION

In this section, we will focus on thermal transport prop-
erties of the inhomogeneous helical liquid, in the presence
of a thermal gradient between two noninteracting leads. We
will assume that there is no voltage bias (equal chemical
potentials) between them. Particular focus will be put on the
effect of one (or more) top gates and how it can affect the
transport behavior by inducing variation of the Rashba cou-
pling strength.

A. Thermal conductance

If the two leads are kept at different temperatures TL and TR,
the average thermal current which flows through the helical
region can be computed by integrating over all the plasmonic
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modes [53–55]

JE =
∫ ∞

0

dω

2π
ω|t (ω)|2[n(ω, TL ) − n(ω, TR)], (17)

where n(ω, T ) = (eω/T − 1)−1 is the Bose distribution associ-
ated to plasmonic modes. Assuming a small thermal gradient
between the two terminals �T = TL − TR → 0, i.e., being in
the linear response regime, the thermal conductance reads

κ = lim
�T →0

JE

�T
=

∫ ∞

0

dω

8π

ω2

T 2

|t (ω)|2
sinh(ω/(2T ))2

, (18)

where T = (TL + TR)/2. For a homogeneous system, in the
absence of e-e and Rashba interactions (i.e., with g = αR =
0), one has |t (ω)|2 = 1 and thus a thermal conductance
κ0 which complies with the Wiedemann-Franz law [36]
κ0 = LT G0/2, where L = π2k2

Be−2/3 is the Lorenz number
[36,53,54]. The presence of finite e-e interactions [53–56]
and, as we will show below, a finite Rashba coupling,
however, can strongly modify the behavior of the thermal
conductance and can also lead to a violation of the WF law.
For interacting one-dimensional systems such a violation has
been recently observed [58].

To begin the discussion, we focus on the effect of a single
top gate, as shown in the geometry sketched in Fig. 1. The
thermal conductance κ depends then on five main parameters:
the mean temperature T , the e-e interactions strength in the
helical region gh, its (possibly different) screened counterpart
under the top gate gR, the Rashba strength αR, and the cov-
ering ratio r (i.e., the fraction of the helical channel covered
by the top gate). To facilitate comparisons with the existing
literature on interacting helical liquids [11,26,59], instead of
using directly the coupling constants gh/R, we hereafter denote
the strength of e-e interactions in terms of the corresponding
Luttinger parameters for vanishing Rashba coupling, i.e.,

Kh/R =
√

2πvF − gh/R

2πvF + gh/R
. (19)

As is clear from the above expression, a variation of the
Rashba coupling can induce variations of the effective helical
coupling strength which, in turn, will modulate the trans-
mission coefficient and the resulting thermal conductance. In
essence, this provides a knob to externally induce and amplify
violation of the WF law. One can exploit this fact to engineer
a Rashba induced thermal valve on the helical system.

To quantify the performance of this system as a thermal
valve, we introduce the tunability ratio

η = κ (αR = 0) − κ (αR = αmax)

κ (αR = 0)
(20)

which depends on the mean temperature T , interaction
strengths, covering ratio r, and maximum Rashba coupling
achievable αmax. We also define

ηmax = η(T̄ ) with |η(T̄ )| = max
0�T�Tmax

|η(T )| (21)

as the tunability ratio with the highest absolute value within
a fixed range of temperatures 0 < T < Tmax. In the follow-
ing, we restrict the discussion to values of Rashba coupling
strength in accordance with the ones that can be obtained in

FIG. 2. Plots of ηmax (expressed as a percentage) as a function of
the Luttinger parameter KR and the size of the top gate r covering the
helical system. We consider a moderate interaction strength Kh =
0.6 for the left panel and a weaker one Kh = 0.7 in the right one.
Parameters: αmax = 0.6 vF and Tmax = 6 ε.

HgTe quantum wells [66]: We consider values up to αmax =
0.6 vF. As for the temperature, we choose Tmax = 6 ε with
ε = vFl−1 that represents the energy scale set by the Fermi
velocity and the length l of the helical channels.

In Fig. 2, we analyze the maximal tunability ratio of the
system ηmax as a function of KR and r, for two different
values of the interaction parameter Kh. It is possible to identify
two main interesting parameter regions. The largest tunability
ratio is achieved for (i) large gate r ∼ 1 with low screening
effect KR ∼ Kh, corresponding to the top left corners of the
density plots in Fig. 2. For Kh = 0.6 (left panel), it is possible
to achieve tunability ratios around ηmax ∼ 7% while weaker
interaction strengths lead to smaller tunabilities: For Kh = 0.7
(right panel) one has ηmax around 3%. Interestingly, in regime
(i), the sign of the tunability ratios is positive (yellow-to-red
colors in Fig. 2), meaning that the onset of a finite Rashba cou-
pling αR > 0 leads to a reduction of the thermal conductance
[see Eq. (20)]. Conversely, a different regime is represented by
(ii) smaller covering ratios 0.2 � r � 0.8 and moderate gate
screening effect KR ∼ (1 + Kh)/2. In this case the maximum
tunability turns out to be negative: See the green and light
blue areas located in the center of both panels in Fig. 2. As
we will carefully discuss below, in regime (ii) the system can
indeed operate in a different way so that the presence of a
finite Rashba coupling αR > 0 leads to an increase of the ther-
mal conductance. Here, the maximal tunability ratio exceeds
|ηmax| � 1.5% for Kh = 0.6 (left panel), and it is reduced to
|ηmax| � 1% for weaker interactions Kh = 0.7 (right panel).

In passing, it is worth commenting on two (trivial) limiting
behaviors. Indeed, as expected, we observe that |ηmax| goes
to 0 both in the case of complete absence of the top gate
(r = 0) and in the presence of a top gate which covers the
whole sample while completely screening the e-e interaction
(r = KR = 1).

B. Large gate limit

In order to understand the behavior of the system in the
presence of a large top gate, it is useful to consider the limiting
case of a covering ratio r = 1. In this limit, the transmission
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FIG. 3. Plot of the tunability ratio η̄ in the high-temperature limit
[given by Eq. (26)] as a function of the Rashba coupling αR for a
covering ratio r = 1. The insets show the functions Kα and uα (the
latter in units vF) as a function of αR. Three different values of KR =
0.6, 0.65, 0.8 are considered (see legend).

probability |t (ω)|2, whose general analytic expression is re-
ported in Appendix A, simplifies to the periodic function

|t (ω)|2 = 8K2
α

1 + 6K2
α + K4

α − (
1 − K2

α

)2
cos

(
2ωlu−1

α

) , (22)

where

Kα =
√√√√ (

1 + K2
R

)(
v2

F + α2
R

)3/2 − v3
F

(
1 − K2

R

)
(
1 + K2

R

)(
v2

F + α2
R

)3/2 + vF
(
v2

F + α2
R

)(
1 − K2

R

)
(23)

and

uα

vF
=

√√√√√
[(

1 + α2
R

v2
F

)3/2− 1−K2
R

1+K2
R

][(
1 + α2

R

v2
F

)1/2+ 1−K2
R

1+K2
R

]
1 + α2

R

v2
F

(24)

are obtained from Eqs. (12) and (11). It is important to notice
that both Kα and uα increase monotonically with α2

R (for
KR < 1), see the insets of Fig. 3. In the limit of large values
of αR/vF, Kα saturates to Kα = 1 while uα increases linearly
as uα � |αR|. Therefore, the presence of a finite Rashba
coupling reduces both the amplitude and the frequency of
the oscillations featured by |t (ω)|2 � 1. The thermal con-
ductance, defined in Eq. (18), consists of the integral of
|t (ω)|2, weighted by a function which is exponentially sup-
pressed for energies greater than the mean temperature T (see
Appendix B for more details). Therefore, in the low temper-
ature limit T → 0, one has κ = κ0, while a lower asymptotic
value

κ̄ = κ0l

πuα

∫ πuα

l

0
|t (ω)|2dω = 2Kα

1 + K2
α

κ0 (25)

is reached for T � ε. The corresponding tunability ratio thus
becomes

η̄ = Kα

KR

1 + K2
R

1 + K2
α

− 1, (26)

FIG. 4. Characterization of the setup with a large Rashba gate
r = 0.95. Panel (a) displays the thermal conductance κ as a function
of the temperature T , for five different values of the Rashba coupling
αR (see legend). The horizontal reference lines in gray show κ̄/κ0 for
the considered values of αR. The inset displays the transmission co-
efficient |t (ω)|2 for three values of the Rashba coupling (see legend).
Other parameters are Kh = 0.6 and KR = 0.65. Panel (b) displays the
tunability ratio η (with αmax = 0.6vF) as a function of the temperature
T and for five different choices of parameters KR and Kh (see legend).
The horizontal reference lines in gray show the η̄ for the three
different choices of KR. The inset shows the dependence of η on αmax

(units [vF]) for a fixed temperature T = 0.8 ε.

which is plotted in Fig. 3. Note that it monotonically increases
with αmax and saturates to η̄ → (1 − KR)2/(2KR) in the limit
αmax → ∞. To better understand the magnitude of this tun-
ability ratio η̄, note that with interaction parameter KR = 0.6
and αR = αmax(= 0.6vF), we get η̄ � 6.9%. At low tempera-
ture (T � ε), the above considerations qualitatively hold also
for a slightly smaller covering ratio. This is shown in Fig. 4,
where it is numerically characterized a system with r = 0.95
and a moderate interaction strength. Figure 4(a) shows the
thermal conductance as a function of temperature for different
values of αR, with Kh = 0.6 and a small screening effect
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leading to KR = 0.65. The inset displays the corresponding
transmission coefficients |t (ω)|2. The latter feature the ex-
pected oscillating pattern [see Eq. (22)], while the thermal
conductance decreases from κ = κ0 at T = 0, to values close
to κ̄ (see the horizontal gray lines) for T ∼ ε. Figure 4(b)
displays the tunability ratio η for different choices of the
interaction parameters Kh and KR. At low temperature, there
is almost no dependence on Kh. The highest tunability ratios
are achieved for T ∼ 0.5 ε and they are well described by the
analytical result η̄ in Eq. (26) (see the horizontal gray lines).
For completeness, in the inset of Fig. 4(b), it is shown how the
tunability ratios at fixed temperature T = 0.5 ε depend on the
choice of αmax: As expected, the higher the Rashba coupling,
the higher the tunability of the system.

The presence of short helical regions not covered by the
central gate for r � 1 induces interference effects in the prop-
agation of the plasmonic modes with energies of the order
of ω � ε(1 − r)−1 or higher. In particular, destructive inter-
ferences are responsible for the high-temperature reduction
of the thermal conductance below κ̄ displayed in Fig. 4(a).
The effects of the short helical regions emerges also in
Fig. 4(b), where tunability ratios show a visible dependence
on Kh for temperatures above T � ε. However, it is important
to stress that for the large gate regime, the most interest-
ing temperature range, i.e., where the largest tunability can
be achieved, is the low-temperature one, where the effects
of the short helical regions are negligible. The situation is
quite different for values of the covering ratio r significantly
smaller than 1. In what follows, we will then focus on the
short gate regime and analyze the interference effects more
in detail.

C. Short Rashba gate

In Fig. 5(a), we numerically analyze the properties of
the setup with a short gate (r = 1/3), moderate interaction
strength Kh = 0.6, and moderate gate screening which leads
to KR = 0.8. In this case, the energy scales associated with the
plasmonic scattering under the top gate and in the remaining
helical regions are of the same order of magnitude ∼3ε. Inter-
ference effects therefore play an important role in shaping the
transmission coefficient |t (ω)|2, which is carefully analyzed
in Appendix A and plotted in the inset of Fig. 5(a). It features
a first local minimum around ω ∼ ε, which is reminiscent of
the minima appearing in the long gate limit [see the inset of
Fig. 4(a)]. At slightly higher energies, however, destructive
interference effects lead to a significantly deeper minimum
around ω ∼ 4ε. The effect of a finite Rashba coupling on these
two minima is different: While finite values of αR barely affect
the first minimum (and make it less pronounced), the depth of
the second one is increased. The features of |t (ω)|2 directly
affect the thermal conductance, which is plotted in the main
panel of Fig. 5(a). For temperatures of the order of 0.5 ε, only
the first minimum of the transmission coefficient is relevant.
As a result, the dependence of the thermal conductance on the
Rashba coupling is weak and only a strong Rashba coupling
leads to a slightly higher κ . At higher temperatures, however,
the second and more pronounced minimum of |t (ω)|2 starts
playing a more central role. This leads to a significant reduc-
tion of κ around 0.85 κ0 and to an opposite dependence of the

FIG. 5. Characterization of the setup with a short Rashba gate
r = 1/3. Panel (a) displays the thermal conductance κ as a function
of the temperature T for three different values of the Rashba coupling
αR (see legend). The inset displays the corresponding transmission
coefficient |t (ω)|2. Other parameters are Kh = 0.6 and KR = 0.8.
Panel (b) displays the tunability ratio η (with αmax = 0.6vF) as a
function of the temperature T and for Kh = 0.6 and five different
values of KR (see legend) corresponding to different screening effects
of the top gate. The inset shows the dependence of η on αmax (units
[vF]) for a fixed temperature T = 4 ε and three choices of KR (see
legend).

thermal conductance on the Rashba strength: Higher values of
αR decrease the value of κ .

This behavior also emerges in the tunability ratio η (with
αmax = 0.6vF), which is plotted in Fig. 5(b) as a function
of T . Here, we set Kh = 0.6 and consider different values
for KR. In general, the tunability ratio is positive for low
temperature and drops below zero for higher temperatures,
eventually becoming constant for T � 3 ε. In this regime,
η shows a nonmonotonic dependence on KR: The maximal
tunability is indeed achieved for KR ∼ 0.75 while both weaker
and stronger values are detrimental for the performance of the
system as a thermal valve. This can be understood as follows.
The destructive interference effects, which affect the transmis-
sion coefficient at high energy, are enhanced whenever the
reflection coefficients for each inhomogeneity are stronger.
According to Eq. (14), this requires a large difference between
the Luttinger parameters Kh and Kα . Given the dependence of
the latter on αR and KR [see Eq. (23)], it is clear that the tun-
ability of the system is maximized when (i) KR is sufficiently
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smaller than 1 so that Kα has a stronger dependence on αR

and (ii) KR is sufficiently greater than Kh so that interference
effects can be relevant. For the sake of completeness, in the
inset of Fig. 5(b), we also show the dependence of η on the
choice of αmax at a fixed value of T = 4 ε.

To summarize, in the presence of a short top gate, interfer-
ence effects already dominate for T � 3ε. In this regime, the
tunability of the thermal valve is maximized for a moderate
screening effect of the gate, i.e., for a KR which differs sig-
nificantly from both Kh and 1. As an example, for Kh = 0.6
and KR = 0.75 (0.8) the solid (long-dashed) line of Fig. 5(b)
shows that it is possible to achieve η < −1.5%. This value
is smaller than the tunability ratios achievable in regime (i),
i.e., with a large gate and negligible screening of the top
gate. However, it is important to stress that, in the pres-
ence of moderate screening (e.g., Kh = 0.6 and KR = 0.8),
the tunability is actually maximized by exploiting the in-
terference effects associated to a short gate at temperatures
T � 3 ε: See Fig. 2 and compare the solid orange line in
Fig. 4(b) with the long-dashed line in Fig. 5(b).

D. Double gate geometry

In the previous section, we have shown the importance of
interference effects that arise in the presence of three regions
with different Luttinger parameters and comparable length.
It is therefore natural to ask whether these effects could
be boosted by adding other inhomogeneities to the system.
To answer this question, we now consider a different setup,
sketched in Fig. 6(a). For the sake of simplicity, it consists
of two identical short top gates centered around x = ±l/6,
each one covering a fraction r/2 of the region between the
leads. A different positioning of the gates and differences in
their length and/or bias would only affect the results at a
quantitative level.

At first, along the lines of the previous sections, we plot
ηmax as a function of KR and r for a fixed moderate interaction
strength in the helical regions Kh = 0.6. The resulting density
plot in Fig. 6(b) is qualitatively similar to its single gate coun-
terpart [see Fig. 2(a)]. However, parameter regime (ii) shows
values of ηmax well below −3%. With respect to the single
gate configuration, in regime (ii) the transmission coefficient
|t (ω)|2 features an additional third deep minimum, located at
T ∼ 7 ε and highly dependent on the Rashba coupling. This
is shown in Fig. 6(c) for Kh = 0.6, KR = 0.75 and a covering
ratio r = 0.4. As shown in Fig. 6(d), for temperatures around
T ∼ 4 ε, this allows us to achieve negative tunability ratio
as low as −3.5%. This would result in a doubling of the
performance of the system as a thermal valve in the moderate-
screening regime.

E. Indication of helicity

The underlying principle behind the results just obtained
basically relies on the fact that the thermal conductance
depends on the spatial variations of the Luttinger parame-
ter. Such variations can, in any one-dimensional interacting
fermionic system, be induced by gates that locally screen
the electronic interactions. A second mechanism is, how-
ever, present in helical liquids. Indeed, in this case, the gates

FIG. 6. Characterization of the setup with two short Rashba
gates. Panel (a): sketch of the setup, with two identical gates (yellow)
centered around x = ±l/6, each one covering a fraction r/2 of the
helical region (red and blue lines) in between the two leads (in gray).
Panel (b): plot of ηmax (expressed as a percentage) for Kh = 0.6
as a function of the Luttinger parameter KR and the total fraction
of the system which is covered by a gate r (with Tmax = 6ε and
αmax = 0.6 vF). Panel (c): transmission coefficient |t (ω)|2 for three
values of the Rashba coupling (see legend) for Kh = 0.6, KR = 0.75
and r = 0.4. Panel (d): tunability ratio η (with αmax = 0.6 vF) as a
function of the temperature T for r = 4, Kh = 0.6 and five different
values of KR (see legend) corresponding to different screening effects
of the gates.

also modify the Rashba spin-orbit coupling, which in turn
renormalizes the velocity of propagating modes. Since the
Luttinger parameter, just like the Wigner radius in usual Fermi

165409-7



ALESSIO CALZONA et al. PHYSICAL REVIEW B 104, 165409 (2021)

liquids, gives a measure of the relative importance of the
kinetic and the potential energy, the spatial variations of the
Rashba coupling do induce an extra contribution to the ther-
mal conductance. Interestingly, an experiment disentangling
the effect of screening from the effect of Rashba coupling
could help answer the question: Are the edge states of two-
dimensional topological insulators spin polarized or helical?
Indeed, in the case of spin polarized edges, no Rashba-induced
renormalization of the propagation velocity and of the Lut-
tinger parameter can happen. This means that if one finds
a Rashba contribution to the thermal conductance, then the
channel is helical. While it is hard to conceive an experi-
ment involving gating, able to disentangle the two effects,
a possibility is provided by the geometric manipulation of
the Rashba interaction by means of a proper shaping of
the edges [71]. In this case, samples with different shape
should be characterized by the same strength of the electron-
electron interactions, but, if helical, by different profiles of
the Rashba coupling. By comparing the thermal conductance
in samples with different shape, one could hence determine
if the edges are helical or spin polarized. On the other hand,
the case of edge states with four degrees of freedom per edge
can be simply discriminated by inspecting the conductance
quantization.

IV. SUMMARY AND CONCLUSIONS

In this work, we have considered the role of the Rashba
coupling in a helical system, in the presence of Coulomb
interactions. The presence of a capacitively coupled top gate
allows us to tune its strength, inducing also a partial screening
of electronic interactions felt by the helical liquid. Based
on an inhomogeneous Luttinger liquid approach, we have
considered different regions with spatially varying Rashba
coupling and interaction strength by solving the associated
EOMs with a scattering approach of plasmonic modes. These
results have been applied to characterize the thermal conduc-
tance of the helical channels in the presence of a thermal
gradient in a two-terminal configuration. Provided that the e-e
interaction strength is finite, we have shown that it is possible
to control the value of the thermal conductance by properly
tuning the Rashba strength. The system can therefore act as
a gate-controlled thermal valve. Its associated performances
have been characterized in the linear response regime (small
thermal gradient) in a wide parameter region, considering both
large and short top gates.

It is shown that the larger tunability of the thermal valve
can be achieved for (mean) temperature of the order of the
energy scale ε = h̄vFl−1 (characteristic energy scale set by the
length of the system l and the Fermi velocity vF) or higher.
Moreover, the performance of the system increases with the
e-e interaction strength and/or with the gate-induced Rashba
coupling.

It is argued that, if the screening effect of the top gate is
small, so that the helical system beneath the gate still feels
moderate Coulomb interactions, a large top gate configuration
(covering almost the whole helical channels) can act as an ef-
ficient thermal valve. Considering for example an interaction
strength KR ∼ 0.6, the thermal conductance of the system can
be increased by 7% by ramping up the gate-induced Rashba

SOC from αR = 0 → 0.6vF. However, the performance of
such a system is dramatically reduced in the presence of a
stronger screening effect of the top gate. In this case, pro-
vided that the helical regions not covered by the gate still feel
moderate interactions, it is convenient to consider alternative
setups with a shorter gate. In this case, the increase of the
Rashba SOC αR = 0 → 0.6vF can lead to a reduction of the
thermal conductance slightly smaller than 2% (for Kh = 0.6
and KR = 0.75). This figure can be almost doubled by adding
a second short gate alongside the first one. Indeed, the pres-
ence of additional spatial inhomogeneities results in more
complicated interference patterns (with deeper minima in the
transmission coefficients) that eventually are responsible for
the obtained increase of the figure of merit.

A brief comment on the experimental feasibility can be
made by estimating the associated energy scales discussed
above using state-of-the-art numbers for system hosting he-
lical channels. In HgTe, one has vF = 5 × 105 m/s and it
is reasonable to consider l = 4 μm. This leads to ε � 1 K.
Moreover, according to Ref. [72] and quoting Ref. [66], “in
case the gate voltage between the well and the gate elec-
trode 100 nm apart is 1 V, the estimated value of the Rashba
coupling is of the order of α ∼ 0.16 nm eV” (= 0.44h̄vF). In
view of these figures, the parameter range considered in the
plots appears to be sound and reasonable. Novel approaches,
based for example on ionic liquids or ion gels [73], could
lead to higher electric fields and thus larger values of α. In
general, this would improve the thermal valve’s tunability [see
the insets of Figs. 4(b) and 5(b)], even though the latter will
eventually saturate and become independent on α. Of course,
several other materials showing helical channels and SOC
interactions, like semiconducting nanowires [21], Bismuthene
flakes [24], or engineered high-quality graphene devices [25]
can be exploited as alternative platforms which can even-
tually achieve more interesting parameter regimes. Finally,
we mention that all the qualitative analyses presented here
should still hold even away from the linear response regime.
Indeed, for larger temperature gradients, the function which
weights the transmission coefficient would be exponentially
suppressed with the higher of the two temperatures as shown
in Appendix B.

FIG. 7. The solid black line shows the weight function Wκ as
a function of ω (units T). The other lines show WJ/(Th − Tc ) for
different choices of Tc and Th obeying Th + Tc = 2 T. In particular
Th = 1.25 T for the dark blue dotted line, Th = 1.5 T for the blue
dashed line, and Th = 1.75 T for the light blue dotted-dashed line.
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APPENDIX A: THE TRANSMISSION COEFFICIENT

In this Appendix, we provide the analytical expression of
the transmission coefficient |t (ω)|2 in the presence of a single

gate which covers a fraction r of the helical channels, as
sketched in Fig. 1. In total, we thus have four inhomogeneities
located at x = ±l and x = ±rl . By multiplying the corre-
sponding transmission matrices and computing the resulting
scattering matrix, we obtain the analytical expression

|t (ω)|2 = 128K4
h K2

α�−1 (A1)

with the denominator

� = 6K8
h + 4K6

h

(
1 + K2

α

) + 2K4
h

(
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α + 3K4
α

) + 4K2
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α
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)2(
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cos
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− (
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(
r
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− 2
(
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)(
K2

h − K2
α

)2
cos

[
2rωlu−1

α

] − 8(1 − K4
h )(K4
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h ) cos

[
ωlu−1

h (1 − r)
]
. (A2)

For r = 1, the expression for |t (ω)|2 reduces to Eq. (22) and
the denominator features only one single cosine function.
By contrast, in the most generic case (r < 1 and Kh �= Kα)
the transmission coefficient contains seven different cosines
which interfere with each other. This behavior is evident in
the inset of Fig. 5(a), where we plot |t (ω)|2 for r = 1/3 and
highlight the presence of different minima. Note that, in the
limit of large Rashba coupling αR → ∞, the transmission
coefficients |t (ω)|2, and therefore the thermal conductance of
the system, become independent on αR [see Eqs. (23) and
(24)].

APPENDIX B: NONLINEAR REGIME

The thermal conductance κ is defined in the linear regime,
i.e., for a small thermal gradient �T between the two leads
[see Eq. (18)]. Such a regime, however, might be difficult
to study in experiments since the measure of small energy
current JE is extremely challenging. In this respect, from an
experimental point of view, it might be easier to consider a
large temperature difference between the two leads in order to
enhance JE .

Importantly, the behavior of JE away from the linear
regime still shares many of the qualitative features of the
conductance that we analyzed in the main text. Indeed, the
only difference between Eqs. (17) and (18) is the function
which weights the transmission coefficient within the integral
over the energy. In particular, we have

JE =
∫ ∞

0
|t (ω)|2WJ (ω)dω (B1)

κ =
∫ ∞

0
|t (ω)|2Wκ (ω)dω (B2)

with

WJ = ω

2π

(
1

eω/Th + 1
− 1

eω/Tc + 1

)
(B3)

Wκ = ω2

8πT 2

1

sinh(ω/2T )2
, (B4)

where we considered the left lead to be hotter (at temperature
Th). As long as Th + Tc ∼ 2 T, the weight function Wκ shares
the same main features with WJ/(Th − Tc), see Fig. 7.
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