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Current vortices in hexagonal graphene quantum dots
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Newly synthesized nanostructures of graphene appear as a promising breeding ground for new technology.
Therefore it is important to identify the role played by the boundary conditions in their electronic features. In
this contribution, we use the nonequilibrium Green’s function method coupled to tight-binding theory to calculate
and compare the current patterns of hexagonal graphene quantum dots, with contacts placed at different edge
locations. Our results reveal the formation of current vortices when the geometry of the contact position is not
centrosymmetric. That is when they are placed on nonfrontal armchairlike vertices of the quantum dot. The
introduction of defects, leading to disorder, significantly alters the current behavior, distorting bulk vortices and
annihilating the edge currents. Nevertheless, periodically distributed defects on the edge allow for the appearance
of current loops that dodge the defects. The presence of current vortices suggests the use of graphene quantum
dots as nanomagnets or magnetic nanosensors.
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I. INTRODUCTION

Graphene quantum dots (GQD) [1] or nanoflakes, have at-
tracted a great deal of attention due to their possible electronic
[2], photonic [3], and medical [4] applications. In this paper,
we investigate the possibility of generating current vortices in
a hexagonal GQD. The shape choice is due to two reasons.
First, the hexagonal shape preserves the local symmetry of
the atomic network facilitating the calculations and second,
hexagonal nanographene has been recently successfully syn-
thesized [5–7]. The possibility of having current vortices in
those nanoflakes suggests interesting applications, like their
use as nanomagnets or magnetic nanosensors, for instance.
This is the main motivation of this work. The electronic states
of hexagonal and triangular GQDs have been thoroughly ex-
plored by Zarenia and coworkers [8] and the dependence
on size of the electronic structure of hexagonal GQDs was
studied by Ref. [9] using density functional theory.

Current vortices in graphene have been of great interest
in recent years [10,11]. They have been predicted to ap-
pear in the so-called hydrodynamic viscous regime, where
electron-electron collisions are dominant (for a recent review
see Ref. [12]) over electron-phonon or electron-impurity scat-
tering. Since electron-phonon scattering is weak in graphene,
as well as the degree of purity can be extremely high, the
hydrodynamic behavior may be reached at reasonably low
temperatures (say, above liquid nitrogen temperature). The
backflow associated to the vortices in the hydrodynamic
regime implies in a negative local resistance [13] giving in-
direct experimental evidence of their presence. This regime is
not exclusive of graphene but may occur in ultraclean 2D elec-
tron systems, as has been recently observed experimentally

*eudes.gomes@ufrpe.br
†fernando.jsmoraes@ufrpe.br

in a high-purity GaAs quantum well [14]. Although negative
resistances and current vortices seem to be characteristics of
the hydrodynamic regime, they may also appear in the ballistic
regime, as recently verified by Gupta and coworkers [15].

Using a simple tight-binding model we show that, even
without considering electron-electron interaction, current vor-
tices may appear in a gated hexagonal graphene quantum dot
with zigzag edge, depending on the contact locations and
injection energy. We start by characterizing the elementary
electronic properties, such as energy spectrum and density of
states, of the hexagonal structure C486H54 depicted in Fig. 1.
This is done by numerical diagonalization of the tight-binding
Hamiltonian, and gives good agreement with the literature.
The local density of states, transmission, and local current
are then obtained by coupling the tight-binding results to
the nonequilibrium Green’s function (NEGF) method. For
selected contact configurations, we obtain the transmission
spectrum, which then allows us to choose the relevant val-
ues for the injection energy of each configuration. For some
injection energies, vortices and their associated backflows ap-
pear clearly when the contacts are placed at two nonfrontal
armchair vertices.

Ring currents have been found in an ab initio study of a
graphene nanoribbon [16]. Circular currents have also been
found in hydrocarbon molecules, including coronene which is
a smaller version of the system we study here, both by more
robust techniques like Kohn-Sham density functional theory
coupled to NEGF [17] and the simple tight-binding/NEGF
[18] method we use here. This justifies [19] the use of the
latter approach in our studies, suggesting that the vortices we
observe should also appear in more detailed treatments.

Although our model is oversimplified, it still seems to
be accurate when describing effects due to defects on the
edges [20]. The presence of these defects (defect here means
removal of atoms) at the edges, and even in the bulk, were
analyzed, and current vortices were found on some of our
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FIG. 1. Perspective view of a hexagonal graphene nanoflake
C486H54. Hydrogen atoms (not shown) are attached to the atoms of
the edge to avoid dangling bonds.

structures, depending on the degree of the disorder introduced
by the defects. For a detailed discussion on the role played by
defects on the edges of graphene nanoribbons see Ref. [21].

A note on the nomenclature used for closed current loops is
due here. While in a superfluid one might have a free vortex,
that needs not an energy supply to be maintained, in this
work we use the term “vortex” to designate a forced vortex,
in the sense that a potential difference is needed to keep it,
due to ohmic losses. These are like the forced vortices that
appear upon stirring water in a kitchen pot. On the other hand,
in superconducting graphene, for instance, one might have
free vortices, which will persist after turning off the potential
difference that originated them.

II. METHODS

A. Tight-binding calculations

The tight-binding approach for molecules uses the most
relevant atomic orbitals λ associated to each atom i as a
basis to construct the single-particle state |ψ〉 = ∑

iλ |iλ〉. In
our calculations, we will use only π orbitals since these are
mostly responsible for the transport properties in graphene.
The tight-binding Hamiltonian, written in the local π orbitals’
basis, is then given by

H =
∑

i

εi|i〉〈i| + 1

2

∑
i �= j

ti j |i〉〈 j|, (1)

where εi is the on-site orbital energy and ti j is the hopping in-
tegral. Considering only first-neighbor interactions, we define
the overlap matrix

Si j =

⎧⎪⎨
⎪⎩

1, if i = j

s, if i and j are neighbors

0, otherwise

and the hopping matrix

Hi j =

⎧⎪⎨
⎪⎩

εi, if i = j

t, if i and j are neighbors

0, otherwise

and use εi = 0, t = −3.1 eV, and s = 0.12, following
Ref. [22]. Our task now reduces to finding the eigenvalues E

FIG. 2. Source (red) and drain (blue) contacts at the hexagonal
GQD edge.

of the Hamiltonian (1) by solving the characteristic equation

det(H − ES) = 0. (2)

The hopping and overlap matrices (H, S) are easily con-
structed when one knows the connections among the atoms.
In our case, each carbon atom is connected to another three
except at the edge where the connectivity is two.

B. The nonequilibrium Green’s function method

In order to obtain the transport properties of the nanoflakes,
we resort to the nonequilibrium Green’s function (NEGF)
method which, coupled to the tight-binding formalism, is well
known as an excellent tool to study current flow and transport
phenomena in nanostructures [19,23–27]. To use the NEGF
method we need to attach to the nanostructure two or more
leads, which are metallic contacts acting as reservoirs. These
contacts are modeled using a square lattice (see Fig. 2) and the
reservoirs are kept at different chemical potentials, keeping
the whole system out of equilibrium. Each reservoir is char-
acterized by its own Fermi distribution. We can use NEGF
to calculate electronic properties such as, the local current Ii j

between neighboring lattice sites i and j, the transmission, and
the local density of states (LDOS). Since the NEGF method
is widely discussed in Refs. [28,29], we summarize here only
the essential concepts. We start by writing down the Green’s
function of the system, given by

G(E ) = (ES − H − �i )
−1, (3)

where E is the single-particle energy of the injected elec-
trons and S, H and �i are the overlap, hopping and the
so called self-energies, respectively. The self-energies ac-
count for the contacts attached to the nanoflakes, which are
modeled by a semi-infinite square lattice as described in
Refs. [30,31]. Besides the real contacts associated to the
reservoirs, it is also possible to attach virtual contacts to
the remaining edge atoms. These contacts can be placed in
order to suppress boundary effects by means of an imaginary
self-energy. Here, these virtual contacts are modeled using the
wide-band approximation, which can be expressed as �edge =
−iν

∑
n |n〉〈n|, where ν > 0 is a parameter [23,32]. Later on,

in Sec. IV A, we shall show the role played by these virtual
contacts on the transmission. In Fig. 2, we show the hexagonal
GQD of interest with source (red) and drain (blue) contacts,
with a few sites of the respective square lattices. The injection
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is modeled by an inscattering function of the form

�in = 	s fs + 	d fd , (4)

where subscripts s(d ) stand for source (drain) and the function
	k = i(�k − �

†
k ), k = s, d , is called broadening matrix. The

functions fs,d are Fermi distributions for the reservoirs. With
this formalism, we obtain the transport properties by means of
the transmission function [19]

T (E ) = Tr[Im(�s)GIm(�d )G†], (5)

as well as the local current between atoms i and j,

I (E )i j = 2e

h
Im

(
H∗

i jG
n
i j

)
, (6)

where Gn = G�inG† is the correlation function [23,29]. An-
other important information that we can obtain from the
Green’s function method is the local density of states, which
is given by [28]

ρ(E , i) = − 1

π
Im(Gii(E )). (7)

When studying the nanoflake without contacts, we write the
Green’s function as

G(E ) = [(E + iμ)S − H]−1, (8)

where μ > 0 is a parameter and i = √−1. All relevant results
in this work were obtained by means of the above equations
coupled to the tight-binding model described in the previous
subsection. We used the value μ = 0.0025 eV. For more in-
formation on the role of the parameter, μ see [33]. Equation
(8) will be used to evaluate the LDOS without any influence
of the contacts. To evaluate the LDOS taking into account the
presence of the contacts, we can use the complete Green’s
equation given by (3). The code to perform the calculations
was written in PYTHON, and for the visualization of the LDOS
and current patterns we used Mayavi [34].

III. RESULTS

A. Energy spectrum and density of states

As a verification of our method, we performed the elec-
tronic characterization of the hexagonal GQD and compared
it to known results for similar structures. In Fig. 3, we show
the energy spectrum, as obtained from the diagonalization
of Eq. (2), and the corresponding Gaussian broadened (full
width at half maximum = 0.3 eV) density of states (DOS).
The overall shape and major peaks of the DOS, correspond
to the ones obtained previously in the literature [35,36] for
comparable structures. Note the presence of the peak at zero
energy in the DOS (indicated by Z in Fig. 3). As it is well
known [37], zero modes in 2D carbon structures correspond
to edge states, as confirmed by the map of the local density
of states (LDOS) at zero energy (Fig. 4, Z) on the struc-
ture. This is in close agreement with the results of Ref. [35]
for the highest occupied molecular orbital (HOMO) and of
Ref. [9] for the lowest unoccupied molecular orbital (LUMO)
of zigzag hexagonal carbon nanoflakes. To be precise, there
is no zero energy state for this structure but the HOMO and
LUMO states, which are symmetrically placed around zero,
with a gap of nearly 0.2 eV. As verified in Ref. [9], increasing

FIG. 3. Density of states and energy spectrum for the hexagonal
graphene quantum dot. Red (green) indicates occupied (unoccupied)
states. The letters L, R, and Z indicate the position of the two van
Hove and zero states, respectively. The corresponding energy values
are L = −2.8685 eV, R = 3.6014 eV, and Z = 0.0 eV. The inset
shows the states around Z.

the size of the structure reduces the gap, eventually leading to
its closure in the infinite graphene limit. The LDOS at the van
Hove peaks reflect the common symmetries of the hexagonal
lattice and the edge shape, as can be seen in Fig. 4, for the first
(left) and for the second (right) peak. A detailed study of the
effects on the van Hove peaks due to defects or edge shape
in flat graphene nanoflakes can be found in Ref. [38] and the
consequences for optical properties in Ref. [39].

B. Transmission and current

The total transmission as a function of the energy can be
obtained from equation (5), but note that it also depends on
the leads configuration.

We start by analyzing the configuration presented in Fig. 2,
with contacts placed on opposing edges. In the upper part of
Fig. 5(a), we show the transmission as function of injection
energy for this configuration. In the lower part, we show the
current patterns for two selected values of injection energy.
A note on the current diagrams: each arrow, except those in
the central polygon when they appear, is the resulting sum
over the currents at the edges of each polygon in the structure.
The current patterns shown in Fig. 5(a) are representative of
what is obtained at the other transmission peaks: the current
leaves the source and goes to the drain with some lateral
spreading whose degree varies with the injection energy. The
closer the injection energy is to zero, the greater the spreading
until the current goes mostly through the edge states (compare
with Fig. 4, Z). Obviously, the symmetric arrangement of the

FIG. 4. Local density of states corresponding to the three se-
lected DOS peaks in Fig. 3. Note the edge states in the central
illustration (Z) corresponding to the zero modes.
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FIG. 5. (Bottom of each figure) Current patterns corresponding
to the selected transmission peaks, L (left) and R (right). The color
bar presents a scale for the current intensity in units of 2e

h . Contacts
are represented by colored dots: source (red) and drain (blue). (a)
Transmission as a function of injection energy for the contact con-
figuration shown in Fig. 2 and (b) Transmission as a function of
injection energy for contacts placed on two nonadjacent edges of the
hexagonal GQD.

contacts across the sample does not favor a circular current
pattern formation. As it will be seen next, this happens when
the contacts are placed asymmetrically across the flake.

As another example, we show the results for contacts
placed on nonfrontal edges of the hexagonal GQD. In
Fig. 5(b), we show the transmission as a function of injection
energy and two selected current patterns, corresponding to the
transmission peaks indicated. Again, we see that the current

FIG. 6. (Top) Transmission as a function of injection energy for
contacts placed at opposing vertices. (Bottom) Current patterns cor-
responding to the selected transmission peaks L (left) and R (right).
The color bar presents a scale for the current intensity in units of
2e
h . Contacts are represented by colored dots: source (red) and drain

(blue).

follows the path of the edge states for a choice of injection
energy near zero (figure on the left). An unevenly distributed
vortexlike current pattern appears in the figure on the right.

Now, we investigate the case of only two contacts placed
at the carbon atoms in opposing vertices, where the edge
configuration is armchairlike. Later on, in Sec. IV B, we will
analyze the zigzag case. As in the previous case, in the lower
part of Fig. 6, we show two representative current patterns
corresponding to the selected transmission peaks shown in the
upper part of the figure. As before, we see that the current,
for energies near zero, follows the path of the edge states.
Otherwise, it tends to spread out all over the structure. Note
the mirror symmetry of both the L and R current patterns upon
reflection by the axis joining the opposing contacts. Again, the
symmetry of the contacts across the flake does not favor vortex
formation.

Next, we investigate the case of nonfrontal vertex con-
tacts placed across the hexagonal GQD. In the upper part of
Fig. 7, it is shown the transmission for this configuration as a
function of injection energy. There, the peaks chosen for the
corresponding current patterns depicted in the lower part of
the figure, are indicated. Now, induced by both the nonfrontal
position of the contacts and the chosen energy, vortices, as
well as circular edge current, appear. Corresponding to the
near zero energy peaks b and c we see, once again, the
prevalence of the edge states guiding the current flow. Note,
however, that only in Fig. 7(c) there exists a circular edge
current. Comparing Figs. 6(a) and 7(b) we see that, while in
the former the current splits equally over the two equivalent
paths along the edge, it chooses the shorter path in the latter.
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FIG. 7. (Top) Transmission as a function of injection energy for
contacts placed at two vertices. (Bottom) Current patterns corre-
sponding to the selected transmission peaks in the sequence a, b, c, d,
from left to right, from top to bottom. The color bar presents a scale
for the current intensity in units of 2e

h . Contacts are represented by
colored dots: source (red) and drain (blue).

Another case, now with contacts placed at two vertices
sharing the same edge, is shown in Fig. 8. Again, both vortices
and circular edge current, appear. As before, the closer the
injection energy is to zero, the closer the current path to the
edge. It is worth commenting on the Fig. 8(d): note that its
injection energy is quite high, away from the small range
of energy around zero that sustains edge states. Therefore
the current does not flow directly through the edge, it starts
on a radial path instead, until it is attracted by the chemical
potential of the second reservoir. We note that in all cases
studied, the transmission peaks are of the same order of mag-
nitude. Nevertheless, the corresponding maximum currents
may change by an order of magnitude for different injection
energies. In particular, the maximum current is higher when-
ever a vortex appears. This apparent disagreement between
transmission and maximum current is due to the fact that the
transmission is related to the actual current that reaches the
drain, while the maximum current is local. In other words,
when a vortex is formed, a great part of the current is captured
and remains circulating while only a fraction contributes to
the transmission. This behavior has also been observed in

FIG. 8. (Top) Transmission as a function of injection energy for
contacts placed at two adjacent armchairlike vertices. (Bottom) Cur-
rent patterns corresponding to the selected transmission peaks in the
sequence a, b, c, d, from left to right, from top to bottom. The color
bar presents a scale for the current intensity in units of 2e

h . Contacts
are represented by colored dots: source (red) and drain (blue).

current vortices in graphene nanoribbons [16]. Another way
of looking at this, is to observe that the vortex is a composi-
tion of an incoming and an outgoing current, which therefore
reduce the net current reaching the electrodes. According to
Ref. [19], the presence of the backflow is due to quantum
interference between nearly degenerate states mediated by the
off-diagonal terms of the complete Hamiltonian. Also, two-
atom wide contacts can only sustain a few propagating modes,
which in turn limit the maximum reached by the transmission.
In fact, for a perfect system, the transmission is quantized,
and it grows with the width of the contacts. More on this in
Sect. IV B.

IV. DISCUSSION

A. Edge effects

It is well known that the edges play an important
role in the electronic properties of graphene. In graphene
nanoribbons there are two possible edge types: armchair
or zigzag. These conformations can also be found in other
carbon-based materials such as cis-polyacetylene (armchair),
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FIG. 9. Maximum current as a function of the parameter ν for
the case depicted in Fig. 7(c). The current is given in units of 2e/h
and the parameter ν in eV.

trans-polyacetylene (zigzag) or nanotubes [22]. Although the
bulk configuration of a graphene nanoribbon may be similar
to the graphene sheet, irrespective of its edge, it is on the
edge that we can find interesting electronic properties [40].
On one hand, the zigzag edge type is known to be metallic
while, on the other hand, the armchair edge type is known
to be either metallic or semiconducting, depending on the
width of the ribbon [41]. Notice that in the cases where the
current is circulating strictly on the edges, as in Figs. 7(c)
and 8(c), the maximum of the current is considerably higher
than those corresponding to other contact configurations and
energy peaks. This is so, due to the metallic characteristic of
the zigzag edges. In fact, it was shown by Ref. [42] that at
low energy the current flow is localized on the zigzag edges
states, in the same sense as those depicted in Figs. 7(c) and
8(c), which may explain the increase of the maximum of the
current. Furthermore, the role of the edges states has been
widely studied in several contexts [32,43–49]. Nonetheless,
both armchair and zigzag edges have their importance in
magnetic effects and can be used in spintronic devices as well.
See, for instance, Refs. [50–53] for a detailed description.

It is also possible to suppress the edge effects by including
virtual reservoirs [23] in the calculations. These are mod-
eled using the wide-band approximation. Actually, this model
is quite accurate when describing metallic contacts such as
gold (for more information about the wide-band approxima-
tion, see Ref. [54]). Figure 9 shows the maximum current
of Fig. 7(c) as a function of the parameter ν, and we can
clearly see the effect of the virtual contacts, which act like
absorbing boundaries, mimicking inínite dimensions of the
graphene sheet [23], reducing drastically the intensity of the
current and nearly extinguishing the circular flow. Naturally,
the same happens in the case of Fig. 8(c).

B. Effects of the contacts

In the previous section, we presented a few different cases
of contact geometry on the hexagonal GQD. In each case, we
used the transmission as a function of injection energy as a
guide to choose the energies where there is current flowing
between the contacts. Quite naturally, the complexity of the
transmission profile increases with the number of contacts
(see Figs. 5(a) and 5(b)) while fewer contacts lead to sharper
transmission peaks (see Figs. 6–8). This is due to the width
of the reservoirs. In the case where the contact is wider, say,
Figs. 5(a) and 5(b), the transmission becomes smoother. At
the contacts, the current would, in principle, be carried by an
infinite number of transverse modes but, due to the limited

FIG. 10. (Top) Transmission as a function of injection energy for
contacts asymmetrically placed on the zigzag edge of the hexagonal
GQD. (Bottom) Current patterns corresponding to the selected trans-
mission peaks in the sequence a, b, c, d, from left to right, from top
to bottom.The color bar presents a scale for the current intensity in
units of 2e

h . Contacts are represented by colored dots: source (red)
and drain (blue).

size of the interface reservoir-GQD, only a few of these enter
into the device. This is so, due to the interface resistance
(see Chap. 2 of Ref. [28]). Also, it may be noticed that the
maximum of the transmission in the energy range used in
this work is greater for those structures with wider contacts.
Again, this is due to the fact that wider contacts can carry
more propagating modes. Actually, in an ideal system, the
maximum number of propagating modes is proportional to
the width of the contacts which leads to a quantized conduc-
tance [28,31]. When dealing with the two-atom-wide contacts,
which are the cases of Figs. 6, 7, 10, and 8, the transmission
shows sharper peaks, which are a result of the short energy
range where resonant states can appear. It is worth mentioning
that our square reservoirs can be seen as being composed of
individual 1D chains and the transmission of each chain is
only perfected in its conduction band, vanishing outside it. In
addition, the geometry and the edge type have also a great
influence on the conductance as shown by Ref. [55], when
studying three-terminal systems. The break in the stepped-like
conductance was also shown to appear in graphene nanorib-
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bons with defects, both for zigzag and armchair edges [56]
and in disordered graphene nanoribbons [57]. Notice that, for
the cases of two-atom-wide contacts, the transmission peaks
are quasi-symmetrical with respect to zero energy and some
of these symmetrical spikes give rise to similar current pat-
terns. In all cases studied, the current patterns corresponding
to transmission peaks near zero energy are dominated, not
surprisingly, by the edge states. Although the edge states
appear at zero energy in the free GQD (see Figs. 3 and 4,
Z), with the contacts and the chemical potential difference
between source and drain, the energy values where they occur
are shifted from zero. For contacts placed directly in front of
each other across the hexagonal GQD (see Fig. 6) there is
no reason to expect current vortices, since our model does
not contemplate the hydrodynamic viscous regime and the
overall mirror symmetry is respected by the current flow. In-
deed, we did not observe vortices in these cases. Nevertheless,
when the contacts were placed at two nonfrontal armchairlike
vertices, which are the cases of Figs. 7 and 8 on the GQD, vor-
tices, as well as circulating edge currents, were easily found
for different injection energies. Clearly, the vortices are a
consequence of the combination of the distribution of energy
states around the center of the GQD, the geometry of the
contacts, and the boost given to the charge carriers by the
potential difference between source and drain contacts. In
Fig. 7, electrons were injected and collected, respectively,
at two-atom-wide contacts placed at vertices of the GQD.
There, the atoms are in an armchair configuration. When in-
jecting electrons at contacts on the zigzag edges, like those in
Fig. 13, both the vortices and edge currents become substan-
tially modified, as can be observed comparing Figs. 7(c) and
10(c), and Figs. 7(a) and 10(a). The current patterns become
more asymmetric and the maximum current is considerably
reduced, suggesting a greater resistance at the zigzag contacts.
We emphasize that it may be particularly tricky to place the
contacts specifically at the GQD vertex in a real experiment.
To the best of our knowledge it has not been done yet, however
the production of hexagonal GQD [5–7] as well as transport
measurements through GQD [58] have already been achieved.

C. Symmetry effects

As remarked by Waltz and coworkers [16], in their study
of current patterns in a graphene nanoribbon, “the flow has
a pronounced tendency to form ring structures (eddies) with
a local current strength that exceeds the (average) through
current by orders of magnitude.” The regular hexagonal shape
of our graphene flake leads the vortices to be concentric
with the hexagon. This comes in very handy to control the
placement of the magnetic flux associated to a given vortex.
Nevertheless, at high injection energies, more complex cur-
rent patterns appear involving multiple vortices, as shown in
Fig. 11. When the source and drain are at centrosymmetric
positions relative to each other across the sample, like in
Fig. 6, the current distributes itself equally on both sides of
the line joining the contacts. When this symmetry is broken,
by placing the contacts at noncentrosymmetric positions, like
in Figs. 7, 8, and 11, the formation of vortices is favored. In

FIG. 11. Multiple-vortex patterns for two-atom-wide-contact
configurations. The energies of both left and right figures are
−1.3063 and −1.6680 eV, respectively. These energies are outside
the energy range showed in the inset of Fig. 3, and still form inter-
esting current patterns. The color bar presents a scale for the current
intensity in units of 2e

h . Contacts are represented by colored dots:
source (red) and drain (blue).

fact, as shown in Ref. [16] the symmetry forbids the current
vortices but when it is broken, they should be generic encoun-
ters. The importance of the states at energies near the injection
energy of the electrons is very clear in the case of the edge
currents, which are highly localized. On the other hand, the
bulk currents are global, in the sense that they extend over
the sample. In this case, all states will contribute, but those
near the given energy contribute the most. This behavior was
observed [19] in aromatic carbon molecules studied via NEGF
in connection with density functional theory and explained by
a simple tight-binding model.

D. Edge defects and disorder

As pointed out by Aharon-Steinberg and coworkers [20]
in their study of nontopological edge currents in graphene, if
the current that flows on the edges is disrupted locally either
by disorder or by a tip potential, at zero magnetic field the
current tends to bypass the disruption through the bulk and
then return to the edge. In our simulations, when the energy
is close enough to zero, such as in Figs. 7(d) and 8(b), the
insertion of defects causes the current flowing in the edges to
dodge the disruption. Incidentally, when symmetry is used to
distribute the defects, we can also see a circular flow as shown
in Fig. 12(a). This can be explained by Bloch tunneling of
the electrons along the periodic defect structure. However, if
there is irregular-spaced disruption, disorder takes place and
the constructive interference in which the circular flow is kept
vanishes. It is worth mentioning that the current shown in
Fig. 12(a) is not restricted to the edge, flowing through the
bulk as well, something similar to what happens in Figs. 7(d)
and 8(b). Edge currents, as shown in Figs. 7(c) and 8(c), were
not observed in the presence of defects, irrespective if they
are placed on the edge or in the bulk. In fact, when there is a
defect on the structure, the density of states for zero energy is
not symmetrically distributed over the edges as those shown
in Fig. 4, Z. The contact configuration of Fig. 12 is the same
as that of Fig. 7, in order to have a clear comparison between
the respective results.
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FIG. 12. Current patterns for defected structures for energies
−0.3163 eV, −0:6519 eV, −0:9965 eV, and −0:6909 eV respec-
tively. The hydrogen bonds in the atoms near the defect were
removed from the gure in order to improve visualization. The color
bar presents a scale for the cur-rent intensity in units of 2e

h . Contacts
are represented by colored dots: source (red) and drain (blue).

Vortexlike patterns can still appear even if the defect is
more pronounced, as in the case of Fig. 12(b). Indeed, the
vortices can appear even when the defects are in the bulk [see
Fig. 12(c)]. Interestingly, in Fig. 12(b) the center of the vortex
does not match the center of the structure, also, the local cur-
rent is more intense near the defect, which may be responsible
for the shifting of the vortex.

When the defects are distributed randomly in the structure,
“deformed vortices” are formed, as in Fig. 12(d). Notice that
the maximum current of this deformed vortex is much smaller
than that of the perfectly circular pattern. Also, when there
is a defect, an exactly zero energy state appears both in the
density of states and in the transmission, but, the respective
current pattern does not show any vortex or circular flow, since
it is a localized state. In fact, the effect of a single vacancy
on the edges of zigzag graphene nanoribbons can change the
characteristic of the edges from metallic to semiconducting,
due to localization. See Refs. [59,60] for more informa-
tion on the effect of disorder and vacancies in graphene
nanoribbons.

V. CONCLUDING REMARKS

The results presented here testify to the important role
of contact geometry in the electronic properties of graphene
quantum dots. When the position of the contacts are placed
at centrosymmetric positions across the GQD, the current
follows a direct path between the source and drain contacts.
The path broadens and approaches the edge due to the in-
creased importance of the edge states when the injection
energy nears zero. Current vortices and circular edge currents
appear when the centrosymmetry is broken and the contacts
are placed in nonfrontal armchairlike vertices on the GQD.
Also, in the presence of the disorder introduced by defects,
the edge currents do not appear. However, the bulk current
that forms vortices seems to be robust even when there are
few defects. We point out that, when one has several defects,
either on the edges or in the bulk, the edge circular current
is destroyed and the intensity of the current of bulk vortices
that may be formed is substantially reduced. However, when
the defects are distributed periodically over the edge, the
edge current is maintained by Bloch tunneling. Such current
vortices can be used in the design of quantum devices [61],
since their currents give rise to an extremely concentrated
magnetic field. These currents can also be used to generate
spin-based quantum devices, since the orientation of a spin
placed at the center of the vortex can be manipulated by the
induced magnetic field [62]. Conversely, the current vortex
will be affected by external magnetic perturbations in its prox-
imity. This suggests the use of GQD, both as nanomagnets
and as magnetic nanosensors. These might have applications
in nanoscale magnetic recording or in electron microscopy,
for instance. Another possible application is in the design of
energy-tunable electron [63] or even plasmonic [64] lenses.
Another interesting related subject is the study of magnetic
textures associated to the multivortices. The study of current
vortices in differently shaped quantum dots is currently being
performed in our group, including both geometrical and topo-
logical deformations. We can anticipate that other geometries
and shapes sustain such currents as well, which increases the
possibility of experimental verification of these results.
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