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We derive a general expression for the electric and magnetic part of the near-field energy density of N dipoles
of temperatures T1, . . . , TN immersed in a background field having a different temperature Tb. In contrast to
former expressions this inclusion of the background field allows for determining the energy density of heated or
cooled isotropic dipolar objects within an arbitrary environment which is thermalized at a different temperature.
Furthermore, we show how the energy density is related to the local density of states. We use this general
expression to study the near-field enhanced energy density at the edges and corners of one-dimensional (1D)
Su-Schrieffer-Heeger chains and 2D Su-Schrieffer-Heeger lattices of plasmonic InSb nanoparticles when the
phase transition from a topological trivial to a topological nontrivial state is made. We discuss the robustness of
these modes when adding defects and the possibility to measure the topological edge and corner modes.
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I. INTRODUCTION

Today, it is a well-established fact that the thermal energy
density is enhanced in the vicinity of materials which sup-
port surface modes. This effect was already found in early
works of Eckhardt [1] and then later has been studied in great
detail within the framework of fluctuational electrodynamics
as reviewed by Dorofeyev and Vinogradov [2], for instance.
The interest in the near-field energy density is caused by its
connection to the local density of states (LDOS) [1–3] which
determines the emission rates of atoms and molecules and,
last but not least, it is of high relevance for near-field ther-
mal measurements utilizing tip-based probes [4–11]. These
measurements are for example the near-field scanning thermal
microscope (NSThM) [12–14], the thermal radiative scanning
tunneling microscope (TRSTM) [15,16], the thermal infrared
near-field spectroscope (TINS) [17–19], and the scanning
noise microscope (SNoiM) [20–22].

In this work, we generalize the expression for the near-
field energy density in a many-body system consisting of N
dipolar objects [23] in order to study it in the near field of
topological many-body systems. In the past 10 years, the in-
vestigation of near-field thermal radiation in such many-body
systems based on the strict formalism of fluctuational electro-
dynamics [24–29] has shed some light on specific many-body
effects like ballistic, diffusive, sub-, and superdiffusive trans-
port regimes [30–34], heat flux switching [35,36], persistent
heat currents and heat fluxes [37–40], persistent spins and an-
gular momenta [40,41], giant magnetoresistance [42–44], the
Hall effect for thermal radiation for magneto-optical materials
and topological Weyl semimetals [45–47], and the dynamical
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control via magneto-optical surface waves [48] as reviewed
recently in Refs. [49,50]. Our specific interest is to study the
energy density in the vicinity of topological one-dimensional
(1D) Su-Schrieffer-Heeger (SSH) chains [51–55] and 2D SSH
lattices [56–58] of plasmonic InSb nanoparticles (NPs) when
they are undergoing a topological phase transition. Our find-
ings are not only of fundamental interest but also hint to the
possibility to measure this phase transition and in particular
the topological edge and corner modes with near-field thermal
probes.

Our work is organized as follows: We start in Sec. II with
the derivation of a generalized expression of the near-field
energy density for N dipolar objects within a given back-
ground of different temperature than the NPs. In Sec. III we
introduce the SSH chain and discuss the band structure and
the appearance of topological edge modes. To this end we
introduce the Zak phase. In Sec. IV we introduce the 2D
SSH model and again its band structure and appearance of
topological edge and corner modes. In this case we calculate
the Zak phase by means of a Wilson loop. Finally, in Sec. V
we discuss the numerical results for the energy density in the
near field of a 1D SSH chain and a 2D SSH lattice and the
impact of the topological edge and corner modes as well as
the robustness of the results with respect to defects.

II. ENERGY DENSITY AND LDOS

We start with the derivation of the energy density in the
vicinity of a configuration of plasmonic NPs using the dipole
approximation. This quantity has for example already been
considered by Tervo et al. to study the near-field energy den-
sity of 0D, 1D, 2D, and 3D NP systems [23]. There, it was
only considered the near-field energy density generated by
the thermal sources within the NPs. Here we also include the
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possibility to assign a temperature to the thermal photons in
the background of the NPs. This theory can be very generally
valid as long as the background is given in terms of the
Green’s function and as long as the NPs are themselves within
the vacuum part of the environment. Hence our approach can
handle situations where a set of NPs is close to a substrate, in
a cavity, etc. For convenience we focus only on an infinitely
large vacuum background later. Furthermore, we include the
magnetic part of the energy density which is negligible in the
system considered in Ref. [23] and therefore has not been
considered.

Let us start with the electric and magnetic fields at position
r0 generated by the fluctuational dipole moments of N NPs at
positions ri and a background field (superindex b) given by

E(ω, r0) = μ0ω
2

N∑
i=1

GEE
0i pi + Eb

0, (1)

H(ω, r0) = μ0ω
2

N∑
i=1

GHE
0i pi + Hb

0, (2)

where pi = pind
i + pfl

i consists of a purely fluctuational dipole
moment pfl

i due to the thermal agitation of charges inside
the NPs and an induced dipole moment pind

i . Note that for
the Green’s functions we use a short-hand notation GEE

0i =
GEE(r0, ri ) and GHE

0i = GHE(r0, ri ). These two Green’s func-
tions are related to each other by GHE

0i = (iωμ0)−1∇r0 × GEE
0i

as dictated by the Faraday law ∇ × E = iωμ0H. Here μ0 is
the permeability of vacuum.

With these fields we can calculate the mean energy density
given by

〈u〉 = ε0

2
〈|E(r, t )|2〉 + μ0

2
〈|H(r, t )|2〉, (3)

where ε0 is the permittivity of vacuum. To this end, we need
the correlation functions of the fluctuational dipole moments
and the fluctuational background fields. Assuming that the
NPs and the background are in local thermal equilibrium these
correlation functions follow from the fluctuation-dissipation
theorem and are given by [27]〈

pfl
k ⊗ p′fl∗

n

〉 = 2πδ(ω − ω′)δkn
2ε0

ω
�kχ (4)

and [59,60]

〈
Ab

k ⊗ B′b∗
n

〉 = 2πδ(ω − ω′)2ωμ0�b
GAB

kn − GBA†

nk

2i
, (5)

with A, B ∈ {E , H}, A, B ∈ {E, H}, and

�k = h̄ω

exp(h̄ω/kBTk ) − 1
. (6)

Here we have introduced the Boltzmann constant kB and the
susceptibility of the NPs which is related to the polarizability
α of the isotropic NPs and is in our case [see also Eq. (A16)]
[50]

χ =
(

Im(α) − k3
0

6π
|α|2

)
1 = χ1. (7)

Here k0 = ω/c is the vacuum wave number; c is the light ve-
locity in vacuum. Moreover, we assume that the fluctuational
dipole moments pfl

i of different NPs and the background fields

are statistically independent. Finally, we have neglected the
vacuum fluctuations in the above expressions focusing only
on the thermal contributions.

Note that the different Green’s functions are for example
defined in Ref. [60]. Assuming that the environment is recip-
rocal we have the symmetry relations GEE

i j
t = GEE

ji , GHH
i j

t =
GHH

ji , and GEH
i j

t = −GHE
ji . So that we can express the mean

energy density solely by GE ≡ GEE, GH ≡ GHE, and GHH.
Moreover, we use

χT−1(T−1)† = −k2
0 |α|2T−1Im GE(T−1)†

+T−1α − (T−1)†α∗

2i
, (8)

which is explicitly derived in Appendix A with

T i j = δi j1 − (1 − δi j )k
2
0αG

E
i j . (9)

In Eq. (8) all matrices are block matrices, so that for a gen-
eral block matrix (F)i j = Fi j gives the i, jth component and
(F†)i j = (F ji )†. Using the above introduced expressions and
F†

i j := (Fi j )† we obtain for the mean energy density

〈u〉 =
∫ ∞

0

dω

2π
[u1 + u2 + u3], (10)

with

u1 =
N∑

i,k,m=1

(�k − �b)
k3

0

c
2 Im(α)

× Re Tr
{
GE

0iT̃
−1
ik (T̃

−1
)†
mk

(
GE

0m

)†

+ μ0

ε0
GH

0iT̃
−1
ik (T̃

−1
)†
mk

(
GH

0m

)†
}
, (11)

u2 =
N∑

i, j=1

2
k3

0

c

{
(� j − �b)Im(α)

× 2 Re Tr
{
GE

0iT̃
−1
i j

(
GE

0 j

)† + μ0

ε0
GH

0iT̃
−1
i j

(
GH

0 j

)†
}

+�bIm Tr
{
αGE

0iT̃
−1
i j G

E
0 j + α

μ0

ε0
GH

0iT̃
−1
i j G

H
0 j

}}
, (12)

and

u3 =
N∑

j=1

k3
0

c
2

{
(� j − �b)Im(α)

× Re Tr

{
GE

0 j

(
GE

0 j

)† + μ0

ε0
GH

0 j

(
GH

0 j

)†
}

+ �bIm Tr

{
αGE

0 jG
E
0 j + α

μ0

ε0
GH

0 jG
H
0 j

}}

+ 2�b
k0

c

(
Im TrGE

00 + Im TrGHH
00

μ0

ε0

)
. (13)

This expression is one of the main results of this work. The
different terms u1, u2, u3 are chosen such that they contain the
matrix T̃

−1
i j two, one, or zero times, where

T̃
−1
i j = T−1

i j − 1. (14)
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This derived expression for the spectral energy density

uω = u1 + u2 + u3 (15)

applies for any choice of temperatures T1, . . . , TN , Tb. In par-
ticular it becomes quite simple in the case of global thermal
equilibrium where T1 = T2 = · · · = TN = Tb. We obtain

ueq
ω = 2�b

k0

c

(
Im TrGE

00 + Im TrGHH
00

μ0

ε0

)

+
N∑

j=1

2�b
k3

0

c
Im Tr

{
αGE

0 jG
E
0 j + α

μ0

ε0
GH

0 jG
H
0 j

}

+
N∑

i, j=1

2�b
k3

0

c
Im Tr

{
αGE

0iT̃
−1
i j G

E
0 j + α

μ0

ε0
GH

0iT̃
−1
i j G

H
0 j

}
.

(16)

From this expression the LDOS D(ω, r0) follows directly
since D(ω, r0) = ueq

ω /(2π�b). The energy density and LDOS
consist obviously of three parts: the direct part of the envi-
ronment (first term), the direct part of the NPs (second term)
which is proportional to α, and the scattering term (third term)
which is proportional to α2.

In the following we focus on the energy density in the
vicinity of a 1D SSH chain and a 2D SSH lattice in a pure
vacuum background so that the Green’s functions are those of
the situation in bare vacuum, but other environments can be
taken into account by using the corresponding expressions of
the Green’s functions. The vacuum electric Green’s function
GE

i j := GE(ri, r j ) is given by [61]

GE
i j = (a1 + be ⊗ e)

eik0 d̃i j

4π d̃i j
, (17)

with

d̃i j = |ri − r j |, (18)

a = 1 + ik0d̃i j − 1

k2
0 d̃2

i j

, (19)

b = 3 − 3ik0d̃i j − k2
0 d̃2

i j

k2
0 d̃2

i j

, (20)

e = (ri − r j )/d̃i j (21)

and the magnetic Green’s function is given by [61]

GH
i j = eik0 d̃i j

4π d̃2
i j

li j

μ0c

⎛
⎝ 0 z j − zi yi − y j

zi − z j 0 x j − xi

y j − yi xi − x j 0

⎞
⎠, (22)

with

li j = 1 + i

k0d̃i j
. (23)

Furthermore, we have in the vacuum region GHH
i j =

GEE
i j ε0/μ0. Then from the general expressions the energy

density for the longitudinal or transversal modes in the SSH
chain can be obtained by restricting GE

i j only to the xx or zz
component. In the same manner for the SSH lattice the energy
density of the ip and op polarized modes can be obtained by

FIG. 1. Cutout of an infinite SSH chain with t = β

2 d and lattice
constant d . Adjacent particles belonging to the same sublattice A or
B are separated by distance d .

restricting GE
i j to the x-y subspace as in Eq. (33) or to the zz

component only.

III. SSH CHAIN

Now, we consider a chain of NPs as sketched in Fig. 1.
It consists of identical spherical isotropic NPs with a lattice
constant d . The NPs A and B each are on their own sublattice.
They form a unit cell with a spacing of t = βd/2 between the
A and B NPs. We consider spherical InSb NPs with radius R
(we use R = 100 nm) having a polarizability in the quasistatic
limit (Rk0 � 1) given by

α = 4πR3 ε − 1

ε + 2
. (24)

By using this expression we neglect radiative damping and
dynamical depolarization corrections [62,63]. This can be
safely done if k0R � 1 [62,63]. In our case R = 100 nm
and ω ≈ 2 × 1014 rad/s, which yields k0R = 0.07. We have
checked numerically that the relative error due to the omission
of the dynamical depolarization stays below 10%.

Furthermore, we are using only the dominant metallic part
of the optical response modeled by the Drude permittivity [64]

ε = ε∞

(
1 − ω2

p

ω(ω + i
)

)
, (25)

with the effective mass m∗ = 7.29 × 10−32 kg, the density
of the free charge carriers n = 1.36 × 1019 cm−3, the high-
frequency dielectric constant ε∞ = 15.68, and the damping
constant 
 = 1 × 1012 s−1. With these parameters the reso-
nance frequency of the localized plasmonic modes in the InSb
NP is ωLP = ωp

√
ε∞/(ε∞ + 2) = 1.752 × 1014 rad s−1, i.e.,

it clearly lies in the infrared regime around λth ≈ 10 μm,
which is relevant for thermal radiation around room tempera-
ture. Additionally, it needs to be kept in mind that the dipole
model for describing the NPs is valid as long as the radii R of
the NPs are much smaller than λth and the relative distance is
larger than 3R [65–68]

The induced dipole moment pAi for an NP A in the ith unit
cell at position rAi by the dipole moments of all other NPs is
given by

pAi = k2
0

∑
j �=i

αGE(rAi, rA j )pA j

+ k2
0

∑
j

αGE(rAi, rB j )pB j, (26)

where i and j run over all NPs of the sublattice. The equa-
tion which holds for the B NPs can be obtained by simply
exchanging A and B.
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FIG. 2. Band structure of an infinite chain with (a) longitudinal
and (b) transversal polarized InSb particles with radius R = 100 nm
and lattice constant d = 1 μm. Here, we consider interactions be-
tween particles with a maximal distance of 20d to each other, only.

For the infinite chain the eigenvalue equation with the
usage of Bloch’s theorem is given by [69]

Mν

(
pν

A
pν

B

)
= 1

α

(
pν

A
pν

B

)
, (27)

with

Mν
γ δ = k2

0

∑
j,γi �=δ j

GE,ν
γiδ j

eik·(rδi −rδ j )
, (28)

where the two polarizations ν =‖,⊥ are implemented using
the xx (zz) component in the Green’s function GE,‖

γiδ j
(GE,⊥

γiδ j
).

Accordingly pν
A(B) is the dipole moment of the ν polarized

A(B) particle in a unit cell. More details about the eigenvalue
equation can be found in Refs. [53–55].

In Fig. 2 the typical two bands formed by the real part of
the eigenmode frequencies of the infinite SSH chain [70] can
be seen. Furthermore, following from symmetry the bands
for β = 1 + x and β = 1 − x with a fixed value x are the
same. For β = 1 the band gap is closed [69]. In addition,
when taking the quasistatic regime k0d � 1 and k0t � 1 into
account for β > 1 the Zak phase γν is π , which is topo-
logical nontrivial and for β < 1 it is 0, which is topological

FIG. 3. Real parts of the complex eigenfrequencies of the chain
modes determined by Eq. (26) for (a) longitudinal and (b) transversal
polarization as a function of β. The finite chain consists of 20 InSb
NPs with radius R = 100 nm and lattice constant d = 1 μm. For
β < 1 (blue circles) the Zak phase is γ⊥/‖ = 0 and for β > 1 (red
crosses) the Zak phase is γ⊥/‖ = π .

trivial. Following from the Zak phase in the topological non-
trivial case for even N there are two topologically protected
edge modes in the band gap confined to the edges of the
chain [53–55,69] as can be seen in Fig. 3. Of course, in the
topological trivial case no edge modes can appear. Detailed
calculations and discussions of the Zak phase and edge modes
can be found in [69] and are not repeated here. Note that
there are cases where the Zak phase indicates a topological
nontrivial state but no edge modes exist [71]. This breakdown
of the bulk-edge correspondence can happen for large enough
lattice constants in the 1D and 2D cases. For the plasmonic
resonance in InSb and a lattice constant of d = 1 μm we find
no breakdown meaning that the Zak phase clearly indicates
the existence of the topological edge modes. As discussed in
Appendix B we would have a breakdown for d � 3 μm for the
transversal modes in agreement with the results in Ref. [71].

Apart from the real parts of the eigenmode frequencies we
have also studied the imaginary parts. We find that for the
1D SSH and the 2D SSH lattice in the next section that the
imaginary parts are concentrated around the value −
/2 with
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FIG. 4. Cutout of an infinite 2D SSH lattice consisting of four
sublattices. The unit cell includes one particle A, B, C, D of each
sublattice. Furthermore, the high symmetry points of the first Bril-
louin zone are shown.

a small variation on the 10% level. Therefore, the damping
constant of the intensity of an excited mode is −2 Im(ω) ≈ 


and consequently the lifetime is approximately 1/
 for all
modes. As expected, the lifetime is mainly determined by the
losses.

IV. 2D SSH LATTICE

For the 2D SSH lattice we now consider a configuration as
shown in Fig. 4. In general it is built by SSH chains in the x
and y direction. A unit cell consists now of four particles A,
B, C, and D, with one of each on a 2D sublattice with lattice
constant d . In this case, the induced dipole moment pAi of NP
A of the ith unit cell is given by

pAi = k2
0

∑
j �=i

αGE(rAi, rA j )pA j

+ k2
0

∑
j

αGE(rAi, rB j )pB j

+ k2
0

∑
j

αGE(rAi, rC j )pC j

+ k2
0

∑
j

αGE(rAi, rD j )pD j . (29)

Similar equations hold for the dipole moments of the other NP
B, C, and D.

As for the 1D SSH chain, we can now make a Bloch
ansatz. By using the symmetry of the system we distinguish
between in plane (ip) and out of plane (op) polarization of
the plasmonic particles. Then we arrive at the expressions
(ν = ip, op)

Mν

⎛
⎜⎝

pν
A

pν
B

pν
C

pν
D

⎞
⎟⎠ = 1

α

⎛
⎜⎝

pν
A

pν
B

pν
C

pν
D

⎞
⎟⎠ (30)

FIG. 5. Band structure of the infinite 2D SSH lattice for op
polarization in a quasistatic regime for (a) β = 1 and (b) β = 1.3
considering interactions up to next nearest unit cell.

for both polarization with

Mop
γ δ = M⊥

γ δ (31)

as defined in Eq. (28) and pop being the z component of the
dipole moment. For the in-plane modes we have

M
ip
γ δ = k2

0

∑
j,γi �=δ j

G
E,ip
γiδ j

eik·(rδi −rδ j )
, (32)

with the dipole moment pip = (px, py)t and Green’s tensor

GE,ip =
(

GE
xx GE

xy

GE
yx GE

yy

)
(33)

within the x-y plane.
As for the SSH chain, the behavior of the band structure

for an infinite number of particles is the same for bands with
β = 1 + x and β = 1 − x for a given value x. Moreover, for
β = 1 the band gaps appearing for β �= 1 close, as can be seen
in Fig. 5 for op polarization and in Fig. 6 for ip polarization.

To evaluate the topological phase of the 2D SSH lattice
we determine the Zak phase [57] by using the Wilson loop
approach [58]. The Zak phase is defined by the Brillouin zone
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FIG. 6. Band structure of the infinite 2D SSH lattice for ip po-
larization in a quasistatic regime for (a) β = 1 and (b) β = 1.3
considering interactions up to next nearest unit cell.

integral (i, j ∈ {x, y} with i �= j)

ϑ j = d
∫

BZ
dki w j (ki ) (34)

of the “polarization”

w j (ki ) = − i

2π
ln(det[Wj (ki )]), (35)

which can be evaluated by means of the Wilson loop operator

Wj (ki ) =
Mj∏

n=0

[Fj,k+n�k j e j ] (36)

defined via the matrix

(Fj,k )mn = 〈pm,k|pn,k+�k j e j 〉, (37)

where Mj defines the k-space partitioning by the rela-
tion (Mj + 1)�k j = 2π

d and m, n ∈ {1, . . . , Ñ}. Here Ñ is
the number of the bands below the considered band gap
and therefore defines the rank of the matrix Fj,k. The
vectors |pn,k+�k j e j 〉 are given by the eigenvector solutions
(pν

A, pν
B, pν

C, pν
D)t of the eigenvalue equation (30) for the cor-

responding k + �k je j and Mν restricted only to ν = x, ν = y,
or ν = z subspace; e j is the unit vector in j direction.

FIG. 7. For a finite 2D SSH lattice of 36 particles real parts
of the complex eigenfrequencies of the lattice modes determined
by Eq. (26) are shown as a function of β for (a) ip and (b) op
polarization. For β < 1 (blue circles) the Zak phase is ϑx/y = 0 for
all band gaps and for β > 1 (red crosses) the Zak phase is ϑx/y = π

for the first and third band gap. The green box indicates one of the
corner modes at β = 1.3.

For the polarization of the particles in x, y, z direction,
we obtain the same results as in Ref. [56], namely for the
polarization in x, y in the first and third band gap we have
(ϑx, ϑy) = (π, π ) and in the second and fourth band gap we
find (ϑx, ϑy) = (0, 0) if β > 1. For polarization in z for the
first and second full band gap we get (ϑx, ϑy) = (π, π ) for
β > 1 and (ϑx, ϑy) = (0, 0) for β < 1. Following to the bulk-
edge correspondence there will be topological edge modes
in the first and third band gap in the topological nontrivial
phase if the lattice is finite in either x or y direction. If
the lattice is finite in x and y direction then we also expect
corner states appearing at the corners of the lattice [56]. To
illustrate the topological edge and corner modes we show the
band structures for ip and op polarization in Fig. 7. It can
be seen that there are additional modes in the band gap for
β > 1 compared to β < 1 for a finite system. These modes
are localized at the edges or corners of the lattice structure.
This localization will be evident later when we determine
the energy density in close vicinity of the SSH lattice. Of
course, this localization can also be confirmed by plotting the
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FIG. 8. Normalized absolute values of the dipole moments
|pop

A,B,C,D| of two op edge modes at frequency 1.746 × 1014 rad/s
when exciting a particle in the edge at the (a) bottom or (b) left and
(c) a corner mode at the frequency 1.749 × 1014 rad/s when exciting
the particle at the left bottom corner for β = 1.3 as found in Fig. 7.

eigenvector solutions for the dipole moments of the lattice. In
Fig. 8 we show the normalized values of the eigensolutions
of the dipole moment for two edges and the corner mode for

FIG. 9. Full spectral energy density uω in (Js/m3) (longitudinal
and transversal polarization) above an SSH chain of NPs for (a) β =
1.3 and (b) β = 0.7. Here we choose 10 particles with radius R =
100 nm. The spectral energy density is calculated 300 nm above the
NPs at the edge mode frequency ω = 1.7493 × 1014 rad/s for β =
1.3. Black (A) and red (B) crosses mark the positions of the NPs of
both sublattices.

β = 1.3 and op polarization. Similar results can be obtained
for the ip polarization.

V. NUMERICAL RESULTS

In the following we discuss the numerical results of the
spectral energy density uω = u1 + u2 + u3 for the edge and
corner modes in 1D SSH chain and 2D SSH lattice. To this
end, we assume that all NPs have a temperature of 350 K,
whereas the background has a lower temperature of Tb =
300 K.

A. SSH chain

In Fig. 9 we plot the full spectral energy density for β > 1
at frequency ω = 1.7493 × 1014 rad/s, i.e., the contribution
of longitudinal and transversal modes together. It can be seen
that the edge modes appearing at that frequency dominate the
spectral energy density at the edges of the chain. In contrast,
for β < 1 at the same frequency the energy density is the same
above each particle of the chain. This means that the topologi-
cal protected edge modes can in principle be measured with a
near-field microscope like the TINS, TRSTM, or the SNoiM.
To get a better insight of the contribution of the terms u1, u2,
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FIG. 10. Spectral energy density terms (a) u1, (b) u2, and (c) u3 in
(Js/m3) for β = 1.3. The other parameters are the same as in Fig. 9.

and u3, we show the spectral energy density at the edge mode
frequency in the topological nontrivial case for all three terms
separately in Fig. 10. From these plots it becomes clear the
behavior of u2, which is linear in T̃

−1
, is responsible for the

dominating edge mode contributions, whereas u1 and u2 have
smaller energy density contributions at the edges than in the
inner part of the chain.

Now, let us turn to the contributions of the longitudinal and
transversal modes. It can be expected from the fact that for
both polarizations there is an edge mode at the same frequency
as shown in Fig. 3. This is confirmed by the longitudinal
and transversal spectral energy density above the chain of NP

FIG. 11. Spectral energy density in (Js/m3) for (a) longitudinal
and (b) transversal polarization. The parameters are the same as in
Fig. 9.

shown in Fig. 11. In both cases the general behavior is the
same, i.e., the edge modes give a dominant energy density
contribution at the edges of the chain. Here, this enhanced
energy density at the edge is more pronounced for the lon-
gitudinal polarization than for the transversal polarization.

B. 2D SSH lattice

Let us turn to the investigation of the spectral energy above
the 2D SSH lattice. In general, it shows the same behavior
as for the chain; therefore, only full spectral energy density
without a detailed discussion of the separate terms and po-
larizations will be exemplarily considered. As can be seen in
Figs. 12 and 13 for a frequency corresponding to the eigen-
frequency of the edge or corner mode the energy density is
enhanced at the edges or corners, respectively, when choosing
the nontrivial topological phase. Again we can conclude that
the edge and corner modes are due to this enhancement acces-
sible by scattering type near-field probes like TINS, TRSTM,
and SNoiM.

C. Stability

As topological generated edge and corner modes are robust
we show how this translates for the near-field energy density.
That these modes are robust under small perturbations for
example in the positioning of the NPs is known [57]. Here
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FIG. 12. Full spectral energy density in (Js/m3) of a 2D SSH
lattice for (a) β = 1.3 and (b) β = 0.7 for a lattice of 36 NPs (posi-
tions are marked via red crosses) at the edge mode eigenfrequency
ω = 1.75592 × 1014 rad/s. All other parameters are the same as in
Fig. 9.

we show that the topological edge modes are even robust to
defects within the lattice which are not treatable within per-
turbation theory [57]. Furthermore, due to such defects new
edges and therefore new edge modes can appear. Therefore,
we include defects in the chain or lattice including positions
in the chain or lattice where the NP is absent. In Fig. 14 there
are two examples for the SSH chain by removing either an “A”
or “B” NP in the chain. It can be seen that the edge modes of
the previously defectless chain are still enhancing the energy
density at the edges. Furthermore, due to the fact that by
removing an NP we have now two separate SSH chains, we
find also edge modes in the produced gap for the subchain
which ends by an A and B NP. The subchain which has either
two A or two B NPs at its ends only supports one edge mode
as can directly be seen in the near-field energy density.

If we add defects to the lattice by removing an NP in the
bulk part of the lattice then the edge and corner modes are
basically unaffected, as can be seen in Fig. 15, even though
the energy density close to the defect can be affected, as can
be nicely seen in Fig. 15(a). Now, when adding a defect at the
edges at the lattice as shown in Fig. 16 then the edge and cor-
ner modes are basically unaffected in the region far away from

FIG. 13. Full spectral energy density in (Js/m3) of a 2D SSH
lattice for (a) β = 1.3 and (b) β = 0.7 for a lattice of 36 NPs (posi-
tions are marked via red crosses) at the corner mode eigenfrequency
ω = 1.7494 × 1014 rad/s. All other parameters are the same as in
Fig. 9.

the defect. However, in the direct neighborhood of the defect
in our case a new corner mode appears in Fig. 16(a) and the
edge mode is partially “destroyed” in Fig. 16(b). Therefore,
we can conclude that defects which might be produced by
nanofabricating SSH chains and lattices are not at all affecting
the edge or corner modes if the defects are in the middle part
of the chain or lattice.

VI. CONCLUSION

We have derived a generalized expression for the near-field
energy density for N dipoles each thermalized at its own local
temperature. In contrast to former expressions ours includes
the possibility of an arbitrary background which can have a
different temperature than that of the dipoles. Furthermore,
we also include the magnetic part of the energy density, which
also allows us to relate it to the LDOS. We have applied
this expression to determine the near-field energy density of
a 1D SSH chain and a 2D SSH lattice of InSb plasmonic
NPs showing that the edge and corner modes enhance the
energy density in the vicinity of the edges and corners of
such structures within the topological nontrivial phase. Of
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FIG. 14. Full spectral energy density in (Js/m3) for β = 1.3 for
a chain of 10 NPs at the (a) edge mode frequency with a vacancy
in the NP chain of the A (top) and B (bottom) sublattice. All other
parameters are the same as in Fig. 9.

course, similar results can be obtained with other plasmonic
or phonon-polaritonic materials like SiC, GaN, doped Si,
etc. which have a plasmon or phonon-polariton resonance
in the infrared. Apart from its fundamental character this
observation makes clear that the edge and corner modes are
in principle experimentally accessible with near-field thermal
profilers such as the TINS, TRSTM, and SNoiM, which opens
a perspective to studying these topological states and the
topological phase transition. Finally, we have also shown that
defects due to possible fabrication errors will not affect the
edge and corner modes as long as the defects do not sit at the
edges or corners of interest.
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FIG. 15. Full spectral energy density in (Js/m3) for β = 1.3 for
a lattice of 36 particles (positions are marked via red crosses) at the
(a) edge mode frequency ω = 1.7559 × 1014 rad/s and (b) at the
corner mode frequency ω = 1.74942 × 1014 rad/s with an absent NP
in the middle of the chain. All other parameters are the same as in
Fig. 9.

APPENDIX A: PROOF OF EQ. (8)

Here, we proof or derive Eq. (8). To this end, we calculate
the general correlation function

〈Ei ⊗ E j〉 (A1)

in two different equivalent ways and compare the results
which will allow us to obtain Eq. (8). Note that here we use
the short-hand notation Ei = E(ri ), which is the electric field
at the position of the ith particle and correspondingly for the
index j. Since the electric field is given by the sum of the
fields generated by the particles and the part generated by the
background field, it can be expressed as [27]⎛

⎝E1
...

EN

⎞
⎠ = DT−1

⎛
⎜⎝p f l

1
...

p f l
N

⎞
⎟⎠ + (1 + DT−1A)

⎛
⎝Eb

1
...

Eb
N

⎞
⎠, (A2)

where we introduce

1i j = δi j1, (A3)

Ai j = ε0δi jα, (A4)
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FIG. 16. Full spectral energy density in (Js/m3) for β = 1.3 for a
lattice of 36 particles (positions are marked via red crosses) at (a) the
edge mode frequency ω = 1.7559 × 1014 rad/s and at the (b) corner
mode frequency ω = 1.7494 × 1014 rad/s. All other parameters are
the same as in Fig. 9.

Di j = k2
0

ε0
GE

i j . (A5)

So, Eq. (A2) is just another formulation of Eq. (1). Inserting
this ansatz into the correlation function in Eq. (A1) we obtain

〈Ei ⊗ E j〉 =
∑

k

{
(DT−1)ikb(T )χ (DT−1)†

jk

+ (DT−1A)ika(T )
GE

k j − GE
jk

†

2i

+ a(T )
GE

ik − GE
ki

†

2i
(DT−1A)†

jk

+
∑

l

a(T )(DT−1A)ik
GE

kl − GE
lk

†

2i
(DT−1A)†

jl

}

+ a(T )
GE

i j − GE
ji

†

2i
, (A6)

where the indices of the sums are running over all particles. In
addition, here we used the fluctuation-dissipation theorem for

the dipolar moments of the isotropic NPs [27]〈
p f l∗

i ⊗ p f l
j

〉 = δi jb(T )χ1 (A7)

and fields [59,60]

〈
Eb

i ⊗ Eb∗
j

〉 = a(T )
GE

i j − GE
ji

†

2i
(A8)

with a(T ) = 2ωμ0� and b(T ) = 2ε0
ω

�. These are just the
same expressions as used in Eq. (4) and Eq. (5) with Ti =
Tb = T . Hence we are assuming global thermal equilibrium at
temperature T .

On the other hand, we can directly evaluate the correlation
function in Eq. (A1) by first evaluating the total field in pres-
ence of the scatterers by assuming that we have some current
density j at position r′ which generates a field

E0(r) = iωμ0G
E(r, r′)j. (A9)

Then the total field at the position of the dipole i is

Ei =
∑

k

(1 + DT−1A)ikE0
k, (A10)

which is basically Eq. (A2) without the contribution of the
fluctuational sources. By inserting Eq. (A9) we obtain

Ei = iωμ0G
full (ri, r′)j, (A11)

with

Gfull (ri, r′) = GE(ri, r′) +
∑

k

(DT−1A)ikG
E(rk, r′). (A12)

Since we are in global equilibrium, the correlation function in
Eq. (A1) is determined by the fluctuation-dissipation theorem
as

〈Ei ⊗ E j〉 = a(T )
Gfull

i j − Gfull†
ji

2i
(A13)

so that by inserting the full Green function we obtain

〈Ei ⊗ E j〉 = a(T )

[ ∑
k

{
(DT−1A)ikG

E
k j

2i

− GE
ki

†(DT−1A)†
jk

2i

}

+ GE
i j − GE

ji
†

2i

]
. (A14)

Now setting Eq. (A7) equal to Eq. (A14) in thermal equilib-
rium and using block matrices with (F)i j = Fi j , so of course
(F†)i j = (F ji )† for F ∈ {T−1, A, D,GE} and recalling that
F†

i j := (Fi j )† we obtain Eq. (8)

χT−1(T−1)† = −k2
0 |α|2T−1Im GE(T−1)†

+T−1α − (T−1)†α∗

2i
. (A15)

Note that when taking the trace of the diagonal components
of the block matrix, this relation reproduces the relation in
Eq. (29) in Ref. [27] which was derived by the requirement
that in an N-dipole setup the heat emitted or received by any
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particle must vanish in equilibrium. Hence our general rela-
tion reproduces a more specific result. Furthermore, it should
also be noted that when taking the case of only one particle
in vacuum [T−1 = 1 and Im(GE

11) = k0/6π1] our relation
simply yields the form of the susceptibility χ needed to have
a consistent theory, which is given by

χ = Im(α) − k3
0

6π
|α|2 (A16)

and was derived in exactly this way in Ref. [27], but for a
single particle only.

APPENDIX B: BREAKDOWN BULK-EDGE
CORRESPONDENCE

In this Appendix, we shortly discuss the possibility to
observe the breakdown of the bulk-edge correspondence [71]
in the energy density above the 1D SSH chain. To this end,
in analogy to the study in Ref. [71] we rewrite the eigenvalue
Eq. (27) as

M̃
ν

(
pν

A
pν

B

)
= d3

α

(
pν

A
pν

B

)
= E

(
pν

A
pν

B

)
, (B1)

with M̃
ν = Mνd3. The eigenvalues E of this equation allow

one to identify the lattice constant d for which the edge
modes enter the bulk bands. We furthermore use the same
approximations as in Ref. [71] by focusing on ω = ωLP. This
happens for transversal but not longitudinal modes indicating
the breakdown for the transversal modes only [71].

In Fig. 17 we show the band structure in terms of the
eigenvalues E as a function of the lattice constant d . It can
be seen that for the transversal modes the edge modes around
E = 0 enter the bulk bands at kspd/π ≈ 0.55 (ksp = ωLP/c),
which is in exact agreement with the value found in Fig. 3(c)
in Ref. [71]. It corresponds to a lattice constant of d ≈ 3 μm.
In addition, in Fig. 17 we have plotted the energy density ratio
uν

2/uν
1 of the energy density uν

2 (uν
1) at z = 300 nm above the

second (first) NP. One can observe that for both the transversal
and longitudinal modes this ratio converges to one at smaller

FIG. 17. Real part of the eigenvalues E for (a) transversal and
(b) longitudinal modes as a function of the lattice constant for N =
300 NPs and β = 1.3. Furthermore the ratio uν

2/uν
1 with ν =⊥, ‖

for the energy density 300 nm above the second NP u2 and the first
NP u1.

values of kspd/π ≈ 0.5 corresponding to d = 2.5 μm. Hence
the energy density does not give a clear signal anymore for the
edge modes, which is due to the fact that the coupling between
the particles becomes very weak for such distances and the
bands are getting very narrow around ωLP. This means that
in our configuration the breakdown of the bulk-edge corre-
spondence cannot be seen with near-field thermal microscopes
even if it would be possible to separate the contributions of the
transversal and longitudinal modes to the energy density.
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