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Corbino field-effect transistors in a magnetic field: Highly tunable photodetectors

Bailey Winstanley ,1,* Henning Schomerus,2 and Alessandro Principi1,†

1Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
2Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom

(Received 29 June 2020; revised 16 August 2021; accepted 24 August 2021; published 5 October 2021)

We study gated field-effect transistors (FETs) with an eccentric Corbino-disk geometry, such that the drain
spans its circumference while the off-center inner ring acts as a source. An alternating current terahertz potential
difference is applied between source and gate while a static source-drain voltage, rectified by the nonlinearities
of FET electrons, is measured. When a magnetic field is applied perpendicular to the device, a strong resonance
appears at the cyclotron frequency. The strength of the resonance can be tuned by changing the eccentricity of
the disk. We show that there is an optimum value of the eccentricity that maximizes the responsivity of the FET.
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I. INTRODUCTION

Electromagnetic radiation is one of the prime tools to
investigate matter and its properties. This is made possible
by the existence of efficient and compact sources and de-
tectors in the whole spectrum, with the crucial exception of
the low-terahertz range (between 0.1 and 30 THz). This fact,
commonly referred to as the terahertz gap, has slowed down
technological developments in, e.g., nondestructive imaging,
biosensing, and spectroscopy of materials [1–3]. In modern
optoelectronics, there is a deep need for efficient and tunable
photodetectors that operate in this range [1–6]. Dyakonov and
Shur [7–9] predicted that a field-effect transistor (FET), or any
gated two-dimensional (2D) electron liquid, could be used to
generate and detect terahertz radiation.

The device in their seminal work consists of a square semi-
conductor quantum-well cavity, hosting a 2D electron gas,
connected to a source and a drain and in close proximity to a
metal gate. When a terahertz alternating current (AC) source-
gate voltage is applied, typically from incoming terahertz
radiation impinging on an antenna, asymmetric boundary
conditions and intrinsic nonlinearities of the electron fluid
produce a rectified direct current (DC) source-drain voltage.
Resonances are observed in the rectified (photo)voltage at
frequencies that allow plasmons (collective long-wavelength
charge density fluctuations [10]) to undergo constructive in-
terference. This phenomenon has been experimentally verified
in semiconductor quantum wells at room [11–13] and low
temperatures [14] and in graphene-based FETs [15–19].

Recently, it has been shown that the responsivity of
Dyakonov-Shur terahertz detectors can be greatly enhanced
by shaping them as Corbino disks [20]. In such a geometry, the
electric field becomes singular at the inner contact ring (the
source), and the field enhancement results in a strong nonlin-
ear rectification at the outer ring (the drain). Motivated by such
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findings, here, we study similar photodetectors in a uniform
magnetic field perpendicular to the electron liquid, previously
performed in other geometries and shown to enhance photode-
tection [21,22]. Under this condition, the spectrum of plasmon
modes, labeled by their “winding number” η, i.e., the number
of oscillations of the electric field in the angular direction, is
reconstructed. Notably, the plasmon spectrum splits into two
parts, revealing both bulk and edge modes. Edge magneto-
plasmons have frequencies below the cyclotron frequency for
values of η that are not too large. Bulk-plasmon frequencies
are instead “pushed” above the cyclotron frequency.

As shown in what follows, the energy of magnetoplas-
mons depends on the sign of η, with edge modes appearing
only at positive winding numbers (for magnetic fields along
the direction orthogonal to the disk). Furthermore, depend-
ing on device parameters and at odds with Corbino disks
characterized by symmetric boundary conditions [23–25], the
dispersion of bulk modes can exhibit a nearly flat band close
to the cyclotron frequency. When the radii of the source and
drain rings are comparable, modes characterized by different
winding numbers appear to have all very similar frequencies.
Because of this feature, we would expect the response of the
system to be greatly enhanced when the frequency of the
external field is close to the cyclotron one, if we could ex-
cite plasmon modes with different winding numbers at once.
Since the cyclotron frequency can be tuned with the external
magnetic field, the Corbino photodetector could be capable
of selectively detecting frequencies deep in the terahertz gap
with a high responsivity. Unfortunately, in the Corbino geom-
etry, this would require a careful fine-tuning of the potential
profile at the source (inner) ring, which is highly unlikely to
be realized experimentally with a simple circular contact con-
nected to an antenna. The circular symmetry of the Corbino
disk indeed forbids the mixing of modes of different winding
numbers, and therefore, a homogeneous potential at the source
would only excite nonwinding plasmons with η = 0.

To overcome this limitation, we study an eccentric Corbino
geometry, whereby the inner source ring is off-centered and
made closer to the outer edge on one side of the disk.
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By breaking the circular symmetry, the eccentric geometry
enables the excitation of modes characterized by different
winding numbers with a simple uniform source potential.
The photoresponse is greatly enhanced at frequencies near
the cyclotron one when the source is in close proximity of
the drain. This requirement is reminiscent of the condition
needed to obtain a plasmon flat band in concentric Corbino
geometries. Therefore, in eccentric geometries, the photore-
sponse enhancement is controlled not only by the size of the
inner ring but also by its closeness to the drain. We find that,
for any pair of source and drain radii, there is an optimal value
of the eccentricity that maximizes the photoresponse.

In Sec. II, we present the model of the electron cavity as a
hydrodynamic fluid in the presence of a uniform perpendicu-
lar magnetic field. In Sec. III, we apply said theory to model
a Corbino disk. In Sec. IV, we study an eccentric Corbino
disk. In Sec. V, we report the summary of our findings and our
main conclusions. We note that the description we use holds
for a variety of different systems [7–9,18,26], and therefore,
our predictions have a broad range of applicability.

II. THE MODEL OF THE CAVITY

We consider a general FET, where the active component
is a 2D electron liquid placed in close proximity to a metal
gate. The geometry used in this paper is that of a Corbino
disk with source and drain electrodes attached to the inner
and outer edges, respectively. It should be noted, however,
that the following applies to general 2D geometries. A ra-
diation field oscillating at frequency ω is applied between
the source and the gate, typically via an antenna, while the
drain is left floating, i.e., no current flows through it. We
will study rectification of the oscillating field due to the in-
trinsic hydrodynamic nonlinearities of the electron liquid [18,
27–32] (we discuss below the applicability of such a model).
A rectified DC source-drain potential difference, proportional
to the power of the incident radiation, is therefore measured
between source and drain at zero applied bias.

Since we focus on the long-wavelength low-frequency
dynamics of the electron liquid, we model it by means of
hydrodynamic equations [18,33]. These govern the relation-
ship between the density, current, and electric field within
the device. We stress that equations formally equivalent to
hydrodynamic ones can be derived by inverting the nonlinear
relation between current and electric field of the electron
fluid [18], with no reference to typical scattering times [34]
(i.e., the relations hold true also for noninteracting elec-
trons). Therefore, hydrodynamic equations should be seen
here as an efficient way to incorporate nonlinearities in the
long-wavelength description of the electron liquid. The first
of these relations is the continuity equation ∂tρ(r, t ) + ∇ ·
[ρ(r, t )v(r, t )] = 0, which connects the periodic accumula-
tion of charge density due to the oscillating radiation field
ρ(r, t ) to the flow velocity v(r, t ). Since electrons are charged,
ρ(r, t ) induces a nonlocal Hartree-like electric potential
according to [18]

U (r, t ) =
∫

dr′V (r − r′)ρ(r′, t ), (1)

which in turn acts as the restoring force that sustains charge
oscillations in a feedback loop. In Eq. (1), V (r − r′) is the

Coulomb interaction between two charges at positions r and
r′. The nearby gate, which we assume to be a perfect con-
ductor, has an important effect: mirror charges screen the
tail of the Coulomb interaction and make it effectively short
ranged. In view of this fact, and to simplify the following
derivation, we will employ the so-called local-gate approxi-
mation [15,18]. The latter consists in assuming a local relation
between the self-induced field and charge density

U (r, t ) = ρ(r, t )

C
, (2)

in lieu of the nonlocal one of Eq. (1). This approximation
has been shown [24,35] to reproduce well results obtained
with Eq. (1) when the gate is explicitly accounted for. In the
specific case under consideration, it allows for the emergence
of edge magnetoplasmons in both semi-infinite planes and
hollow disks. Using the local-gate relation between electric
potential and charge density, the continuity equation becomes

∂tU (r, t ) = −∇ · [U (r, t )v(r, t )]. (3)

The equation relating the flow velocity to the self-induced
field is assumed to have the following Euler-like form [18]:
e

m
∇U (r, t ) = ∂t v(r, t ) + 1

τ
v(r, t ) + ωcẑ × v(r, t )

+[v(r, t ) · ∇]v(r, t ) + v(r, t ) × [∇ × v(r, t )].

(4)

In these equations, −e is the electron charge, m their
effective mass, and τ the average time between two suc-
cessive momentum-nonconserving collisions with impurities
or phonons. Finally, ωc = eB/m is the cyclotron frequency,
and B is the magnetic field applied orthogonal to the 2D
electron liquid. The term v(r, t ) × [∇ × v(r, t )], known as
the Lamb vector, represents a nonlinear Lorentz force due
to the vortical movement of the electron fluid itself [36] and
can be combined with the term [v(r, t ) · ∇]v(r, t ) into the
single term ∇v2(r, t )/2. We solve the problem posed by the
hydrodynamic Eqs. (3) and (4) in conjunction with the usual
Dyakonov-Shur boundary conditions

U (r, t )|source = Uext (r) cos(ωt ),

n̂ · v(r, t )|drain = 0, (5)

corresponding to an oscillating gate-source potential from the
antenna output and an open-circuit drain. Here, n̂ is the unit
vector normal to the drain surface.

To solve the problem above, we resort to a perturbative
treatment of the system of nonlinear equations. We assume
Uext to be a small parameter and calculate the rectified nonlin-
ear response as a perturbation to the potential. We then expand

U (r, t ) = U0 + U1(r, t ) + U2(r, t ) + O
(
U 3

ext

)
,

v(r, t ) = v1(r, t ) + v2(r, t ) + O
(
U 3

ext

)
. (6)

Here, U0 < 0 is the equilibrium gate potential (which fixes the
charge density in the FET according to ρ0 = CU0), and the
equilibrium velocity v0 is zero by definition. Here, U1(r, t )
and v1(r, t ), and U2(r, t ) and v2(r, t ) are the linear (order
Uext) and nonlinear (order U 2

ext) contributions to the potential
and velocity, respectively. Note that, although small, U2(r, t )
is responsible for the only nontrivial DC rectified potential,
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which can be detected by measuring an averaged source-to-
drain voltage drop [7–9,15,18].

Plugging the expansions in Eq. (6) into the set of Eqs. (2)–
(5), we collect terms of order Uext and U 2

ext into two systems
of differential equations, which are linear in U1(r, t ) and
v1(r, t ), and U2(r, t ) and v2(r, t ), respectively. The former
yields the linear response of the system which oscillates at the
same frequency as the external source-gate perturbation po-
tential, i.e., U1(r, t ) = U1(r)e−iωt + U ∗

1 (r)eiωt and v1(r, t ) =
v1(r)e−iωt + v∗

1 (r)eiωt . Conversely, the system of equations
for U2(r, t ) and v2(r, t ) yields solutions oscillating at ±2ω

and a rectified (time-independent) one. To focus on the latter
part of the potential U2(r, t ), we average equations over time
by integrating over a period of oscillation, T = 2π/ω. In this
way, the time-dependent parts of U2(r, t ) and v2(r, t ) vanish.

The details of the derivation are given in Appendix A.
The linear systems of equations for U1(r, t ) and v1(r, t ), and
U2(r, t ) and v2(r, t ) read[

ω2
c − ω2 f 2

ω

]
U1(r) − s2 fω∇2U1(r) = 0

U1(r)|source = Uext (r)

n̂ · [iω fω∇U1(r) + ωcẑ × ∇U1(r)]|drain = 0,

(7)

where s = √−eU0/m is the plasma wave velocity, fω = 1 +
i/(ωτ ), and

1 + (τωc)2

U0τ
∇ · [U ∗

1 (r)v1(r) + U1(r)v∗
1 (r)] = ∇2φ(r)

φ(r) − v∗
1 (r) · v1(r)|source = 0

n̂ · [
ωcẑ × ∇φ(r) − 1

τ
∇φ(r)

]|drain = 0.

(8)

Here, φ(r) = v∗
1 (r) · v1(r) − eU2(r)/m and

v1(r) = s2

U0

iω fω∇U1(r) + ωcẑ × ∇U1(r)

ω2
c − ω2 f 2

ω

. (9)

The Poisson problems in Eqs. (7) and (8) are numerically
solved with a finite-element solver coded in MATHEMATICA

[37]. For each calculation, the integration mesh was refined
until convergence was reached.

The Poisson problems in Eqs. (7) and (8) admit unique so-
lutions for U1(r), φ(r), and therefore for U2(r) = m/e[v∗

1 (r) ·
v1(r) − φ(r)]. In the absence of a magnetic field, the pho-
toresponse of the system will exhibit resonances at given
frequencies dependant on the geometry of the system. The
lowest of these frequencies is denoted as ωB and determined
numerically for any given disk geometry for later use (see the
following sections).

III. CONCENTRIC CORBINO DISK

We first solve Eqs. (7) and (8) for a concentric Corbino disk
akin to the one studied in Ref. [20], whose inner (source) and
outer (drain) radii are r0 and r1, respectively. In this geome-
try, we can readily solve Eq. (7) analytically and determine
the full spectrum of magnetoplasmon modes, owing to the
inherent rotational symmetry of the system. This symmetry
enables the separation of radial and angular variables within
the solution. We note that our study differs from that of
Ref. [20] in two respects. Firstly, we consider the role of
the magnetic field in modifying the spectrum of magneto-

plasmons. Secondly, we consider the impact of source-to-gate
voltages having a finite (integer) winding number η. We there-
fore impose that U1(r) is equal to Ūext cos(ηθ ) at the source,
where Ūext is the magnitude of the external potential, and
θ is the angle between r and the x̂ axis. Hence, the linear
solution will have winding numbers ±η. Although such an
angle-dependent source potential could be hard to achieve
experimentally, it serves the purpose of illustrating which
plasmon modes can propagate within the Corbino geometry,
as well as determining their frequency dispersion. Defining
k2 = (ω2

c − ω2 f 2
ω )sign(ω2

c − ω2)/(s2 fω ), the solutions of the
system of linear differential equations in Eq. (7) takes the form
U1(r) = U (η)

1 (r, θ ) + U (−η)
1 (r, θ ), where

U (η)
1 (r, θ ) =

{
[AηIη(kr) + BηKη(kr)]eiηθ , if ω2 < ω2

c

[CηJη(kr) + DηYη(kr)]eiηθ , if ω2 > ω2
c

.

(10)
Here, Jη(x) = J−η(x) [Iη(x) = I−η(x)] and Yη(x) = Y−η(x)
[Kη(x) = K−η(x)] are (modified) Bessel functions of the first
and second kind, respectively. The coefficients Aη, Bη,Cη,
and Dη are determined by applying the boundary conditions.
After some lengthy but straightforward algebra, we find, for
|ω| < |ωc|,

U (η)
1 (r, θ ) = Ūext

2

{
Iη(kr)

Iη(kr0)
− I ′

η(kr1) − γηIη(kr1)

Dη(ω)Iη(kr0)

×
[

Kη(kr)

Kη(kr0)
− Iη(kr)

Iη(kr0)

]}
eiθη, (11)

where γη = ωcη/(ω fωkr1), I ′
η(x) = dIη(x)/dx, K ′

η(x) =
dKη(x)/dx, and

Dη(ω) = K ′
η(kr1) − γηKη(kr1)

Kη(kr0)
− I ′

η(kr1) − γηIη(kr1)

Iη(kr0)
.

(12)
For |ω| > |ωc|, U (η)

1 (r, θ ) has the same form of Eqs. (11) and
(12), with Jn(kr) and Yn(kr) in lieu of In(kr) and Kn(kr), re-
spectively. In Fig. 1, we plot the real part of the linear potential
U (η)

1 (r). Counting oscillations at the outer perimeter of the
disk (the drain), it can be seen that the two edge plasmons
produced by manual injection at the source have η = 3 [panel
(a)] and η = 5 [panel (b)], respectively. In this figure, we scale
the electrical potential with U0, lengths with the source radius
r0, and times with r0/s.

Bulk and edge magnetoplasmons can be identified as the
zeros of Dη(ω) and its counterpart for |ω| > |ωc|. For ωc > 0,
the frequencies of magnetoplasmon modes as a function of
the winding number η are shown in Fig. 2(a). In this figure,
potential, lengths, and times are given in the same units as
Fig. 1. For convenience, frequencies are scaled with the first
resonant frequency at zero magnetic field ωB. There, edge
modes are seen to wind in the +θ̂ direction (as they only exist
for positive η) and are localized at the outer edge of the disk.
Winding in the opposite direction cannot occur, as plasmons
would be bound to the inner edge, which is, however, held at
a fixed potential.

We also observe that bulk modes exhibit a variable degree
of asymmetry: in general, the frequencies are higher for mag-
netoplasmons characterized by negative winding numbers.
The asymmetry can be traced back to γη defined after Eq. (11),
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(a)

(b)

FIG. 1. Density plots of the real part of the linear potential,
U1(r) for ω = ωc = 5 s/r0. (a) Evaluated at η = 3. We can observe
three complete oscillations of the potential around the circumference.
(b) Evaluated at η = 5. Similarly, here, we observe five complete
oscillations. These are evaluated at τ = 5 r0/s, where r1 = 2 r0.

the only parameter that depends on the sign of η. Physically,
this asymmetry arises from the relative alignment between the
Lorentz force induced by the magnetic field acting on the
constituent electrons of the plasmons and the electric field
of the plasmons. The splitting in frequency of bulk modes
can be observed in Fig. 2(b), where upper branches refer to
negative winding numbers. In passing, we note that analo-
gous splittings of frequencies of bulk modes have previously
been observed in conventional disk geometries [23,24] as well
as Corbino disks with symmetric boundary conditions [25].
In contrast, the present case, characterized by asymmetric
boundary conditions, admits an additional nearly flat band of
normal modes. In fact, while the lowest branch of negative-
η bulk modes displays an approximately linear dispersion,
positive-η modes oscillate at around the cyclotron frequency.
The latter plasmon nearly flat band has no counterpart in
conventional disks [23,24] or Corbino disks under symmetric
boundary conditions [25]. We stress that the nearly flat band
becomes a clear feature of the spectrum only when the inner

(a)

(b)

FIG. 2. (a) The resonant frequencies of the linear potential
U (η)

1 (r, θ ), obtained from Eq. (11), and plotted against the winding
number η, defined before Eq. (10), for ωc = 4ωB. Bulk magne-
toplasmon modes are represented by purple squares, while edge
magnetoplasmons are represented by red circles. (b) The resonant
frequencies of the linear potential U (η)

1 (r) against cyclotron fre-
quency at fixed |η| = 8. Solid (dashed) lines refer to plasmons
propagating in the counterclockwise (clockwise) direction. The dot-
ted line denotes the edge state. The purple solid line corresponds to
the mode oscillating at the cyclotron frequency. Units are the same
as in Fig. 1. Both figures are obtained in the limit τ → ∞.

and outer radii of the Corbino disk are comparable. When this
is not realized, it becomes unstable against the introduction
of a small damping 1/τ , and the conventional disk solution is
recovered [23,24].

The flat plasmon band at ω � ωc and η > 0 in Fig. 2(a) has
an important consequence for the nonlinear responsivity of
the Corbino disk. For every external source-to-gate potential
Ūext cos(ηθ ), we expect the nonlinear rectified potential U2(r)
to exhibit a resonance at ω � ωc. In fact, U1(r0, θ ) can be
decomposed into the sum of two counterwinding potentials,
characterized by winding numbers ±η, one of which (de-
pending on the direction of the magnetic field and the sign
of ωc) can excite a magnetoplasmon mode at the cyclotron
frequency. In turn, such a mode produces a rectified voltage
U2(r) at the outer rim of the Corbino disk. We note that
such a voltage, thanks to the interference between oppositely
winding magnetoplasmons, not only is time independent, but
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(a)

(b)

FIG. 3. (a) The nonlinear potential at the drain, obtained by
numerically solving Eq. (8), plotted against frequency at ωc = 5ωB.
Different curves correspond to different winding numbers η of the
source potential. We note that the first bulk mode remains pinned at
ω = ωc and only increases in intensity with |η|, while all other modes
slowly shift toward higher frequencies. The splitting of higher-order
bulk modes becomes more and more evident at larger η: peaks split
in two, as seen for, e.g., η = 6. Units are the same as in Figs. 1 and 2.
For all curves, we have set the collision time τ = 5 r0/s and the outer
radius r1 = 2 r0. (b) The value of the nonlinear potential at ω = ωc

as a function of η. The dip at η = 1 is due to the fact that, for small
values of η, the peak is slightly shifted to the right.

it also contains a nonwinding component characterized by
η = 0 that does not vanish when integrated over the drain.

In Fig. 3(a), we show U2(r), obtained by numerically solv-
ing Eq. (8), integrated over the outer rim of the Corbino disk
(i.e., the drain) for the first few values of η and as a function of
ω. We clearly recognize a resonance at ω � ωc for all values
of η. In Fig. 3(b), we show how the maximum of such a
resonance scales with η.

Such a result has an attractive implication. If we could
excite at once magnetoplasmons of frequency ω � ωc in a
broad range of winding numbers, the resulting resonance
would grow to become particularly strong, therefore greatly
enhancing the responsivity of the device. Furthermore, its po-
sition could be tuned by changing the external magnetic field,
and it could be made to span the terahertz range practically
at will. Unfortunately, the current geometry does not allow

FIG. 4. Schematic of the eccentric Corbino disk field-effect tran-
sistor (FET) studied in this paper. The perimeter of the device acts
as the drain, while a finite small source is connected to the top of the
cavity. Ugate is the back gate direct current (DC) bias voltage, which
in our case is constant in time and used to fix the charge density. The
FET rectifies the alternating current (AC) source-gate voltage Uac(t )
into the DC source-drain voltage �U .

us to easily achieve such a result: to excite magnetoplasmons
with different winding numbers, it is necessary to carefully
engineer the potential applied at the source. This requires
superimposing various harmonics characterized by different
values of η, a fact that is at present experimentally challeng-
ing.

For this reason, we will now move to study the experi-
mentally more relevant case of an eccentric Corbino disk. In
fact, while in the Corbino disk, circular symmetry leads to
the decoupling of various modes, the lack of symmetry of the
eccentric disk allows their mixing. In turn, this enables the
use of more realistic source potentials (i.e., uniform along the
inner ring) to access the strong resonance at ω � ωc, as we
proceed to show.

IV. ECCENTRIC CORBINO DISK

The eccentric Corbino FET geometry is shown schemati-
cally in Fig. 4. In this geometry, the inner source ring is shrunk
and placed off-center. The nonlinear hydrodynamic problem,
with the asymmetric boundary conditions of Eq. (5), can be
solved numerically as described in Sec. II. First, the equations
in Eq. (7) are solved for the linear potential. Then by using
Eq. (9), the equations in Eq. (8) are solved for φ(r). From
the latter, we can then calculate the nonlinear potential U2(r).
Since both Eqs. (7) and (8) are Poisson problems, they admit
unique solutions for a given set of boundary conditions. We
define the eccentricity as ξ = d/r1, where d is the distance
of the center of the source from the center of the disk, and
r1 is the outer radius of the disk. To aid comparison with the
previous section, we keep the drain radius identical to that of
the concentric Corbino disk, and we therefore scale lengths
[times] with r1/2 [r1/(2s)]. Similarly, as in the previous sec-
tion, frequencies will be scaled by ωB, the lowest resonance
frequency at zero magnetic field determined numerically for
any given geometry.

We plot the nonlinear potential U2(r), integrated along the
drain, as a function of the AC driving frequency for various
magnetic field strengths in Fig. 5(a). For each curve, reso-
nances at ω < ωc correspond to edge modes, while those at
ω � ωc can be due to both bulk or edge ones. Now that the
source has been placed off-center and close to the drain, we
can see that edge plasmons with differing winding numbers,
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(a)

(b)

FIG. 5. (a) The nonlinear potential U2(r) integrated along the
drain, obtained by numerically solving the set of Eqs. (7) and (8),
plotted as a function of the frequency of the incoming radiation.
Different curves correspond to different values of the magnetic field,
i.e., of the cyclotron frequency ωc. For all curves, we have set the
collision time τ = 10 r1/2s and the inner radius r0 = 0.05 r1/2, and
thus, the eccentricity is ξ = d/r1 = 0.95. Additionally, Uext = U0.
The inset shows a magnification of the graph for 0 < ω/ωB < 4.
Here, it is evident that the peak at ω ≈ 3ωB shifts to the right as
ωc increases. (b) The strength of the peak of the nonlinear potential
at the cyclotron frequency, for ωc = 7ωB, plotted against eccentricity
for different source radii. The other parameters are the same as in (a).

and hence different frequencies, can propagate. As an exam-
ple, for ωc = 7ωB, we can see three edge modes below the
cyclotron frequency (of frequencies ω/ωB ≈ 1.5, 3.2, 4.8)
and one mode above it (at ω/ωB ≈ 8.4). As expected from the
discussion in the previous section, for all field strengths, the
first bulk mode, fixed around the cyclotron frequency, results
in the largest resonance peak.

It should be noted that, although Fig. 5(a) is obtained by
setting the eccentricity ξ = 0.95, this is not the optimum value
that maximizes the photoresponse. In fact, Fig. 5(b) shows
that, for a source of radius r0 = 0.05 r1/2, with ωc = 7ωB

as used in panel (a), the optimum eccentricity is ξ ≈ 0.8.
Figure 5(b) further shows that the optimum eccentricity is
inversely proportional to the source radius r0. It can be further
shown that it increases with the drain radius r1 and cyclotron
frequency ωc. Naïvely, we would expect the photoresponse
to increase when the source is placed closer to the edge,
as the potential becomes concentrated in a narrower region,
therefore promoting nonlinearities. However, we believe that
interference between bulk and edge plasmons mitigates this
effect greatly. By increasing the eccentricity beyond an opti-
mal point, a region is created in which the magnetoplasmon
with frequency ω = ωc can no longer freely propagate with-
out interfering with edge magnetoplasmons. We believe this
may require further study. Regardless, the geometry of such a
device must be tailored to the expected frequency of incoming
light.

We now wish to briefly comment on the feasibility of our
device. We consider a FET based on doped bilayer graphene
at relatively small (i.e., nonquantizing) magnetic fields, with
dimensions on the order of a few micrometers: similar devices
have been recently realized and shown to be significantly
tunable via the application of gate voltage [26]. Given the
lowest bulk plasmon frequency of such devices [17,26,38,39]
ωB = 300 GHz (this is typically dependent on system size and
for graphene can be changed via the gate voltage), and an ef-
fective electron mass [26] m ≈ 0.036me, where me is the free
electron mass, we can estimate the lower limit for the mag-
netic field. The lowest observable edge plasmon frequency
is always like the lowest bulk plasmon frequency, provided
the source radius is small; thus, by equating the lowest bulk
plasmon frequency with the cyclotron frequency ωc = eB/m∗,
our estimate for the minimum magnetic field becomes Bmin ≈
0.06 T. This magnitude is easily achievable in experiments.
In passing, we mention that alternatives to applying an exter-
nal magnetic field do exist [33,40]. Furthermore, assuming a
device radius of r1 = 1 μm and plasmon speed of the order
of the Fermi velocity [41,42] s ≈ 106 ms−1, the momentum
relaxation time used in Fig. 5 becomes τ = 5 r1/s = 5 ps.
This value, which is an upper bound, as the plasmon speed
in 2D systems can be much larger than the Fermi velocity
at small momenta, is achievable in clean bilayer graphene
[43–45], especially at low temperatures. In a real device, the
collision time could also be increased by reducing its size.

V. CONCLUSIONS

In this paper, we have studied Corbino-disk-shaped pho-
todetectors with sources at the inner ring which oscillate at the
frequency of the incoming radiation with respect to metallic
back gates. The design is like that of conventional Dyakonov-
Shur devices, in that a rectified potential is measured at the
outer rim of the disk, which acts as a floating drain. By
applying a magnetic field in the direction perpendicular to the
cavity, the rectification of long-wavelength radiation occurs
from the constructive interference of not only bulk plasmons
but also edge magnetoplasmons.

In this geometry, plasmons can circulate along the entirety
of the perimeter of the disk nearly unimpeded [46]. Plasmons
in this configuration are categorized by their winding num-
ber, i.e., the number of complete oscillations of the electron
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density that occurs over a full revolution around the disk.
In the first part of this paper, we studied the response of a
conventional Corbino-disk photodetector with the source-ring
located at the center of the disk. Said geometry admits an ana-
lytic solution. In this configuration, individual plasmon modes
can be manually injected by selecting the winding number of
the external source-to-gate potential. It is important to note
that, as shown in Sec. III, all modes, and in particular ones
at ω � ωc (which exist only in the presence of asymmetric
boundary conditions and up to large winding numbers, if inner
and outer radii are comparable and damping is small), produce
nonlinear rectified potentials that are also uniform along the
edge. Therefore, all contributions at ω � ωc can in principle
be summed up, with a careful choice of the source-to-gate ex-
ternal potential, and result in a large resonance at the cyclotron
frequency that greatly enhances the responsivity of the device.
Since its frequency depends on the magnetic field, exploiting
such a strong resonance can lead to the realization of efficient
and tunable terahertz photodetectors. Unfortunately, this pro-
gram is difficult to achieve in practice.

Instead, through breaking the circular symmetry of the
system by placing the source off-center and closer to the edge
of the disk, magnetoplasmons with various winding numbers
can be excited with source-to-gate voltages easily achiev-
able experimentally (i.e., uniform along the source perimeter).
By tuning the degree of eccentricity of the system, we can
excite various magnetoplasmons at once. Therefore, we can
enhance the photodetector responsivity at the frequency range
corresponding to the cyclotron one. The best protocol for pho-
todetection clearly depends on one’s aims. When searching
for the frequency of incoming radiation, it is best to fix the
luminosity of the radiation, where possible, and scan over
a presumed range of frequencies by changing the magnetic
field strength. When measuring the luminosity of incoming
radiation, it is best to adjust the cyclotron frequency to match
the frequency of the incoming radiation to achieve a high gain.
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APPENDIX A: DERIVATION OF EQS. (7) AND (8)

Plugging the expansions in Eq. (6) into the set of Eqs. (2)–
(5), we collect terms of order Uext and U 2

ext into two systems
of linear differential equations, i.e.,

∂tU1(r, t ) = −U0∇ · v1(r, t )

e

m
∇U1(r, t ) = ∂t v1(r, t ) + 1

τ
v1(r, t ) + ωcẑ × v1(r, t )

U1(r, t )|source = Uext cos(ωt )

n̂ · v1(r, t )|drain = 0, (A1)

and

∂tU2(r, t ) = −∇ · [U0v2(r, t ) + U1(r, t )v1(r, t )]

−∇φ(r, t ) = ∂t v2(r, t ) + 1

τ
v2(r, t ) + ωcẑ × v2(r, t )

U2(r, t )|source = 0

n̂ · v2(r, t )|drain = 0, (A2)

respectively. Here, we defined φ(r, t ) = v2
1 (r, t )/2 −

eU2(r, t )/m. The equations in Eq. (A1) form a closed set
of linear differential equations that can be solved exactly.
Their result is then substituted into the equations in Eq. (A2),
which are themselves linear in U2(r, t ) and v2(r, t ) and whose
solution yields the rectified potential. The second order set of
equations in Eq. (A2) can be simplified further by noting that
we are looking for a time-independent potential; therefore,
by integrating over a period of oscillation T = 2π/ω, the
time-dependent parts of U2(r, t ) and v2(r, t ) will vanish. For
a generic function of time A(t ), we define its time average as

〈A(t )〉 = 1

T

∫ T

0
A(t )dt . (A3)

After time averaging, Eq. (A2) becomes

∇ · [U0v2(r) + 〈U1(r, t )v1(r, t )〉] = 0

1

τ
v2(r) + ωcẑ × v2(r) = −∇φ(r)

U2(r)|source = 0

n̂ · v2(r)|drain = 0, (A4)

where now φ(r, t ) = 〈v2
1 (r, t )〉 /2 − eU2(r)/m, and U2(r) and

v2(r) denote the time-independent components of U2(r, t ) and
v2(r, t ), respectively.

We will now further simplify the equations in Eq. (A1). We
first obtain two equations by applying the operator ∂t + 1/τ

and the cross product with ẑ to the second of the equations
in Eq. (A1). We then combine the two equations we obtained
and get[(

∂t + 1

τ

)2

+ ω2
c

]
v1(r, t )

= e

m

[(
∂t + 1

τ

)
∇U1(r, t ) − ωcẑ × ∇U1(r, t )

]
. (A5)

The new set of equations is solved by using the ansatz (see
also the main text, Sec. II):

U1(r, t ) = U1(r)e−iωt + U ∗
1 (r)eiωt ,

(A6)
v1(r, t ) = v1(r)e−iωt + v∗

1 (r)eiωt ,

from which we obtain the following set of time-independent
linear equations:

−iωU1(r) + U0∇ · v1(r) = 0, (A7)

and[
ω2 f 2

ω − ω2
c

]
v1(r) = e

m
[iω fω∇U1(r) + ωcẑ × ∇U1(r)], (A8)
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subject to the boundary conditions:

U1(r)|source = Uext

2
,

n̂ · v1(r)|drain = 0. (A9)

In these equations, we introduced fω = 1 + i/(ωτ ). In ad-
dition to Eqs. (A7)–(A9), we have a set of equations for
the quantities U ∗

1 (r) and v∗
1 (r). These are obtained from

Eqs. (A7)–(A9) by taking their complex conjugates. Substi-
tuting Eq. (A8) into Eq. (A7) results in the following closed
set of equations for U1(r):[

ω2
c − ω2 f 2

ω

]
U1(r) − s2 fω∇2U1(r) = 0

U1(r)|source = Uext

2

n̂ · [iω fω∇U1(r) + ωcẑ × ∇U1(r)]|drain = 0. (A10)

Here, we define the plasma wave velocity s = √−eU0/m,
where U0, the equilibrium potential, is negative for an electron
fluid. The first of the equations in Eq. (A10) defines a Poisson
problem which, once boundary conditions are specified as in
the second and third equations of Eq. (A10), admits a unique
solution. Such a solution is determined analytically for the
case of a concentric Corbino-disk geometry in Sec. III and
numerically for an eccentric disk in Sec. IV.

Once the set of equations in Eq. (A10) is solved and U1(r)
has been determined, the velocity is given by

v1(r) = s2

U0

iω fω∇U1(r) + ωcẑ × ∇U1(r)

ω2
c − ω2 f 2

ω

. (A11)

It is then possible to approach the problem posed by the set
of equations in Eq. (A4) in a similar fashion. Plugging the
definitions in the equations in Eq. (A6) in there, we find

∇ · [U0v2(r) + U ∗
1 (r)v1(r) + U1(r)v∗

1 (r)] = 0

1

τ
v2(r) + ωcẑ × v2(r) = −∇φ(r)

U2(r)|source = 0

v2(r)|drain = 0, (A12)

where, explicitly, φ(r) = v∗
1 (r) · v1(r) − eU2(r)/m. To fur-

ther simplify Eq. (A12) and reduce it to a Poisson problem,
we first obtain two equations by taking the divergence and
applying the operator ẑ × ∇ to the second of its equations.
We get

1

τ
∇ · v2(r) − ωcẑ × ∇ · v2(r) = ∇2φ(r), (A13)

and

1

τ
ẑ · ∇ × v2(r) + ωc∇ · v2(r) = 0. (A14)

Combining such equations with the first of the equations in
Eq. (A12) gives

1 + (τωc)2

U0τ
∇ · [U ∗

1 (r)v1(r) + U1(r)v∗
1 (r)] = ∇2φ(r). (A15)

Equation (A15) has the form of a Poisson equation for φ(r).
Given appropriate boundary conditions, the latter can be
solved and yields a unique solution for φ(r) and therefore for
U2(r) = m/e[v∗

1 (r) · v1(r) − φ(r)]. To determine the bound-
ary conditions for φ(r), we first take the cross product of the
second of the equations in Eq. (A12) with ẑ, which yields

1

τ
ẑ · v2(r) − ωcv2(r) = −ẑ × ∇φ(r). (A16)

Substituting this back into the second of the equations in
Eq. (A12), we get

[1 + (ωcτ )2]v2(r) = ωcτ
2ẑ × ∇φ(r) − τ∇φ(r). (A17)

This leads us to the following solvable set of differential
equations in φ(r):

1 + (τωc)2

U0τ
∇ · [U ∗

1 (r)v1(r) + U1(r)v∗
1 (r)] = ∇2φ(r)

φ(r) − v∗
1 (r) · v1(r)|source = 0

ωcẑ × ∇φ(r) − 1

τ
∇φ(r)|drain = 0. (A18)
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