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Majorana bound states in topological insulators without a vortex
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We consider a three-dimensional topological insulator (TI) wire with a nonuniform chemical potential induced
by gating across the cross section. This inhomogeneity in chemical potential lifts the degeneracy between two
one-dimensional surface state subbands. A magnetic field applied along the wire, due to orbital effects, breaks
time-reversal symmetry and lifts the Kramers degeneracy at zero momentum. If placed in proximity to an s-wave
superconductor, the system can be brought into a topological phase at relatively weak magnetic fields. Majorana
bound states (MBSs), localized at the ends of the TI wire, emerge and are present for an exceptionally large
region of parameter space in realistic systems. Unlike in previous proposals, these MBSs occur without the
requirement of a vortex in the superconducting pairing potential, which represents a significant simplification
for experiments. Our results open a pathway to the realization of MBSs in present-day TI wire devices.
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I. INTRODUCTION

The non-Abelian statistics of Majorana bound states
(MBSs) makes them a promising basis for fault tolerant quan-
tum computation [1–3]. Such MBSs were originally predicted
to appear at the cores of vortices in spinless topological px +
ipy superconductors [4–6]. Fu and Kane [7] proposed that a
topological superconducting phase with MBSs localized at the
centers of superconducting vortices could also be present at
the surface of a three-dimensional topological insulator (TI)
in proximity to an s-wave superconductor [8].

In a related setup, MBSs have been predicted in thin TI
wires that are subjected to a magnetic field parallel to the wire
and where the phase of the pairing potential of the proximity-
induced superconductivity winds around the wire in the form
of a vortex [9]. While still in their infancy, TI wire devices
have recently seen significant experimental progress [10–17].
For instance, the growth of very thin (diameter ≈20 nm)
bulk insulating (Bi1−xSbx )2Te3 wires with quantum confined
surface states was reported in Ref. [16].

Experimentally, the requirement of a vortex in the induced
pairing potential essentially necessitates a full superconduct-
ing shell, which is a significant fabrication challenge. For
the thinnest wires, where the effects coming from the TI
bulk states are weakest, this also requires strong magnetic
fields ≈6 T. When the superconductor is attached to only
one side of the wire, such that a vortex is not expected, the
superconducting gap in the topological phase was shown to
be negligibly small [18–20], meaning that MBSs have very
long localization lengths and will overlap in realistic finite-
length wires. Hence, the prerequisite for a vortex presents a
major roadblock to the realization of MBSs in current TI wire
devices.

In this work, we propose an alternative protocol for ob-
taining MBSs in TI wires without the requirement of a
superconducting vortex. This is accomplished by a metallic
gate placed below the wire and a superconductor attached to
the top (as shown in Fig. 1). Such a setup is very natural since

gating will almost always be required to tune the system to the
Dirac point [16]. The nonuniform chemical potential induced
by a finite gate voltage breaks inversion symmetry, splitting
the doubly degenerate one-dimensional (1D) subbands of the
quantum confined TI surface states. A magnetic field applied
parallel to the wire opens a gap at momentum k = 0 due to
orbital effects and leaves only a pair of (almost) helical modes
at finite Fermi momenta. As a result, when, in addition, the
superconductivity in the TI wire is induced by proximity to
an s-wave bulk superconductor, a topological superconducting
phase can be achieved. In contrast with a TI wire in which
inversion symmetry is not broken by gating, this topologi-
cal phase, induced without the requirement of a vortex, is
characterized by a relatively large superconducting gap in the
spectrum. As a consequence, the topological phase with well
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FIG. 1. Gated TI wire. A metallic gate (blue) induces a nonuni-
form chemical potential across the TI wire of cross-sectional area
Lx × Lz, breaking inversion symmetry and lifting the twofold degen-
eracy of the surface state subbands with opposite angular momenta.
When a pairing potential is proximity induced by a superconducting
layer placed on top of the wire (red) and a magnetic field B is applied
parallel to the wire axis, the system can enter into a topological
superconducting phase if the flux produced by B exceeds a critical
value.
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localized zero-energy MBSs occupies an exceptionally large
area in parameter space. In realistic wires, the range of chemi-
cal potential with MBSs spans several meV at relatively weak
magnetic-field strengths. Our protocol therefore provides a
path to realizing MBSs in present-day TI wire devices.

II. SUBBAND SPLITTING

We begin with a continuum model for the Dirac surface
states of a three-dimensional TI confined to a cylindrical wire.
Due to confinement, the surface states form 1D subbands
labeled by half-integer angular momentum � = ± 1

2 ,± 3
2 , . . .

around the wire and with an energy dispersion above the Dirac
point given by (see Appendix A)

ε�(k) = h̄vF

√
k2 + (� − ϕ)2

/
R2, (1)

and by −ε�(k) below the Dirac point. Here, 2πR is the perime-
ter of the wire cross section, k is the momentum along the
wire, vF is the Fermi velocity, and ϕ ≡ �/�0 = BπR2/�0

is the magnetic flux induced by the magnetic field B applied
along the wire in units of the fundamental flux quantum
�0 = h/e. Inversion symmetry requires that the subbands sat-
isfy ε�(k) = ε�(−k) and, in the absence of a magnetic field,
time-reversal symmetry enforces ε�(k) = ε−�(−k) [20] (see
Appendix B). Therefore, when both symmetries are present,
subbands are doubly degenerate for angular momenta ±� at
all momenta k.

We first consider the influence of the gate in the absence
of magnetic fields. Since the gate is placed on only one side
of the wire, the resulting electrostatic field gives rise to a
nonuniform chemical potential μ(θ ) = μ0 + δμ(θ ) across the
wire cross section [15,16], where μ0 is the average chemical
potential and θ is the angle from the direction normal to
the gate (i.e., from the z direction in Fig. 1. This inhomo-
geneous chemical potential δμ(θ ) breaks inversion symmetry
and therefore lifts the degeneracy of the subbands at finite k.
Kramers theorem requires that k �= 0 subbands have opposite
spins at opposite momenta and at k = 0 subbands remain
degenerate.

More precisely, within this continuum model, one can ob-
tain the subband splitting by expanding the inhomogeneous
component of the chemical potential δμ(θ ) in terms of Fourier
cosine harmonics δμ(θ ) = 2

∑∞
n=1 μn cos(nθ ). In general, the

inhomogeneous potential δμ(θ ) causes finite matrix elements
M�′τ ′

�τ (k) between the � and �′ subband, where τ = ± in-
dicates subbands above (+) or below (−) the Dirac point
(see Appendix B) [16]. When the inhomogeneity is small
we can use degenerate perturbation theory for the � > 0 and
−� subbands and label the resulting subband pair by �. The
n = 2|�|th Fourier component of the inhomogeneous potential
δμ(θ ) couples these degenerate subbands and results in a
splitting of subbands above the Dirac point

ε±
� (k) ≈ ε�(k) ± μ2�k√

k2 + (�/R)2
. (2)

As a result, each subband minimum moves from k = 0 to a
new minimum at ±kso, which can be estimated from Eq. (2),

kso ≈ μ2�/h̄vF , (3)
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FIG. 2. Wave functions and subband splitting in gated TIs. The
energy spectrum of a 20 nm × 20 nm cross section of an infinitely
long Bi2Se3 TI wire found numerically using the BHZ tight-binding
model with the chemical-potential inhomogeneity given by δμ(z) =
3δε(z/Lz ), where z is measured from the center of the wire, and δε ≈
21 meV (see Appendix E). (a), (b) Probability densities |ψk (x, z)|2 in
the cross section of the wire. At k = 0 the state remains uniformly
distributed around the wire surface but at k = kF it is localized
close to the top (or bottom) due to the gating. (c) The energy
spectrum of the gated subbands. Colors indicate the expectation
value of spin component perpendicular to the gate normal: 〈Sx (k)〉 =∫

dxdz 〈ψk (x, z)| σx |ψk (x, z)〉, where σi are the Pauli matrices en-
coding the spin in the BHZ model. (left) A large subband splitting
occurs due to gating. Dotted black lines refer to subbands before
gating. (right) Applying a magnetic field B along the wire opens a
gap of several meV for relatively small fields due to orbital effects.
For this thin wire the flux ϕ = 0.2 corresponds to B ≈ 2 T and leads
to a gap 2δ(ϕ = 0.2) ≈ 8 meV.

to leading order in the inhomogeneity μ2�. The size of the
splitting of a given subband pair, Eso(�), is determined by the
change in the subband minimal energy as

Eso(�) = |ε�(0) − ε±
� (±kso)| ≈ μ2

2�

2�h̄vF /R
. (4)

Since inhomogeneities are typically of the order of the sub-
band spacing δε ∼ h̄vF /R ≈ 30 meV [15,16], the thinnest
R ≈ 10 nm experimental TI wires can achieve splitting en-
ergies Eso � 10 meV with a corresponding length scale lso ≡
1/kso � 15 nm. We note that this energy is a very large value
when compared with the similar subband splitting caused
by Rashba spin-orbit coupling in semiconducting nanowires,
which is typically Eso < 1 meV in InAs or InSb [21]. We note
that a further gate on top of the superconductor could be used
to enable independent tuning of both μ0 and Eso.

The gate-induced splitting of subbands is also confirmed
numerically (see Fig. 2) by diagonalizing the Bernevig-
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Hughes-Zhang (BHZ) tight-binding model Hamiltonian in
momentum space for a wire with a square cross sec-
tion [22–25]. To connect to realistic experimental systems
throughout this paper we use parameters consistent with the TI
Bi2Se3 [24], choosing wires with a 20 nm × 20 nm cross sec-
tion and the crystallographic axes c‖ẑ and ab-plane spanning
the x̂ and ŷ directions [16]. As expected from our consid-
erations above, we find that the subband splitting does not
strongly depend on the exact choice of the inhomogeneity of
the chemical potential and so will generically be present in
any TI wire that has been gated (see Appendix E). Although
a perturbative result, as seen in Fig. 2, the energy spectrum
defined by Eq. (2) is still relevant even for inhomogeneities
larger than the subband spacing δε. In particular, we note that
the exact shape of the inhomogeneity δμ(θ ) induced by the
gate does not influence the form of the splitting in Eq. (2)
other than through the relative sizes of the harmonics μ2�.
Ultimately, the magnitudes of these harmonics will depend
on the wire cross section, gate geometry, and electrostatic
considerations such as the screening of the superconductor,
but in general splitting will be largest close to the Dirac point
because the largest μ2� will generically occur for small �.
From Eq. (2) we also see that there is no change in the energy
at k = 0, which is consistent with the previous observation
that such states can be connected by Klein tunneling through
any chemical-potential inhomogeneity [15,16].

III. FIELD-INDUCED GAP

We now consider a magnetic field applied parallel to the
wire, see Fig. 1. A magnetic field opens a gap at k = 0, leaving
an odd number of pairs of counterpropagating modes at the
Fermi level when the chemical potential is tuned close to
a subband crossing [dashed line in Fig. 2(c)]. Even in the
presence of the gate-induced inhomogeneity μ(θ ), due to the
Klein-tunnelling effects, the wave function at k = 0 is uni-
formly distributed on the wire surface. In contrast, the wave
function at kF is localized close to the top or bottom of the
wire, depending on the sign of the corresponding harmonics
μ2� [see Figs. 2(a) and 2(b)]. As a consequence, threading
a magnetic flux through the gated TI wire opens a gap at
k = 0 due to orbital effects whereas the states at finite Fermi
momenta are largely unaffected by such a flux. The size of
the gap is given by δ(ϕ) ≈ h̄vF |ϕ|/R (see Appendix C). For
R ≈ 10 nm wire this means a gap of 2δ/B ≈ 4 meV per T can
be opened. In fact, δ increases linearly with wire thickness,
meaning thicker wires open a gap significantly faster. For
instance, a thicker R ≈ 30 nm would open a gap of 2δ/B ≈
12 meV per T. In semiconductor nanowires, which use the
Zeeman effect to open an equivalent gap at k = 0, this would
require a g factor of over 200. The relevant g factor for Bi2Se3

is g ≈ 4 and so the Zeeman effect in our setup is negligible
compared with orbital effects [24]. Finally, we note that the
surface states are spin polarized in the direction orthogonal
to the wire and gate normal (the x axis in Fig. 1) and the
spin expectation value in the other two directions is zero,
〈Sy〉 = 〈Sz〉 = 0. Therefore if the chemical potential is tuned
inside the gap, this setup could be used as a spin-filter with
nearly perfect helical modes [26–28], see Fig. 2(c).
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FIG. 3. Superconductivity in a gated TI nanowire. (a) Energy
spectrum of the gated TI wire from Fig. 2 in the presence of the
proximity-induced superconductivity of the strength 
0 ≈ 1.6 meV
with a coherence length ξTI = 20 nm, consistent with the proxim-
ity effects in Bi2Se3 thin films due to Nb [29]. (b) The interior
superconducting gap 
i is smaller than the exterior gap 
e for a
finite coherence length ξTI. (c) As the magnetic field is increased
the gap at k = 0 closes and reopens, indicating a topological phase
transition [for our parameters phase transition occurs at ϕc ≈ 0.065
(B ≈ 650 mT)]. The exterior gap 
e � 
0 stays almost constant. We
do not take into account the field dependence of the pairing amplitude
and fix μ = 0.

From the above considerations, we see that, for our proto-
col, there is a trade-off between the size of the gap opening
at a given field (larger in thicker wires) and the size of the
subband splitting (larger in thinner wires). For Bi2Se3 and re-
lated TI materials the ideal radius R will likely lie in the range
10–30 nm. In our numerics, we use a 20 nm × 20 nm cross
section (R ≈ 11.3 nm) at the lower end of this range since
smaller cross sections are numerically more accessible but
this likely exaggerates the magnetic-field strengths required
for the topological phase. In what follows we focus on the
lowest electron subbands � = ±1/2 and measure μ from the
subband crossing at k = 0. That said, our conclusions remain
generally applicable also to higher energy subbands as long
as the chemical-potential inhomogeneity is strong enough, a
fact that may prove useful since the screening of the super-
conductor will limit the range of average chemical potentials
μ0 accessible in real experiments.

IV. TOPOLOGICAL SUPERCONDUCTIVITY

The remaining ingredient required for the appearance of
MBSs is a proximity-induced superconductivity. We focus
on the setup in which an s-wave superconductor is placed
on the top of the wire and, therefore, the pairing ampli-
tude 
 is not expected to possess a vortex [20]. A simple
model for the spatial dependence of the pairing amplitude in
such a setup is given by 
(z) = 
0e−(Lz/2−z)/ξTI [29], where
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ξTI is the superconducting (SC) coherence length in the TI.
We do not model the reduction of the pairing amplitude by
magnetic field but in real systems such an effect will favor
thicker wires with a larger gap δ(ϕ) at a given magnetic field
(see above).

Next, we first diagonalize the BHZ tight-binding model
Hamiltonian in momentum space (see Appendix F), where
we include the pairing terms of the strength 
 (see Fig. 3). To
achieve a large superconducting gap, the sign of the chemical-
potential harmonic μ1 must be such that the state at k = ±kF

is localized close to the superconductor. In this case, the exte-
rior superconducting gap 
e, defined around k = ±kF [shown
in blue in Fig. 3(a)], is essentially unchanged by magnetic
field, 
e(ϕ) � 
0. On the other hand, the interior gap 
i,
defined around k = 0 [shown in red in Fig. 3(a)] is smaller,

i(ϕ = 0) < 
0, even in the absence of magnetic fields. This
can be explained by the fact that the wave functions at finite
Fermi momenta are located close to the superconductor, see
Fig. 2(b). The amount by which 
i(ϕ = 0) is reduced from

0 depends on the coherence length ξTI [see Fig. 3(b)]. As
the magnetic field is increased, 
i closes and then reopens,
quickly exceeding its zero-field value [see Fig. 3(c)]. The
closing and reopening of the gap with magnetic field indicates
the onset of a topological superconducting phase. The value
ϕc at which the superconducting gap closes is found from the
following condition (see Appendix D):

δ2(ϕc) = μ2
0 + 
2

i (ϕ = 0). (5)

We note that a finite coherence length, which is responsi-
ble for smaller values of 
i without diminishing 
e, allows
one to enter the topological phase at weaker magnetic fields.
Finally, we note that our mechanism is different from previous
proposals without a vortex in various 2D TI devices [30,31].

V. MAJORANA BOUND STATES

To study properties of MBSs in the topological phase
we calculate the energy spectrum of a finite wire (see
Appendix F) and obtain the topological phase diagram, see
Fig. 4. The white dashed line in Fig. 4(a) indicates the topo-
logical phase-transition line obtained in Eq. (5). Inside the
topological phase, the MBSs are localized at the ends of the
wire and pinned to zero energy, being well separated from
the bulk superconducting states. Close to the phase-transition
line, the MBSs overlap and split away from zero energy. Thus,
generally, the zero-energy MBSs can be observed only if the
localization length of MBS ξ (ϕ), determined by the smallest
gap in the spectrum, is smaller than the half of the wire length
Ly such that the following criteria is satisfied [32]:

ξ (ϕ) = h̄vF

min{
i(ϕ),
e(ϕ)} � Ly/2. (6)

This transition line is indicated by the red dashed line in
Fig. 4(a). The well-localized zero-energy MBSs persist for a
large region of phase space spanning several meV of average
chemical potential for fixed finite B fields. As a consequence,
MBSs are robust against large local fluctuations of chemi-
cal potential caused by disorder (see Appendix G). In stark
contrast, without the nonuniformity of chemical potential and
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FIG. 4. MBSs in a finite gated TI wire without a vortex. The same
TI wire as in Fig. 3 but of a finite 1000 nm length. (a) The lowest-
energy eigenstates as a function of (average) chemical potential μ0

and flux ϕ. The topological phase transition (white dashed line) cor-
responds to the closing of the interior bulk gap defined in momentum
space. Inside the topological phase (beyond the red dashed line),
zero-energy MBSs (black) are well separated from the bulk super-
conducting states, whereas close to the topological phase-transition
line, their localization length is comparable with the wire length such
that they split away from zero energy. (b) The lowest part of the en-
ergy spectrum [taken along the blue dashed line of panel (a)], where
colors indicate the BCS charge 〈Qi〉 = ∫

d3r 〈ψi(r)| η3 |ψi(r)〉, with
ηi being the Pauli-matrices in particle-hole space [25]. Zero-energy
chargeless MBSs appear in the topological phase when the condition
on the localization length is fulfilled [see Eq. (6)], which for this thin
wire happens for a flux ϕ ≈ 0.1 (B ≈ 1 T) which is a bit larger than
ϕc ≈ 0.065 (B = 650 mT) where the interior bulk gap closes, see
Fig. 3.

with no vortex in the pairing potential, the localization-length
condition of Eq. (6) would not be satisfied for any position in
phase space.

VI. CONCLUSIONS

We have shown that it is possible to generate Majorana
bound states in topological insulator wires without the re-
quirement of a vortex thanks to a large subband splitting of
the 1D surface states arising due to a nonuniform chemical
potential across the wire cross-section induced by a gate. In
our setup, the topological phase occupies a large region of
parameter space and MBSs are robust against disorder. Since
a vortex is not required in our protocol it opens a path to MBSs
in state-of-the-art TI wire devices.
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APPENDIX A: SUBBANDS AND SYMMETRIES
OF TOPOLOGICAL INSULATOR WIRE WITHOUT

GATING

A continuum model for the Dirac surface states confined to
a cylindrical wire of radius R has been considered in previous
studies of TI wires [9,18,20,33–35] and we follow a similar
derivation in this section. The general Hamiltonian describing
TI states confined to the surface with normal n is given by [34]

Hsurf = h̄vF

2
∇ · n + vF

2
[n · (p × σ) + (p × σ) · n], (A1)

where the momentum operator is p = −ih̄∇ and σ =
(σx, σy, σz ) is the vector of Pauli matrices, with σi acting in
spin space. This Hamiltonian describes a helical system with
the spin states being perpendicular to the momentum and
normal n. For the case of a cylinder along ŷ we can write the
normal as n = (sin θ, 0, cos θ ) where θ is the angle from the
ẑ direction. The Hamiltonian of the surface states of such a
cylindrical TI wire is given by

H (y, θ ) = h̄vF

2R
+ ih̄vF n · (σ × ∇)

= h̄vF

2R
− ih̄vF

[
σy

∂θ

R
− (cos θσx − sin θσz )∂y

]
, (A2)

where we used ∇ × n = 0 and ∂θ/R = cos θ∂x − sin θ∂z. The
solutions are 2π periodic in the angle θ . The constant term
h̄vF
2R arises for energies measured from the Dirac point [35].

Solutions to H (y, θ ) can be found by applying the unitary
transformation U (θ ) = eiθσy/2 which transforms H (y, θ ) to the
simple form

H̄ (y, θ ) ≡ U (θ )H (y, θ )U †(θ )

= −ih̄vF

(
σy

∂θ

R
− σx ∂y

)
. (A3)

Since the transformation satisfies U (θ ) = −U (θ + 2π ), the
boundary conditions for θ of the eigenstates of the trans-
formed Hamiltonian H̄ (y, θ ) are 2π antiperiodic. We note at
this point that the above discussion would be unaffected by
the introduction of a nonuniform potential δμ(θ ) since the
transformation U (θ ) has no effect on it. Similarly, a Zeeman
term 1

2 gμBBσy for a magnetic field B parallel to the wire (see
below) would also be unaffected by this transformation.

The solutions of the transformed Hamiltonian of Eq. (A3)
have a simple plane-wave form (up to normalization)

ψk�τ (y, θ ) = χk�τ ei(ky+�θ ), (A4)

where k is the momentum along the wire, χk�τ is the spinor
encoding the chirality, τ = ± indicates whether the state is
above or below the Dirac point, and � = ± 1

2 , 3
2 , . . . is the

angular momentum around the wire, which is a half integer

due to the antiperiodic boundary conditions in θ . As in Eq. (1)
of the main text, above the Dirac point (τ = +), these states
have energies

ε�(k) = h̄vF

√
k2 + (�/R)2, (A5)

and below the Dirac point (τ = −) have energies −ε�(k).
The spacing between subbands is given by δε = h̄vF /R. The
normalized eigenspinors are given by

χk�τ = 1√
2

(
τ,

i�/R − k√
k2 + (�/R)2

)
. (A6)

APPENDIX B: MATRIX ELEMENTS DUE
TO NONUNIFORM CHEMICAL POTENTIAL

The Hamiltonian H̄ (y, θ ) describing surface states of the
TI wire [see Eq. (A3)] has an inversion symmetry of the full
three-dimensional space, i.e., H̄ (y, θ ) = σyH̄ (−y, θ + π )σy,
which enforces that the energies satisfy ε�(k) = ε�(−k). This
inversion symmetry is broken by the nonuniform chemi-
cal potential δμ(θ ) induced by the gate. The system also
has a time-reversal symmetry, H̄ (y, θ ) = σyH̄∗(y, θ )σy, which
requires ε�(k) = ε−�(−k). The combination of these symme-
tries ensures degeneracy of the subbands for all momenta k
[20] (see Fig. 5).

When inversion symmetry is broken by a nonuniform
chemical potential δμ(θ ), matrix elements M�′τ ′

�τ (k) are in-
duced which connect states with different angular momenta �

and �′ for potentially different τ and τ ′. These matrix elements
result in a subband splitting, as discussed in the main text.
To obtain this splitting analytically, we start with the general
form of the matrix elements between the eigenstates ψk�τ and
ψk′�′τ ′ , which are given by

M�′τ ′
�τ (k) = 〈ψk�τ | δμ |ψk�′τ ′ 〉

= χ
†
k�τ

χk�′τ ′

∫ 2π

0

dθ

2π
ei(�′−�)θ δμ(θ )

= μ|�−�′|
2

(
ττ ′ + (k + i�/R)(k − i�′/R)√

k2 + (�/R)2
√

k2 + (�′/R)2

)
, (B1)

where in the final line � �= �′. As in the main text, μn is the
nth Fourier cosine component, δμ(θ ) = 2

∑∞
n=1 μn cos(nθ ),

where the geometry of our setup means that the nonuniform
potential is equal for the two points (x, z) and (−x, z) on the
TI surface or, equivalently, δμ(θ ) = δμ(−θ ).

Taking � > 0, in the special case of the degenerate sub-
bands �′ = −� with τ = τ ′, this matrix element reduces to

M−�τ
�τ (k) = μ2�k

k − i�/R
. (B2)

Assuming that the maximum size of all μn is much smaller
than the subband spacing δε, we can use degenerate perturba-
tion theory to find the energy spectrum. For the bands above
the Dirac point, this gives

ε±
� (k) ≈ ε�(k) ± μ2�k√

k2 + (�/R)2
, (B3)
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FIG. 5. Wave functions and energy spectrum for a TI wire with
uniform chemical potential. The same wire as in Fig. 2 of the main
text but without the nonuniformity in the chemical potential. Here, in
addition, the bottom of the lowest subband is tuned to zero energy.
(a), (b) In stark contrast with a gated wire (see Fig. 2 of the main
text) the wave functions are not localized on a specific side of the TI
wire at finite kF . (c) The subbands of the TI wire with a uniform
chemical potential are doubly degenerate for ϕ = 0 and have an
energy spacing δε ≈ 21 meV.

and similarly −ε±
� (k) below the Dirac point [as in Eq. (3)

of the main text]. We find that such splitting between the
two degenerate subbands is present for a general form of
chemical potential inhomogeneities δμ(θ ) (see Fig. 6) and
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FIG. 6. Band splittings for different strengths of nonuniform po-
tential. The energy spectrum of a Bi2Se3 wire with a 20 nm × 20 nm
cross section for three different strengths of nonuniformity of chem-
ical potential δμ calculated using the BHZ tight-binding model for a
wire in momentum space [see Eq. (E1)]. We find that the perturbative
result for the band splitting given in Eq. (B3) is valid for large values
of the inhomogeneity δμ(θ ), even when it is larger than the sub-
band spacing δε ≈ 21 meV and only deviates from the perturbative
result when the splitting energy of a given subband is too large,
Eso � δε/2.

−0.1 0 0.1

-40

-20

0

20

40

k (nm−1)

ε(
k
)

(m
eV

)

−0.1 0 0.1

k (nm−1)
−0.1 0 0.1

k (nm−1)

FIG. 7. Band splittings for different shapes of nonuniform poten-
tial. The energy spectrum of a Bi2Se3 wire with a 20 nm × 20 nm
cross section for three different nonuniformities of chemical poten-
tial, calculated using the BHZ tight-binding model for a wire in
momentum space [see Eq. (E1)]. The exact shapes of nonuniform
potentials used are listed at the top of the panels. The subband spac-
ing is δε ≈ 21 meV and the angle θ is taken from the ẑ direction. As
expected from our analytical calculations, two shapes of nonuniform
part of the chemical potential, δμ = 3δεz

Lz
and δμ = 3

2 δε cos θ , result
in similar values of the splitting for the lowest-angular-momentum
subbands. In contrast with that, for δμ = 3

2 δε cos 3θ , the splitting is
weaker for the lowest � = ±1/2 subbands than in the first two cases,
as also can be expected from our analytical treatment.

not strongly dependent on the exact form of inhomogeneity
(see Fig. 7 and discussion below). The momentum ±kso of
the band minimum can be found by solving ∂kε

±
� (k)|kso = 0.

One also obtains the size of the subband splitting defined
as Eso(�) = |ε�(0) − ε±

� (±kso)|. Expansion of kso and Eso to
leading order in μ2� gives Eqs. (4) and (5) of the main text,
respectively.

We note that, it is the nonuniform chemical potential δμ(θ )
that leads to the subband splitting and not the electric field
itself. For a given TI wire device, to obtain the potential
δμ(θ ), one needs to consider the electrostatics of the device
[15]. In general, δμ(θ ) is a result of both a nonuniformity
in charge density, related to the geometric capacitance of
the wire, and the direct electrostatic potential, related to the
quantum capacitance of the wire. Far from the Dirac point
the charge density is most important but quantum capacitance
effects can become relevant in the low-density region close to
the Dirac point. In the setup as shown in Fig. 1 of the main
text, the adjustment of the uniform chemical potential μ0 is
not entirely independent of the nonuniform δμ(θ ), however, it
is likely that one will always need to apply some gate voltage
to tune μ0 close to a band crossing point. As stated in the
main text, an additional gate on top of the superconductor can
enable a more independent tuning of the uniform chemical
potential μ0 and the nonuniform chemical potential δμ(θ ) if
required.

APPENDIX C: MAGNETIC FIELD PARALLEL
TO THE WIRE

A magnetic field applied parallel to the wire (along the ŷ
axis in our coordinate system), generally, leads to both orbital
and Zeeman contributions to the Hamiltonian. An additional
Zeeman term HZ = 1

2 g‖μBBσy added to the Hamiltonian (A2)
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will be unaffected by the unitary transformation U (θ ) we used
to derive H̄ (y, θ ). This is also true for the orbital component
which can be included by minimal coupling, p → p − eA,
with the vector potential A in Eq. (A2). Using the symmetric
gauge A = B/2(z, 0,−x) = h̄ϕ

eR (cos θ, 0, − sin θ )—which is
also unaffected by U (θ )—allows us to write

H̄ (y, θ ) + HZ = h̄vF

[
σy

(−i∂θ − ϕ

R
+ g‖μBB

2h̄vF

)
+ iσx∂y

]
,

(C1)

where � = πR2B is the magnetic flux through the wire, with
ϕ = �/�0 being the dimensionless flux phase and �0 = h/e
the flux quantum, as in the main text. Therefore, a parallel
magnetic field can be included by replacing of the angular

momentum � → λ� ≡ � − ϕ + 1
2 g‖μBB
h̄vF /R . We note that, in this

effective low-energy theory, the orbital and spin contributions
of a parallel magnetic field add up to one term with the orbital
term usually being dominant [36].

As discussed in the main text, the field lifts the degeneracy
of the modes at k = 0. To find the size of the gap, we can solve
the Hamiltonian for a TI wire surface in the presence of a
magnetic field, Eq. (C1), using the wave functions ψkλ�τ (y, θ )
from Eq. (A4), where we have replaced � → λ�. The energy
spectrum is given by ±ελ�

(k) above (+) and below (−) the
Dirac point. At k = 0, the gap is given by

δ(ϕ) = |ελ�
(0) − ελ−�

(0)|/2 = h̄vF |λ� − λ−�|/2R

= |2h̄vF ϕ/R − g‖μBB|/2 ≈ h̄vF |ϕ|/R, (C2)

where the approximation uses the fact the Zeeman con-
tribution is typically much smaller than the orbital flux
contribution. For instance, in the ab plane of Bi2Se3 the g
factor is g‖ ≈ 4 and hence the Zeeman contribution g‖μB ≈
0.2 meV/T can be safely neglected in comparison with the
orbital contribution 2h̄vF |ϕ|/R � 4 meV/T. In tight-binding
models (see below) and real systems the finite penetration of
the wave function into the TI cross section requires that ϕ be
replaced by the effective flux ϕ̄ that, for example, governs
the Aharonov-Bohm period and is slightly smaller than ϕ.
For our parameters and our 20 nm × 20 nm cross section,
ϕ̄ ≈ 5ϕ/6.

Next, we show that the size of the splitting between two
initially degenerate subbands at k = 0 induced by the mag-
netic field stays the same even if the nonhomogeneity of the
chemical potential is included. The matrix elements between
different subbands Mλ�′ τ ′

λ�τ
(k = 0) are given by

Mλ�′ τ ′
λ�τ

(k = 0) = μ|�−�′|
2

[ττ ′ + sgn(λ�λ�′ )]. (C3)

We focus on the case of weak magnetic fields ϕ < 1/2 such
that λ� and λ�′ do not change sign as a function of the magnetic
field. Thus, this matrix element stays equal zero between two

subbands (�, τ ) and (−�, τ ) of our main interest. This means
that the gap induced by the magnetic field is not altered by
gating and is given by δ = h̄vF |ϕ|/R. We confirm this numer-
ically. For instance, in Fig. 2(c) of the main text, we show
that δ(ϕ = 0.2) is essentially identical for the system with and
without a nonuniform chemical potential.

APPENDIX D: TOPOLOGICAL SUPERCONDUCTIVITY
TRANSITION

In this section, we derive the criterion for the critical flux
ϕc that defines the phase transition to topological supercon-
ductivity. The topological superconductivity arises due to the
competition between two gap-opening mechanisms at k = 0:
namely, between the superconducting gap 
i,� and the mag-
netic field gap δ�(ϕ) for a general subband �. In what follows,
we assume that the uniform part of the chemical potential
μ0,l is calculated from the degeneracy point at k = 0 for two
subbands ±� and treat both 
i,� and δ�(ϕ) perturbatively,
δ�(ϕ), 
i,� � Eso,�. In this case, linearizing the spectrum
around k = 0 [see Fig. 2(c) in the main text], the effective
low-energy Hamiltonian for the two interior modes Ri,�(y)
(right-moving field) and Li,�(y) (left-moving field) can be
written as

H� = h̄ṽF,�kρzηz + 
i,�ηx + δ�(ϕ)ρxηz − μ0,�ηz , (D1)

where ηx,y,z are the Pauli matrices in particle-hole space, and
ρx,y,z are the Pauli matrices acting in the right- and left-
moving field space. The Fermi velocity ṽF,� around k = 0, for
the cylindrical TI wire, is given by h̄ṽF,� = |μ2l |R/�. From
Eq. (D1) it follows that the interior gap closes and reopens at
k = 0 for δ2

� (ϕc) = μ2
0,� + 
2

i,�. This gives the criterion for the
topological phase transition, as in Eq. (6) of the main text for
� = 1/2.

APPENDIX E: BERNEVIG-HUGHES-ZHANG
TIGHT-BINDING MODEL WITHOUT

SUPERCONDUCTIVITY

We perform numerical simulations using a BHZ tight-
binding model without and with a superconducting pairing
term [20,22,24,25]. Electrostatic factors mean that, ultimately,
the cross section of the wire and gate geometry will impact
the relative sizes of the Fourier harmonics, for instance a
hexagonal cross section would result in a large μ6 Fourier
component [16]. That said, from our analytic treatment we
do not expect the cross section to impact the form of the
splitting for a given subband other than through the differing
μn and so we choose a square cross section for our numerical
calculations throughout. That we find subband splittings for
square-cross-section wire that are consistent with our analytic
calculations for a perfect cylindrical wire further validates the
fact that the exact cross section of a given wire is essentially
irrelevant as long as the harmonics μn of the nonuniform
chemical potential are the same. We start with the BHZ lat-
tice model of the TI wire with the cross section Lx × Lz in
the absence of superconductivity. In momentum space, the
Hamiltonian is defined as [20,22,24,25]
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H (k) =
Lx/a1,Lz/a3∑
n=1,m=1

c†
n,m,k ·

{
M(k)τz + A2

a2
sin (ka2)τxσx − μn,m

}
cn,m,k

+
Lx/a1−1,Lz/a3∑

n=1,m=1

[
c†

n+1,m,k ·
{

B1

a2
1

τx + iA1

2a1
τxσz

}
eiφx

m cn,m,k + H.c.

]
+

Lx/a1,Lz/a3−1∑
n=1,m=1

[
c†

n,m+1,k ·
{

B3

a2
3

τx + iA3

2a3
τy

}
eiφz

n cn,m,k + H.c.

]
,

(E1)

where M(k) = M0 − 2 B2

a2
2

cos(ka2) + 2( B1

a2
1

+ B2

a2
2

+ B3

a2
3

), with
Ai and Bi, i = 1, 2, 3, being the BHZ parameters. Here,
c†

n,m,k = (c†
+,↑, c†

−,↑, c†
+,↓, c†

−,↓)n,m,k is a four-vector with

c†
±,↑/↓ describing the creation of an electron + (hole −)

with spin ↑/↓ on site n = x/a1, m = z/a3 and with mo-
mentum k along the wire axis in the y direction. The Pauli
matrices τx,y,z act in electron-hole space and σx,y,z in spin
space. The Peierls phases φx

m and φz
n encode the orbital

component of the magnetic field B, as above (and also in
Ref. [20]) we choose the symmetric gauge A = B

2 (z, 0,−x)
with the origin corresponding to the center of the wire.
Explicitly, this means we choose the Peierls phases as

φx
m = a1πϕ

LxLz

[
a3

(
m − 1

2

)
− Lz

2

]
, (E2)

and

φz
n = −a3πϕ

LxLz

[
a1

(
n − 1

2

)
− Lx

2

]
, (E3)

where now ϕ = BLxLz/�0.
Throughout we use the parameters for Bi2Se3 from

Ref. [24] (Table IV); these are A1 = 3.33 eV Å, A2 =
α3.33 eV Å, A3 = 2.26 eV Å, M0 = −0.28 eV, B1 = B2 =
44.5 eV Å2, and B3 = 6.86 eV Å2. We always use α = 1 for
wires in momentum space but adjust α to enable simulation of
long finite systems (see below) and we choose the crystallo-
graphic c axis of Bi2Se3 parallel to ẑ. We also always choose
lattice constants a1 = a2 = 50/3 Å in the x̂ and ŷ directions
and a3 = 25/3 Å in the ẑ direction. We find that these are the
smallest values such that lattice spacing effects are negligible,
this makes our 20 nm × 20 nm cross section to be modeled as
a system consisting of 12 × 24 lattice sites in the xz plane.
Using these parameters for our 20 nm × 20 nm cross sec-
tion we find δε = 2π h̄/(2Lx/vx + 2Lz/vz ) ≈ 21 meV, which
is a generalized version of δε = h̄vF /R for a square cross
section with different velocities in the x and z directions.
These velocities are obtained from the BHZ model parameters

using vx = A1/h̄ and vz = A3/h̄. As shown in Fig. 5, when
the chemical potential is uniform, the wave function is also
uniformly around the wire surface for both Fermi momenta at
k = 0 and at k = ±kF . This is very different than the gated TI
wire, in which, for finite Fermi momenta, the wave function is
more localized on one side of the wire (see Fig. 2 in the main
text).

We use this model to confirm the validity of our pertur-
bative solution for the size of the band splitting between two
degenerate subbands as outlined in Eq. (B3), see Fig. 6. We
calculate the energy spectrum for three different strengths
of the nonuniform part of the chemical potential: δμ(z) =
nδεz/Lz with n = 1, 3, 5. We find that Eq. (B3) stays valid
even when the applied bias is larger than the subband spacing
δε and deviates from the perturbative result only when the
splitting energy of a given subband gets too large Eso � δε/2.

To confirm that the splitting between degenerate subbands
described by Eq. (B3) is not strongly dependent on the ex-
act form of the inhomogeneity of chemical potential and
is only sensitive to the relative sizes of the harmonics μn,
we consider three different chemical-potential profiles δμ(z):
3δεz/Lz (as in the main text), 3

2δε cos θ , and 3
2δε cos 3θ , with

θ = arctan(x/z). The results are shown in Fig. 7. As ex-
pected, for the first two chemical-potential profiles we find
virtually no difference between the magnitude of splitting
for the lowest subbands. For the third profile, the splitting is
smaller for � = ±1/2 subbands than in the first two cases but
approximately the same for � = ±3/2, as expected from our
analytic treatment. In all cases, the splitting is well described
by Eq. (B3).

APPENDIX F: SUPERCONDUCTING
BERNEVIG-HUGHES-ZHANG MODEL

Next, we add an on-site pairing amplitude 
n,m, induced
by proximity to an s-wave superconductor, to the Hamiltonian
in momentum space defined by Eq. (E1) and obtain

Hsc(k) =
Lx/a1,Lz/a3∑
n=1,m=1

c̄†
n,m,k ·

[{
M(k)τz + A2

a2
sin (ka2)τxσx − μn,m

}
ηz + 
n,mηx

]
c̄n,m,k

+
Lx/a1−1,Lz/a3∑

n=1,m=1

[
c̄†

n+1,m,k ·
{

B1

a2
1

τz + iA1

2a1
τxσz

}
ηze

iηzφ
x
m c̄n,m,k + H.c.

]

+
Lx/a1,Lz/a3−1∑

n=1,m=1

[
c̄†

n,m+1,k ·
{

B3

a2
3

τz + iA3

2a3
τy

}
ηze

iηzφ
z
n c̄n,m,k + H.c.

]
, (F1)
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where 
n,m = 
0e(ma3−Lz )/ξT I is the proximity-induced pairing amplitude. We have introduced the extra set of Pauli matrices ηx,
ηy, ηz that act in particle-hole space of the Nambu operator and we have defined

c̄†
n,m,k = (c†

+,↑, c†
−,↑, c†

+,↓, c†
−,↓, c+,↓, c−,↓,−c+,↑,−c−,↑)n,m,k (F2)

in this space. This superconducting BHZ model defined in momentum space is used for Fig. 3 of the main text.
To realize MBSs at the end of the wire as in Fig. 4 of the main text, we perform the full three-dimensional BHZ tight-binding

model simulations:

Hobc =
Ly/a2,Lx/a1,Lz/a3∑

l=1,n=1,m=1

c̄†
l,n,m · [{Mτz − μn,m}ηz + 
n,mηx]c̄l,n,m +

Ly/a2−1,Lx/a1,Lz/a3∑
l=1,n=1,m=1

[
c̄†

l+1,n,m ·
{

B2

a2
2

τz + iA2

2a2
τxσx

}
ηzc̄l,n,m + H.c.

]

+
Ly/a2,Lx/a1−1,Lz/a3∑

l=1,n=1,m=1

[
c̄†

l,n+1,m ·
{

B1

a2
1

τz + iA1

2a1
τxσz

}
ηze

iηzφ
x
m c̄l,n,m + H.c.

]

+
Ly/a2,Lx/a1,Lz/a3−1∑

l=1,n=1,m=1

[
c̄†

l,n,m+1 ·
{

B3

a2
3

τz + iA3

2a3
τy

}
ηze

iηzφ
z
n c̄l,n,m + H.c.

]
, (F3)

with M = M0 + 2( B1

a2
1

+ B2

a2
2

+ B3

a2
3

) and the operators defined in
the Nambu space as

c̄†
l,n,m = (c†

+,↑, c†
−,↑, c†

+,↓, c†
−,↓, c+,↓, c−,↓,−c+,↑,−c−,↑)l,n,m.

(F4)
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FIG. 8. Probability densities of MBSs along the wire. The prob-
ability density

∑
x,z |ψ (x, z)|2 of the lowest energy states (MBSs),

summed over the cross section of the TI wire, is calculated using the
full three-dimensional BHZ model that includes also a superconduct-
ing pairing term [see Eq. (F3)]. The MBSs are localized at the ends
of the wire. The localization length shrinks as magnetic flux is being
increased. For this system, as in the main text in Fig. 4, the critical
flux value ϕc ≈ 0.065. The wave functions of the two zero-energy
MBSs are antisymmetrized such that they are maximally localized
on the left (red) or right (blue). The other parameters are the same as
in Fig. 4 of the main text.

To easily numerically simulate real system sizes of Bi2Se3,
such as our 20 nm × 20 nm × 1000 nm wire, while also min-
imizing lattice effects, we adjust the Fermi velocity parallel to
the wire which reduces the number of sites required along the
wire. This is done via α in the parameter A2 = α3.33 eV Å
of our BHZ model. For the phase diagram in Fig. 4(a) and the
disordered wires in the next section we choose α = 1/5 such
that wires are 12 × 24 × 100 lattice sites and for Fig. 4(b) we
choose α = 10/3 such that wires are 12 × 24 × 150 lattice
sites. This change in A2 (or equivalently the Fermi velocity
A2/h̄) from the value with α = 1 has no influence on our
results.

When the topological criterion of the main text is fulfilled,
the lowest-energy states, MBSs, are close to zero in energy
and are well localized (see Fig. 8). The probability densities
of the MBS wave functions along the wire, summed over the

0 5 10
0

0.5

1

u0 (meV)

〈ε〉
/Δ

〈ε0〉
〈ε1〉

0 5 10
u0 (meV)

0 5 10
u0 (meV)

ϕ = 0.15 ϕ = 0.2 ϕ = 0.25

FIG. 9. The lowest and first-excited energies for disordered wires.
We take the average over all lowest state energies ε0 and the average
over all first-excited state energies ε1 in an ensemble of 30 wires
for various strengths of disorder u0 and flux ϕ. The full three-
dimensional BHZ model includes a superconducting pairing term
[see Eq. (F3)] with additional random on-site potential 
μ(r). Even
very strong disorder does not substantially move the MBS energy
away from zero. For instance, for the largest value of flux in this
plot, ϕ = 0.25, disorder strengths up to u0 ≈ 8 meV do not strongly
affect the zero-energy mode and it remains well separated from the
SC bulk states. The other parameters are the same as in Fig. 4 of the
main text.
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square cross section of the TI wire, at two different fluxes are
shown in Fig. 8.

APPENDIX G: DISORDER

The appearance of MBSs that are pinned to zero energy for
a large region of parameters indicates that MBSs in gated TI
wires can be expected to be very stable against various types
of disorder, in particular fluctuations of the local chemical po-
tential. This is important because present-day bulk insulating
TI wires are relatively dirty, and transport in them is diffusive
[16]. Of particular importance are charged impurities in the
bulk of thick TI samples which can lead to long-range ≈50
nm fluctuations of the surface chemical potential up to several
meV [37–40] (so-called surface puddles). In this context thin
wires are better due to the increased screening of these bulk
charges by the surface states [41] and the screening of the
superconductor itself. As such the magnitude and length of
surface puddles in Majorana devices will likely be signifi-

cantly smaller than in bulk TIs that are not in proximity to
a superconductor.

Given the complexity of modeling different contributions
to disorder in TI wire devices and the screening physics of
charged disorder, we leave more realistic modeling for fur-
ther investigation. Nonetheless, in order to assess the stability
of MBSs, we introduce on-site fluctuations in the chemical
potential 
μ(r) that are drawn randomly from a uniform
distribution 
μ ∈ [−u0/2, u0/2]. We take the average over
all lowest state energies ε0 and the average over all energies
of the first-excited state, ε1, in an ensemble of 30 wires with
different disorder configurations at various strengths of u0; the
results are shown in Fig. 9 for various fluxes ϕ. We find that
the lowest energy state, corresponding to the MBSs, remains
strongly pinned to zero energy and well separated from the SC
bulk for large disorder strengths. For instance, the ensemble-
averaged lowest energy remains at zero up to u0 ≈ 8 meV
for ϕ = 0.25 (B ≈ 2.5 T). This stability against disorder is a
direct consequence of the large phase space for MBSs in the
topological phase diagram of our setup.
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