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Dissipative Josephson vortices in annular polariton fluids
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We consider two concentric rings formed by bosonic condensates of exciton-polaritons. A circular superfluid
flow of polaritons in one of the rings can be manipulated by acting upon the second annular polariton conden-
sate. The complex coupling between the rings with different topological charges triggers nucleation of stable
Josephson vortices (JVs) which are revealed as topological defects of the angular dependence of the relative
phase between rings. Being dependent on the coupling strength, the structure of the JV governs the difference
of the mean angular momenta of the inner and the outer rings. At the vanishing coupling the condensates
rotate independently demonstrating no correlations of their winding numbers. At the moderate coupling, the
interaction between two condensates tends to equalize their mean angular momenta despite the mismatch of the
winding numbers demonstrating the phenomenology of a drag effect. Above the critical coupling strength the
synchronous rotation is established via the phase slip events.
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I. INTRODUCTION

If two coherent quantum systems are separated by a weak
link, their mutual coherence is sustained due to the tunnel-
ing across the link. This phenomenon known as Josephson
effect was observed on various physical platforms including
superconductors [1], liquid helium [2], and Bose-Einstein
condensates [3]. A supercurrent flowing through the junction
represents a striking manifestation of a quantum interference
at macroscopic scale. Being an exceptional phenomenon at
equilibrium, the internal currents are intrinsic to open systems
which are pumped from outside. In this case, the current origi-
nates from the local gain-dissipation imbalance and serves for
its compensation. Its existence reflects an intrinsic tendency
of the system to maintain the detailed dynamical balance
characteristic to the stationary regime.

An important example of a coherent driven-dissipative
system is a bosonic condensate of exciton polaritons. Po-
laritons are hybrid quasiparticles which appear in the strong
light-matter coupling regime in semiconductor crystals and
microstructures. In low-dimensional semiconductor micro-
cavities excited by optical pumping or electrically injected,
polaritons undergo a transition to the condensed state which
demonstrates collective coherent phenomena typical to a su-
perfluid [4,5]. The internal polariton currents stem naturally
from the spatial inhomogeneity of the external pump and
has a crucial impact on the polariton fluid. Being pointed
from the region with the excess of gain to where it is scarce,
the persistent flow of polaritons supports peculiar density
patterns [6] such as dissipative solitons [7] and assists a self-
trapping effect [8]. Besides, the global polariton current can
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appear spontaneously even at the homogeneous pumping due
to the intrinsic instability of the currentless state [9,10]. In
an annular geometry, the local currents stemming from the
chiral-symmetry breaking gain distribution allow for winding
up polariton superfluid [11,12].

If two polariton condensates are placed in close prox-
imity, they form a Josephson junction [13,14]. In the
driven-dissipative systems the coupling typically acquires a
dissipative component [15]. In contrast to the conventional
Josephson coupling which corresponds to the real tunneling
amplitude, the dissipative coupling affects the decay rates of
the interacting systems rather than their energies. The com-
plex coupling results in the phase locking effect which was
investigated with the individual polariton Josephson junctions
[16] as well as in a multicondensate array, in the polariton
graph [17,18] and lattice [19,20] configurations. Manipulation
of the pump geometry and position offers a versatile tool
for the precise tuning of the coupling strength [21,22] which
allows exploiting polariton junctions as building blocks of the
quantum optimizers and for simulation of the complex spin
problems [23].

Considering the Josephson phenomenon one should distin-
guish between short (pointlike) and long junctions. A short
junction confines the supercurrent in a transverse direction
suppressing the flow along the junction interface. Short junc-
tions are typically used in superconducting qubit circuits
[24] and liquid helium gyroscopes [2]. Two spatially sep-
arated spotlike polariton condensates also form the short
junction [16].

In long junctions the interface extends beyond the Joseph-
son penetration depth [1], so that the transversal dynamics
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of the Josephson current becomes essential. In this case, the
current can twist into a closed loop forming the Josephson
vortex (JV). These states also known as fluxons play a cru-
cial role in the physics of superconductors [25] due to their
ability of trapping magnetic flux quantum. Besides JVs can
emerge between two elongated atomic condensates [26—28].
Recently, JVs were observed in a polariton superfluid. In
Ref. [29] they appear as the topological excitations in the
phase twisting region imposed by two phase-locking laser
beams.

In spite of the progress of the experimental studies, the un-
derstanding of the physics of the driven-dissipative JVs is still
far from being achieved. In this paper we study the formation
of the JVs between two polariton condensates separated by
the interface in which length exceeds the Josephson length
defined later in the text. We focus on the annular geometry
and consider specifically two concentric ring-shaped polariton
condensates. A similar configuration was studied in supercon-
ducting [30,31] and atomic [28] systems, where spontaneous
nucleation of JVs in the annular junction was employed for
testing of the Kibble-Zurek mechanism [32]. In contrast to
the superconducting and atomic system, the polariton system
under study is a driven-dissipative condensate.

Out of equilibrium, the coexistence of the intrinsic internal
and the Josephson currents as well as the entirely complex
coupling parameter are expected to have a crucial impact on
the polariton circulation in the double-ring geometry. Forma-
tion of the annular Josephson junction between two concentric
polariton rings was investigated in Ref. [33]. The stability
of the uniform solutions with no circular currents in both
rings and formation of the vortex-dipole trains [34,35] were
described, while the nucleation of JVs remained out of con-
sideration. The excitation of identical circular currents in both
inner and outer polariton rings was predicted in [36].

In this paper we demonstrate that the rotation of polariton
rings with different winding numbers is also possible. It is
assisted by the trapping of the JV in the annular junction.
The JVs are excited spontaneously during the condensate
formation. Due to the interplay between internal currents and
coherent tunneling, the difference in the net circulations in the
superfluid rings can be tuned continuously. In the presence of
JV, both the inner and the outer condensates carry fractional
angular momenta whose difference is governed by the spatial
structure of the JV. Thus the interaction between the ring-
shaped condensates demonstrates phenomenology of the drag
effect. Besides we predict the existence of the critical coupling
strength above which the coherent coupling between the con-
densates forces them to rotate synchronously. This regime is
established via the phase slip events which correspond to the
annihilation of the JVs.

II. THE MODEL

A. The annular Josephson junction between the concentric
ring-shaped polariton condensates

We consider exciton polariton condensates excited nonres-
onantly. The optical pump creates incoherent excitons which
relax their energy and momentum feeding the coherent con-
densate [5]. This excitation scheme imposes no stiffness of

the condensate phase and thus admits spontaneous formation
of the internal polariton flows and the circular currents in the
ring geometry analogously to the atomic condensates [37].
We describe the relevant driven-dissipative dynamics in the
mean-field treatment using the generalized Gross-Pitaevskii
equation coupled to the kinetic equation for the reservoir of
incoherent excitons:

h2
iho,WV = [— V2 4 g WP+ V(r)
2mpol
+ (g + 5w, - inke |w (1a)
r A r Y ’ a
& "
N, =P — (v, + s|V|*)N,. (1b)

Here W = Y(r) stands for the two-dimensional (2D) conden-
sate wave function and N, = N,(r) for the reservoir density
distribution; m, is the polariton effective mass, and V (r) is
the stationary trapping potential. The coefficients g, and g, ac-
count for the interaction of polaritons between themselves and
with the incoherent excitons, respectively. The non-Hermitian
terms in (1) describe the dissipation with the rate y,. and the
polariton gain sN, governed by the reservoir density. The
shape of the pump P(r) is imprinted on the exciton density
distribution whose growth is balanced by the exciton relax-
ation with the rate y,.

Sculpting the pump shape or the trapping potential allows
for precise control of the condensate density distribution. A
single ring-shaped condensate can be created using the ring
pump [33], sculpting the ring-shaped channel [38,39] or in
the high-Q micropillar cavities [12]. Creation of the annular
Josephson junction thus requires excitation of two concentric
condensates. To be specific, we consider the pump beam hav-
ing a form of three concentric rings, see Fig. 1(a), which form
two annular potential traps for polaritons with the minima’s
radii r; and r,. We note that the chosen shape of a pump
beam can be achieved with use of a spatio-optical modulator
[40]. The trapping is mediated by the reservoir excitons which
repel polaritons from the pump region. In what follows, the
labels “i” and “o” are assigned to the inner and the outer
condensates, respectively.

In a single center-symmetric polariton ring, the global cir-
culation of the superfluid is random during the condensation
onset. A conventional way to quantify the circulation is using
the integer winding number

1 dv

m=-—a¢ —, 2

2mi C v

which is a quantized topological invariant characterizing the

phase variation along the closed path C. However in the

double-ring geometry, the condensates are mutually depen-

dent. Since the coupling establishes at each point of the

junction, the phase locking effect tends to impose the iden-

tical azimuthal profiles of the phase on both rings and thus

to equalize their winding numbers. The competition between

the coupling of the condensates and the robustness of their

individual topological charges will remain the focus of our
attention.

The JVs appear as an outcome of this interplay. An exam-
ple of the polariton density pattern excited in the double-ring
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FIG. 1. Josephson vortex in the double-ring polariton conden-
sate. (a) The pump distribution. The inset shows the radial cut of
the pump (blue) and the polariton density (red) away from the JV
distributions. (b) The 2D polariton density pattern. (c) The spatial
distribution of the global phase. (d) The vector field of the 2D current
density in the region framed in (b). (¢) The azimuthal variation
of the global phase ¢ = Arg(W¥) at the potential minima. (f) The
relative phase ¢ (on the left, red line). The radial component of the
polariton current in the center of the junction (on the right, blue lines)
shown with the white circle on (c). The solid curve was extracted
from the simulations while the dashed one corresponds to the fitting
J = J.sin g with J, = 2.25 x 1072, All the lengths are measured in

the units of /71/(y.mpo), the current in the units of ,/ R v3/(82mpor)

[41].

geometry is shown in Fig. 1(b). The corresponding distribu-
tion of the global phase ¢(r) = Arg(W¥) reveals that the inner
and the outer condensates are topologically discriminated by
the mismatch of their winding numbers, Fig. 1(c). In the
given example, m; = —1 and m, = —2, see Fig. 1(e). This
difference is connected with a single JV located between the
rings which is characterized by the 27 phase winding about
its core. This is clearly seen in the vector field of the current
density shown in Fig. 1(d) and in the azimuthal dependence of
the relative phase ¢(6) which we define as ¢ = ¢(r;) — ¢(7,).
The phase locking effect imposes synchronous rotation (¢ =
const.) everywhere except at the J'V position, see Fig. 1(e). In
its vicinity, ¢ experiences a smooth twist on 27 corresponding
to the topological defect akin to the sine-Gordon kink [1,42].

Note that for the condensates tightly confined in the ra-
dial direction, ¢ can be associated with the Josephson phase
which drives the Josephson current J = J, sin ¢. In the annu-
lar junction, the tunneling current flows in the radial direction.
Figure 1(f) compares the radial component of the polariton
current density j, = (fi/mpo)Im(¥*d, W) at the middle of
the junction [the white circle in Fig. 1(c)] with the effective
Josephson current evaluated from the numerical data for ¢
using J, as a fitting parameter [41]. The asymmetry of the
Jo(0) dependence is indicative of the slow motion of the
vortex along the annular junction. The rotation of the JV
stems from the difference of the natural frequencies of the
uncoupled annular condensates. Therefore, its velocity can be
controlled by the pump power or the strength of confinement
of the individual condensates. Besides, a weak inhomogeneity
in the ring’s shape results in the pinning of the JV which can
facilitate its experimental investigation.

B. One-dimensional model of coupled polariton rings

To get a better insight into the physics standing behind the
JV formation, we adopt the effective one-dimensional (1D)
model of the annular polariton junction developed in [33]. In
what follows we consider the limit of thin rings with large
radii which admits reduction of the dimensionality of the
problem. In particular, we use a two-mode ansatz:

W(p, 0) = Wi(p, 0) + Wo(p, 0), (3a)
N:(p,0) = Ni(p,0) + No(p, 0), (3b)

where (p, 6) are the polar coordinates. In a thin ring, the
energy of the condensate confinement in the radial direc-
tion significantly exceeds the kinetic energy of the azimuthal
motion. Thus we assume that the condensates obey central
symmetry:

Vio(p,0,1) = Yio(p)¥io(0,1), (4a)
Ni,()(p’ 9’ t) = Zi,o(p)ni,0(91 t)’ (4b)

where the radial functions Y, are normalized to unity but
not orthogonal to each other. The same is true for the real
functions Z; ..

After integrating out the radial dependencies one obtains
the following coupled equations [33]:

2 2
; _ 12 .
iho o = [_MW + alYiol” + i
ik
+ E(rni,o - V) 1#1,0 + hCl/fo,i, (53)
nio = pio — (T + Fliol i, (5b)

which are analogs to the system (1) except for the linear
interaction term governed by the complex coupling parameter
C. The explicit expressions for coefficients of the model can
be found in [33]. It is worth mentioning that the kinetic energy
associated with the azimuthal motion is small due to the large
effective masses M, = mpolRfo which enter the 1D model.
For simplicity we neglect also the difference of the ring radii
assuming R; , = R and hence M; , = M. Besides, we consider
the case of the symmetric pump p; = p, = p.
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The interaction strength C, which is a key parameter of
the problem, is governed by the overlap of wave functions
of the condensates located in two rings, which depends on
the distance separating them, the pump amplitude, and the
potential barrier between the rings. Taking into account a large
flexibility of the considered excitation scheme, we assume that
both real and imaginary parts of C can be tuned continuously
and independently in a wide range. Besides, we neglect the
possible dependence of the coupling parameter on the pump
power and the ring radii.

Equations (5) have a family of solutions:

1/2
. — — —p — — ]
U= Y, = ()/ £ Im[C] r) exp(imf), (6a)
n = n, = L FIMICT (6b)

r

corresponding to the symmetric and the antisymmetric config-
urations of the condensates rotating synchronously, i.e. with
the same winding number m. These states are characterized
by locking of the relative phase to O for the symmetric or to
for the antisymmetric configuration. Hence they are expected
to play a major role in the limit of strong coupling between
the condensates.

Those solutions which describe the asynchronous rotation
of the condensates with different winding numbers must ac-
count for the defects of the relative phase corresponding to
the JVs. In the presence of the reservoir and the complex cou-
pling parameter, these solutions cannot be found analytically
[26,27]. This is why we approach this problem numerically. In
the next section we study the spontaneous nucleation of JVs
during the condensate formation.

III. SPONTANEOUS NUCLEATION
OF THE JOSEPHSON VORTICES

We solve Eqs. (5) numerically starting from the weak
noise which simulates fluctuations of the order parameter at
the initial stages of condensation. The JVs develop from the
phase defects seeded randomly in the initial field distribu-
tion. A single JV connects the condensates whose winding
numbers differ by one. In the case of n vortices and n,
Josephson antivortices (27 winding of the relative phase is
the opposite) trapped between the rings, the winding number
quantization condition reads m; — m, = n — n,. However, be-
cause of the rotational symmetry of the junction, the vortices
and antivortices attract each other and eventually annihilate.
This relaxation dynamics leads to the stationary configuration
which typically corresponds to several JVs of the same vor-
ticity evenly distributed along the annular junction due to the
intrinsic repulsion between the vortices with equal topological
charges. In our simulations we take the time interval of 10 ns
which is enough for the relaxation dynamics to be completed.

Each run of the simulations yields a random combination
of the winding numbers. The results of 5000 runs are summa-
rized on the histograms of the winding number distribution
P(my, my), Figs. 2(a)-2(d). Our simulations reveal that the
coupling parameter C has a significant impact on the shape
of this distribution. To be specific, below we focus on the case

P(m;, m,)

correlation o

0 0.004 0.008 0.012

ICl (ps™H)

FIG. 2. (a)-(d) The histograms of the winding number distribu-
tion at the different values of the coupling strength amplitude |C|
indicated in (e). The colors of the segments are chosen so that
Zmi >, P(mi, mo) = 1 for each panel. (e) Pearson correlation co-
efficient calculated from the data sets of 5000 realizations for each
point. The line color codes the argument Arg(C) of the complex cou-
pling parameter. The parameters are y = 0.2 ps~!, I' = 0.15 ps~!,
a/h=0.0025ps™", a, = 20, r = 0.02 ps™", myo = 10~*my,, where
mg 1s the free-electron mass. The mean radius is R = 15 um, the
pump power is p = 2py, where py, = I'y /r is the threshold value of
the pump in the absence of interaction.

of the equal Josephson and dissipative coupling parameters
Re[C] = Im[C].

At the weak coupling regime of two rings (small |C|),
which is typically realized at the large separation distances
or high potential barrier, P(m;, m,) is close to the bivariate
normal distribution, see Fig. 2(a). It implies the absence of
any correlations between the inner and the outer rings. In
particular, the condensates can rotate either in the same or
in the opposite directions with equal probabilities. The weak
deviations from the normal distribution appear as the coupling
strength increases, Fig. 2(b). In this case, the synchronous
solutions m; = m, is more favorable than the counter-rotating
state m; = —m, whose creation requires excitation of at least
2|m;| JVs. In the latter case, an even number of JVs coexist.
They either stay frozen in the junction region or rotate slowly
while the separation distance between them remains fixed.

With the further increase of the coupling strength, the
probability of the JV formation falls down. This results in
the shrinkage of the distribution along the diagonal occupied
by the set of synchronous solutions (6) with m; = m,. The
coupling associated with the phase locking effect favors for-
mation of the synchronously rotating condensates and thus
tends to destroy the JVs. In this intermediate regime, polariton
currents in the rings are partially correlated. The degree of
correlations can be quantified with the use of the Pearson
correlation coefficient o,

Z (m; — mi)(my — M)
X Oni = Y Y (g — g2

where m;, are the mean values and the sums run over all
realizations. The corresponding o (C) dependence is shown in
Fig. 2(e).

It is important that there is a critical value of C beyond
which o approaches 1 meaning the perfect correlations. The

U(mi7 mo) =

N
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corresponding histogram Fig. 2(d) shows the absence of the
asynchronous solutions in this regime, which implies that no
JVs survive during the condensate formation.

A gradual increase of the correlation degree shown in
Fig. 2(e) illustrates the competition between the synchroniza-
tion effect stemming from the coupling and the topological
protection of the circular currents. The phase locking dom-
inates at the strong coupling while in the opposite limit the
condensates weakly affect each other. Note that this behav-
ior remains qualitatively the same at any value of the phase
Arg(C) of the complex coupling parameter, see Fig. 2(e) and
the discussion in Sec. V. In the next section we focus on the
intermediate regime where the interplay between the circular
and the Josephson currents is crucial.

IV. A SINGLE JOSEPHSON VORTEX FORMED BETWEEN
CONCENTRIC POLARITON RINGS

At the moderate coupling strength, the presence of JVs has
a significant impact on the condensate rotation. We consider
the simplest case of a single JV confined in the junction. In
particular, we assume that the outer condensate carries no
topological charge m, = 0, while the inner one spins with
m; = 1. Here we are interested in the stationary solutions
neglecting the particular mechanism of the JV formation.

The interaction between the rotating and the stationary
condensates alters the local currents in both rings. The global
circulation of the nonuniform current can be characterized by
the expectation value of the orbital angular momentum op-
erator L. = —ifidy. The difference between the mean angular
momenta per particle ¢; , = Ni:)l f Wfoizwi,odg of the inner
and the outer condensates thus reads

N =M/ [jei(Q) _ jeo(Q):|d9, @®)
N; N,

where jgio = (/M )Im(w;joami,(,) quantifies the azimuthal
component of the current density in the inner (outer) ring,
Nio = f |¥i0|?d6 are the populations of the condensates.
Note that for the uniform states v, = A Pio exp(im; o0)
which are realized at C = 0, the average angular momenta
coincide with the winding numbers up to the dimensional
constant ¢; , = him .

At the finite coupling strength, the interaction of two
ring condensates speeds up the condensate in the immobile
ring so that its angular momentum increases. At the same
time, the rotation of the spinning ring slows down as if it
would be affected by the drag force. The effect of this pseu-
dodrag is shown in Fig. 3(a). The angular momenta vary
continuously approaching each other as the coupling strength
increases. The resulting difference of the angular momenta
AZ¢ is governed mainly by the current circulation about the
JV core according to the definition (8). Indeed, assuming
N; &~ N, = N under symmetric excitation, one can write A{ =
(Fz/N)f[,oi(Q)agcpi — po(0)0ppo]ld6. Away from the JV, the
rotation of the condensates is synchronized locally, p;(6) =
Po(0) and ¢;(6) = ¢,(6), see Figs. 3(c) and 3(d). Hence this
region makes no contribution to A€.

The azimuthal distribution of the density currents is shown
in Fig. 4(a). The main contribution to the angular momenta

)| l( ) ooz “CRZ75um
(a) ) Al's ~ R=15um y
el g g\ . 'f'é ‘t ‘& 0015F P45 wm /,/
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ol=2 o) 0
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02
ICl (ps™) ICl (ps™)
21

¢ = ¢~ ¢, (rad)

T
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FIG. 3. (a) The dependence of angular momenta of the inner
and outer rings on the coupling strength at three different values
of the pump power indicated on the panel. (b) The effective width
w= «/f 0%3p0d0 — ([ 00gd0)* of the JV at the same values of
the pump power as in (a). The meaning of the colors remains the
same as in (a). The inset shows the critical value of the coupling
strength at three different values of the mean radii of the rings.
(c) and (d) The relative phase ¢(0) together with the densities profiles
pio(®)at(c) |C| = 0.002 ps~! and (d) |C| = 0.01 ps~!. For all panels
R =45 pum and Re(C) = Im(C).

difference comes from the region where the currents flow in
opposite directions. This region stems from the 2w winding
of the relative phase ¢ which is concomitant of the JV. As
the coupling strength grows, the azimuthal size of the JV
decreases, see Figs. 3(c) and 3(d). Since the phase-winding
region becomes more steep at stronger coupling, the ampli-
tudes of the opposite currents increase, see Fig. 4(a). The
competition of these processes results in the decrease of the
angular momentum difference, see Fig. 4(d).

One can conclude that the efficiency of the pseudodrag
effect between the rings correlates with the vortex structure,
especially with its size. The physical scale of the JV can be
estimated as A = (/2M|C|)'/? by analogy with the Joseph-
son penetration depth which is a characteristic length scale
of the superconducting Josephson junction [1]. The inverse
A(C) dependence fits well with the results of our simulations.
Figure 3(b) shows the calculated value of the width w of the
JV quantified by the variation of the relative phase dy¢ which
reflects the steepness of the phase defect.

Note that the defect width w demonstrates a weak depen-
dence on the pump power. However, the impact of the ring
radii on it is significant. Since M o R? the Josephson pene-
tration length A diverges at small radii A oc R~!. This effect
is seen in Figs. 4(b) and 4(c). Even at the moderate value of
the radius R = 15 pm, the width of the JV is comparable with
the circumference of the junction. With the further decrease of
the radii, the JV starts occupying the entire annular junction.
The growth of the JV leads to the decrease of the angular
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FIG. 4. The variation of the azimuthal density currents for the in-
ner (solid lines) and the outer rings (dashed lines) for (a) R = 45 pum,
(b) R =15 pum, and (c) R = 7.5 pm. The blue lines correspond to
C =0.002 ps~!, the green ones to C = 0.006 ps~', and the orange
ones to C = 0.01 ps~!. The areas of the shaded regions govern the
difference of the average angular momenta A{. (d) The dependence
of A¢ on the coupling amplitude for three different values of the
mean ring radius R corresponding to (a), (b), and (c). The particular
cases shown in (a)—(c) are indicated with dots of matching colors.
For all panels p = 3py, and Re(C) = Im(C).

momentum difference which implies suppression of the pseu-
dodrag effect, see Fig. 4(d).

V. SYNCHRONIZATION VIA PHASE SLIP

The dependencies shown in Figs. 3(a) and 4(d) demon-
strate the presence of the critical value of the coupling strength
Cerit Which corresponds to the collapse of the Josephson vor-
tex. This behavior manifests the domination of the phase
locking effect in the strong coupling regime where rotation

-0.01 -0.005 O

0.005
Re(C) (ps™)

-0.01-0.005 0 0.005 0.01
Re(C) (ps™)

of the condensates is fully synchronized. Since the polariton
JV disappears abruptly in contrast to the JV in the atomic
condensates [26,27], this phenomenon should be associated
with the loss of stability of this state.

The synchronization occurs via the phase slip event which
corresponds to the vortex crossing either of the rings. In the
considered case, if the vortex enters the inner region, it com-
pensates the topological charge of the inner ring decreasing it
by one, m; = 0. In the opposite case the JV crosses the outer
ring and increases its winding number living the condensates
in the state (m;, my) = (1, 1).

It is worth mentioning that the rings demonstrate a better
resistance against transition to the synchronous rotation in the
strong pumping regime. The inset in Fig. 3(b) shows the grad-
ual increase of the critical coupling strength with the growth
of the pump power. This counterintuitive result stems from
the topological nature of circular currents. The phase slip is
accompanied by the local suppression of the polariton density
(o = 0) once the core of the JV crosses the ring. At the strong
pumping, the density of polaritons is high. Therefore, the pen-
etration of the ring by a vortex requires stronger interaction
between the rings.

So far we considered the case of the equal Josephson and
dissipative coupling parameters. Now we shall discuss the role
of the phase of the complex coupling Arg(C). In particular, we
focus on the behavior of the critical coupling strength Cy;.

Figure 3(a) shows that the value of C; depends crucially
on the pump power. The strong pump stabilizes the JV shifting
position of the critical point towards stronger couplings. The
similar scenario occurs at any Arg(C) as it is demonstrated in
Fig. 5 which shows the synchronization maps on the complex
plane (Re(C), Im(C)) at different pump intensities. As in the
previous section, it is assumed that m, = 0 and m; = 1 in the
asynchronous state. These maps show the gradual decrease of
the mean angular momenta difference from A¢ =1atC =0
to the minimal value at the phase boundary indicated by the
white line. Beyond this line, the synchronous solution with
A¢ = 0 establishes.

The phase boundary demonstrates a significant dependence
on the argument of the complex coupling parameter C. This
behavior is consistent with the synchronization scenario real-
ized during spontaneous formation of the concentric annular

~0.01-0.005 0 0.005 0.01
Re(C) (ps™)

FIG. 5. Synchronization maps on the parameter space (Re(C), Im(C)) for various values of the pump power: (a) p = 2pu, (b) p = 3pu,
and (¢) p = 4pw, where py, = 'y /r. The mean ring radius is R = 15 pum.
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condensates shown in Fig. 2(e). The maximum value of the
modulus of the critical coupling |Cei¢| grows as the pumping
strength increases although the phase boundary retains its
shape and symmetry. Note that each distribution in Fig. 5 is
symmetric with respect to the rotation by m. It means that
the synchronization scenario depends on whether the real and
imaginary parts of the coupling parameter are of the equal or
the opposite signs.

VI. CONCLUSIONS

Polariton condensates excited in the double-ring geometry
are able to rotate either in the same direction or in opposite
directions and carry arbitrary topological charges. The mis-
match of the winding numbers of two condensates lead to the
formation of Josephson vortices within the annular junction.
The coupling between two rings affects their rotation. Due
to the interplay between the local circular currents inherent
in the driven-dissipative condensates and the radial tunneling
current which favors locking of the relative phase, the rotating
rings demonstrate the behavior akin to the drag effect. We
predict that at coupling strengths exceeding a critical value

dependent on the radii of the rings the Josephson vortex would
decay through a phase slip event.
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