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Resonant nonlinear Hall effect in two-dimensional electron systems
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We study the Hall conductivity of a two-dimensional electron gas under an inhomogeneous magnetic field
B(x). First, we prove using the quantum kinetic theory that an odd magnetic field can lead to a purely nonlinear
Hall response. Second, considering a real-space magnetic dipole consisting of a sign-changing magnetic field and
based on numerical semiclassical dynamics, we unveil a parametric resonance involving the cyclotron ratio and a
characteristic width of B(x), which can greatly enhance the Hall response. Different from previous mechanisms
that rely on the bulk Berry curvature dipole, the effect largely stems from boundary states associated with the real-
space magnetic dipole. Our findings pave a way to engineer current rectification and higher harmonic generation
in two-dimensional materials having or not having crystal inversion symmetry.
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I. INTRODUCTION

It has been recently predicted that materials having time-
reversal symmetry (�) can present a Hall effect in the absence
of a magnetic field if the crystal symmetries are sufficiently
low [1–3]. This effect requires the inversion symmetry to be
broken and is nonlinear in the applied electric field. In the
absence of disorder, the so-called Berry curvature dipole—a
measure of the average Berry curvature of a displaced Fermi
surface—sets the scale of the Hall response [4,5]. Subsequent
experimental confirmation in various systems [6–11] has fur-
ther spurred interest in various directions including the search
of systems where to study this phenomena [12–26], the effects
of disorder [27–31], and the identification of possible tech-
nological profits, such as its usage for rectification or higher
harmonic generation [31–37].

Here we study the nonlinear Hall effect (NLHE) in
two-dimensional electron gases (2DEGs) under an applied
inhomogeneous magnetic field such that its total flux through
the system is zero. First, we consider an isotropic 2DEG near
the band edge under a magnetic field which is odd with respect
to a single boundary. This kind of system has received in
the past strong interest due to the particularities of the states
formed at the boundary, the so-called snake states [38–41].
Based on the quantum kinetic approach, we show that an AC
electric field applied perpendicular to the boundary drives a
purely nonlinear Hall current. This is found to be the case
also for less symmetric 2DEGs provided they have at least
a reflection symmetry. Second, we study an array of such
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boundaries where regions of width 2W of a sign-changing
magnetic field are separated by regions without magnetic
field, similar to already constructed devices [42–45]. We name
such configuration a real-space magnetic field dipole. By
means of semiclassical calculations, we resolve in time and
space the Hall current finding that it mainly arises from the
snake orbits. Remarkably, we reveal a parametric resonance
controlled by the magnetic profile length scales L,W and the
cyclotron radius Rc. Consequently, the effect found here is
highly tunable, and particularly, by changing the ratio W/Rc,
the NLHE can be varied by orders of magnitude.

This work is organized as follows. Section II analyzes the
Hall response via the quantum kinetic theory for the case of
a 2DEG with an applied magnetic field odd with respect to
a single boundary. Sections III and IV study a periodic array
of such boundaries via numerical semiclassical calculations
with focus on the roles played by different length scales asso-
ciated with the magnetic field profile. Section V presents our
conclusions.

II. QUANTUM KINETIC THEORY
FOR A REAL-SPACE DIPOLE

We consider a 2DEG near the band edge and under a
perpendicular magnetic field B(x) with an odd profile with
respect to a baseline x = 0. In the presence of an in-plane AC
electric field along x̂ of frequency ω, Ex(t ), the Hamiltonian
reads

Ĥ = Ĥ0 + eEx(t ) x̂, (1)

Ĥ0 = 1

2m
p̂2

x + 1

2m

[
p̂y − e

c
Â(x)

]2
. (2)

The vector potential is chosen in the Landau gauge along ŷ
as Â(x) = ∫ x dx′B(x′) and is an even function of x due to the
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FIG. 1. Electronic structure for a 2DEG with vector potential
A(x) = |x|. Continuous blue (dashed red) lines correspond to Landau
levels of even (odd) parity. Vertical straight arrows illustrate optical
processes that contribute to the first-order density matrix ρ̂1 while
pairs of curved arrows those that contribute to the second-order
density matrix.

odd parity of the magnetic field. We identify the eigenstates
of Ĥ0 as |k, n〉, with k the momentum along ŷ ([Ĥ0, p̂y] = 0)
and n a Landau level index. Matrix elements of an operator Ô
are written Ôknn′ = 〈k, n|Ô|kn′〉. The equilibrium wave func-
tions have the form ψk,n(r) = eikyφk,n(x) where the functions
φk,n(x) obey the Schrödinger equation[

− d2

d2x
+ Vk (x)

]
φk,n(x) = εk,nφk,n(x), (3)

with Vk (x) the effective potential Vk (x) = 1
2 [A(x) − k]

2
. Since

Vk (x) is even, the functions φn(x) have a defined parity. For
illustration, Fig. 1 shows the spectrum corresponding to the
case A(x) = |x|.

To study nonequilibrium properties, we exploit the quan-
tum Liouville equation for the disorder averaged density
matrix ρ̂ in the relaxation time approximation, which can be
written as

ih̄ ∂t ρ̂ − [Ĥ , ρ̂] = −ih̄	[ρ̂(t ) − ρ̂0], (4)

where ρ̂0 is the equilibrium density matrix. While the relax-
ation time approximation has often been used when studying
both the linear [46] and the nonlinear Hall response [1,29],
in order to present the approximations involved we derive
Eq. (4) in Appendix A relying on the more general framework
established in Refs. [47,48]. Here we summarize key aspects
of this derivation. First, collisions can generally mix different
terms of the density matrix, yielding a more complex right-
hand side of Eq. (4) which depends on the microscopic details
associated with the scattering mechanisms. For weak disorder,
the impurity scattering between different Landau levels can be
neglected and the collision term is described by the relaxation
rate 	kn1n2 , which generally depends on momentum and on
Landau level indexes. In this level of approximation, differ-
ent elements of the density matrix relax towards equilibrium
with a different timescale. As explained in Appendix A, the
additional approximation associated with Eq. (4), 	kn1n2 ≡ 	,
does not affect the results presented in this section.

In addition, the quantum kinetic Eq. (4) also relies on the
Markov approximation for the scattering, which is justified in

the limit in which both the frequency of AC electric field Ex(t )
and the relaxation rate 	 are smaller than the characteristic
frequency 1/τa ∼ ε̄/h̄, where ε̄ denotes the typical energy of
electrons which participate in transport [49,50]. Since such
energy is in the order 10 to 100 meV depending on details
of the system [51,52], the following derivation is valid for
a weakly disordered 2DEG [53–55] with an applied electric
field in the THz or lower frequency range (	,ω � 1012 s−1).

Following the well-established perturbation theory, the
density matrix is expanded as ρ̂ = ∑

l ρ̂l , with ρ̂l of order l in
the electric field [28,29,50,56]. Separation of Eq. (4) in terms
of different order yields the recursive set of equations:

(0th) : ih̄ ∂t ρ̂0 − [Ĥ0, ρ̂0] = 0, (5)

(lth) : ih̄ ∂t ρ̂l − [Ĥ0, ρ̂l ] − eEx[x̂, ρ̂l−1] = −ih̄	ρ̂l . (6)

It follows from Eq. (5) that ρ̂0 is time independent and then
commutes with Ĥ0 yielding ρ̂0,knn′ = δn,n′ f (εk,n) where f is
the Fermi distribution function. Next, we decompose ρ̂l in
different harmonics of the applied driving field. From the time
dependence of Eq. (6), it can be observed that ρ̂1 contains
terms oscillating at ±ω, ρω

1 , while ρ̂2 is composed of a con-
stant in time part ρ0

2 , plus terms oscillating at ±2ω, ρ2ω
2 . The

solution reads

ρω
1,kn1n2

= −e
Ex[x̂, ρ̂0]kn1n2

h̄(ω − i	) + εk,n1 − εk,n2

,

ρ0
2,kn1n2

= − e

4

E∗
x [x̂, ρ̂ω

1 ]kn1n2 + Ex[x̂, ρ̂ω†
1 ]kn1n2

εk,n1 − εk,n2 − ih̄	
,

ρ2ω
2,kn1n2

= − e

2

Ex[x̂, ρ̂ω
1 ]kn1n2

h̄(2ω − i	) + εk,n1 − εk,n2

. (7)

These equations exhibit the same structure as the perturbed
distribution functions obtained in the Boltzmann formalism
in Ref. [1] [Eq. (6) therein], with the role played there by
derivatives of f along the electric field direction replaced here
by commutators eEx[x̂, ρ̂l−1]. These measure the amplitude of
the transitions induced by the electric field for a given distri-
bution of states ρ̂l−1. The linear perturbation ρ̂1 has matrix
elements [x̂, ρ̂0]kn1n2 = x̂kn1n2 [ f (εkn1 ) − f (εkn2 )], from where
it can be seen that it only mixes Landau levels of opposite
parity, otherwise x̂kn1n2 vanishes. The opposite holds for ρ̂2,
which arises from pairs of electric-field induced transitions
and, therefore, only mixes states of same parity (see Fig. 1).

The Hall current can be obtained summing order by
order as

〈 jy〉 =
∑

l

Tr(v̂y ρ̂l ) = σyxEx + χyxxE2
x + · · · . (8)

The Hall conductivity tensors σyx, χyxx, and so on can be
decomposed into different harmonics stemmed from ρ̂l ’s.
The +ω component of the linear Hall conductivity results
in σω

yx = −e2 ∑
k,n1,n2

v̂y;kn2n1 x̂kn1n2 Wω
kn1n2

where Wω
kn1n2

=
( fk,n1 − fk,n2 )/(h̄ω − ih̄	 + εk,n1 − εk,n2 ) and for the opposite
harmonic we have σ−ω

yx = (σω
yx )∗. We thus see that σyx is zero

for the setup proposed here: x̂kn1n2 vanishes when n1 and n2

have the same parity and so does v̂y;kn2n1 when they do not. The
latter is due to v̂y being even with respect to x, a condition that
remains true for nonisotropic 2DEGs as long as it presents a
reflection symmetry with respect to a line within the 2D plane.
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In this case, the magnetic field profile should be parallel to this
line.

For the second-order Hall conductivity we obtain

χ2ω
yxx = −e3

4

∑
k,ni

v̂y;kn2n1 x̂kn1n3 x̂kn3n2 W2ω
kn1n2n3

, (9)

W2ω
kn1n2n3

= Wω
kn1n3

− Wω
kn3n2

h̄(2ω − i	) + εk,n1 − εk,n2

, (10)

and χ−2ω
yxx = (χ2ω

yxx )∗. The zeroth harmonic χ0
yxx which de-

scribes rectification effects can be obtained replacing W2ω
kn1n2n3

in Eq. (9) by

W0
kn1n2n3

= Wω
kn1n3

− Wω
kn3n2

−ih̄	 + εk,n1 − εk,n2

+ {ω → −ω}. (11)

The terms with n1 and n2 of same parity and opposite to
that of n3 make the second-order Hall effect nonzero. Assum-
ing the limit in which only the lowest Landau is thermally
occupied together with a resonance condition ω ∼ εn,k −
ε0,k for some range of k (with n some odd-parity Landau
level), we find χ0

yxx ∼ i(e3/8h̄2	2) v̂y;k,0,0 |x̂k,0,n|2 and χ2ω
yxx ∼

(	/ω)χ0
yxx. Note that in related problems the divergence in the

limit 	 → 0 has been found to become finite by treating the
problem beyond the perturbation theory [57].

A proper Hall current must be dissipationless [58]. In a
two-dimensional electron system, the power dissipation at-
tributed to the second-order transverse conductivity reads

E · jNLH =
∑
α 	=β

(χ0
αββ + χ0

βαβ |∗ + χ0
ββα|∗)E∗

αE2
β . (12)

We have verified explicitly in Appendix B that there is no
power dissipation for the second-order Hall current obtained
from Eq. (8), in the limit of 	 → 0.

The nonlinear anomalous Hall effect arises from the
anomalous velocity which is itself proportional to the electric
field [1]. Due to this, the second-order response is determined
by the first-order perturbation of the distribution function. In
this sense, the electric field plays two roles, giving rise to the
anomalous velocity of carriers and perturbing the distribution
function such that the average anomalous velocity is finite.
Importantly, the latter also requires the point symmetry to
be sufficiently low, in particular, inversion symmetry must
be broken. The effect here described is different. The crucial
symmetry is the even parity of H0 with respect to x, which in
turn is inherited by v̂y. This forces the linear Hall response to
vanish: To this order, only states of opposite parity are con-
nected by the electric field-induced transitions but v̂y has zero
overlaps between such states hence these transitions do not
yield a Hall current. The opposite is true in the second-order
response: ρ̂2 mixes Landau levels of the same parity which
can hold a Hall current.

III. SEMICLASSICAL THEORY

We now consider the semiclassical limit. We assume the
2DEGs to be inversion and � symmetric in the absence of
external fields. The equations of motion for weak external
fields are

ṙ = vk = 1

h̄

∂E (k)

∂k
, (13)

h̄k̇ = e

[
E(t ) + 1

c
vk × B(x)

]
, (14)

where r and k represent wave-packet center of mass in real
and momentum spaces, respectively [59]. We omit the band
indices since we consider a homogeneous 2DEG near the
band edge and we assume a quadratic energy dispersion.
Usually these equations of motions are supplemented with a
Boltzmann approach to obtain the nonequilibrium distribution
function [60–62]. Here we follow a distinct approach, useful
in the clean limit 	 → 0, which consists of computing the
Hall current based on the numerical integration of the trajecto-
ries followed by independent particles governed by Eqs. (13)
and (14). This approach amounts to numerically sampling
the distribution function in the clean limit and allows us to
compute the Hall current including all of its harmonics and
not necessarily close to the weakly nonlinear regime [63].

Before presenting the numerical results, it is instructive
to analyze within this classical limit why the linear Hall ef-
fect vanishes while higher-order effects are expected to be
nonzero. Using the Einstein relation between the diffusion and
the conductivity tensors, the former can be written in terms of
correlations in time of different components of the velocity,

σi j = e2N
∫ ∞

0
dt 〈vi(t )v j (0)〉, (15)

where i, j = {x, y} and N is the density of states at the Fermi
energy [64]. The brackets 〈· · · 〉 denote an average over the
available phase space. The linear response is determined by
the correlator 〈vi(t )v j (0)〉 in the absence of electric field. For
quadratic bands we can formally integrate Eq. (14) and obtain
the velocity to zeroth order in Ex as

v(0)
x (x, t ) = vx,0 + e

mc

∫
P

dy(t ) B[x(t )], (16)

v(0)
y (x, t ) = vy,0 − e

mc
{A[x(t )] − A[x(0)]}. (17)

Here vx,0 and vy,0 are the initial (random) velocities, P the
path associated with the particle trajectory and the identity∫

dt v B(x) ≡ ∫
dr B(x) has been used. Therefore, due to par-

ity properties of B(x) and A(x), v(0)
x (x, 0) and v(0)

y (x, t ) are odd
and even functions of x, respectively, leading to a vanishing
first-order Hall conductivity, this time from a semiclassical
perspective.

Last, a consideration of the correlator 〈vi(t )v j (0)〉 includ-
ing a correction of the velocities due to the applied electric
field already hints towards the existence of a higher-order Hall
effect. The velocity corrections read

v(1)
x (x, t ) = e

m

∫ t

dt Ex, (18)

v(1)
y (x, t ) = − e

mc

∫ t

dt v(1)
x (x, t )B(x), (19)

and yield a contribution to the second-order Hall conductivity
proportional to 〈v(1)

y (x, t ) v(0)
x (x, 0)〉. Since both v(1)

y (x, t ) and
v(0)

x (x, 0) are odd functions of x, this contribution is nonzero.
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FIG. 2. (a) S-symmetric magnetic field profile Bz(x). Blue and yellow fields correspond to negative (�) and positive (⊗) magnetic field,
respectively. (b) S-broken configuration. (c) Applied electric field along x̂. (d) and (e) Hall current for different magnetic field amplitudes,
B = 1.4 T and 7.0 T. (f) and (g) Time- and space-resolved Hall current for B = 1.4 T and 7.0 T. Vertical dashed lines indicate the positions at
which the magnetic field changes. E0 = 10−2 V/nm, L = 103 nm, and t0 = L/vF = 1/THz.

IV. PARAMETRIC RESONANCE AND HIGHER
HARMONICS GENERATION

We now present numerical results for a time-dependent
electric field E(t ) = E0 sin(ωt )x̂, with ω in the THz range,
obtained by numerically integrating Eqs. (13) and (14) with
the Runge-Kutta method. We consider 2 × 106 particles being
initially uniformly distributed in space and having as initial
conditions the Fermi velocity vF = 106 m/s and the Fermi
wave vector 10−2 1/Å [64]. The Hall current is associated
with the average velocity 〈vy〉.

We consider periodic boundary conditions so that the sys-
tem can be regarded as an array of magnetic field steps,
as shown in Figs. 2(a) and 2(b). In order to obtain a Hall
response, the system must not be symmetric under S = � ×
T1/2, with T1/2 a translational vector along x̂. This symmetry
forces jy to vanish to all orders in the electric field Ex. We
show this using the quantum kinetic approach and we also re-
cover this result numerically in our semiclassical calculations
(see Appendix C). One possibility to break S is the inclusion
of regions where no magnetic field is applied, as shown in
Figs. 2(a) and 2(b). For an S-symmetric system, snake orbits
of neighboring boundaries exactly mirror each other. When
S is broken, a finite real-space magnetic-field dipole arises,
which reflects in the asymmetry of neighboring snake orbits.
Note that, following the previous sections, a single unit cell
in the array is expected to have a finite purely nonlinear
Hall effect and in a finite array the net Hall conductance is
proportional to the number of unit cells.

Figure 2(c) shows the applied electric field while Figs. 2(d)
and 2(e) show the resulting Hall current 〈vy〉 for two different
magnetic fields. After a transient time, the Hall current be-
comes approximately periodic and is characterized by a DC
offset and an AC THz component twice faster than the driving
electric field. A Fourier analysis of the signals shows that they
are governed by only even multiples of the driving frequency
(see Appendix D). This result obtained in the semiclassical
limit is consistent with that in the quantum limit and together
firmly establish the possibility of NLHE and second harmonic
generation in inversion-symmetric 2DEGs under an inhomo-
geneous magnetic field.

It is instructive to resolve in time and space the Hall
current. Results for the chosen magnetic fields in Figs. 2(d)
and 2(e) are shown in Figs. 2(f) and 2(g), respectively. These
show, first, that regions without applied magnetic field while
being essential to break the S symmetry do not contribute
significantly to 〈vy〉, which is expected since electrons in these
regions are only driven by the electric field. Second, while
which area contributes the most can indeed depend noticeably
on the magnetic field strength, high contributions tend to
locate near the lines at which magnetic field changes sign,
hinting to a phenomenon truly arising from the boundary and,
therefore, different from previous mechanisms for NLHE that
originate in the bulk electronic structure. In particular, the
oscillating pattern in Fig. 2(f) reflects the formation of snake
orbits and indicates that these provide the main contribution
to the Hall current.

We now analyze the role played by different length scales
associated with the magnetic field profile, assuming the mean
free path to be the largest length. Figures 3(a) and 3(b) show
the Hall current as a function of W/L and of W/Rc, respec-
tively. Both curves display a maximum, which together reveal
how the NLHE can be engineered via characteristic length
scales. Naturally, a finite W is required so the Hall current
vanishes when W → 0. Increasing W/L is beneficial, as long
as W/L < 1/4. Beyond this point, the system approaches the

FIG. 3. Hall current as a function of W/L (a) and of W/Rc (b).
L = 103 nm and E0 = 10−3 V/nm.
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limit W/L → 1/2 where it vanishes due to the restoration
of the S symmetry. For a wide range of parameters around
W/L ∼ 1/4, the resulting Hall current is largely controlled by
W/Rc, as indicated by the nearly collapse of the data obtained
from different values of W/L shown in Fig. 3(b). The strong
susceptibility to the ratio W/Rc reveals a parametric resonance
where the NLHE is maximized when the effective width of the
snake orbits approaches the maximum value they can have.
This optimum condition corresponds to the profile shown in
Fig. 2(f).

The resonant NLHE can be experimentally explored in a
large variety of systems. Devices with a corrugated magnetic
field that changes its sign have been experimentally estab-
lished in AlGaAs-GaAs heterojunctions in the proximity of
Dy [43] or Co [45] stripes. The parameters chosen for the sim-
ulations are all in the order of magnitude of well-established
2DEGs such as AlGaAs-GaAs and Si [64]. Last, the condi-
tion of having a reflection symmetry to which the magnetic
profile should be aligned in order to ensure a vanishing lin-
ear Hall conductivity is satisfied by many two-dimensional
systems including graphene [65], transition metal dichalco-
genides [66–68], and oxide interfaces [69–72].

V. CONCLUSIONS

In summary, we have established theoretically that a purely
nonlinear Hall response can be produced in two-dimensional
electron gases by engineering the magnetic field profile. Dif-
ferent from previously explored mechanisms that originate in
the bulk electronic structure, the effect here described stems

from states formed at a boundary in which the magnetic field
changes sign. Lattice inversion symmetry breaking is not re-
quired, only the existence of a mirror symmetry to which the
magnetic profile should be aligned is important for the vanish-
ing of the linear response. Last, accessible length scales set by
the magnetic field profile provide a clean way of engineering
the nonlinear Hall response.
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APPENDIX A: RELAXATION TIME APPROXIMATION

We start from the quantum Liouville equation [47,48]

ih̄ ∂t ρ̂ − [Ĥ, ρ̂] = −ih̄ I (ρ̂). (A1)
Here the collision operator I (ρ̂) accounts for the average
effect on the density matrix of the scattering with an impurity
potential Û . Within the Born approximation it reads [29]

I (ρ̂)|kn1n4 = πNimp

h̄

∑
k′n2n3

[
Un1n2

kk′ Un2n3
k′k ρkn3n4 δ(εk′n2 − εkn3 ) + ρkn1n2 Un2n3

kk′ Un3n4
k′k δ(εkn2 − εk′n3 )

− Un1n2
kk′ ρk′n2n3 Un3n4

k′k δ(εk′n3 − εkn4 ) − Un1n2
kk′ ρk′n2n3 Un3n4

k′k δ(εkn1 − εk′n2 )
]
, (A2)

where Un1n2
kk′ = 〈kn1|U (r)|k′n2〉 and Nimp is the impurity den-

sity. In the weak disorder limit and assuming a smooth
impurity potential profile, the impurity scattering between
Landau levels can be neglected and only the forward scat-
tering terms Unn

kk ≡ Ukn are considered. Then, introducing the
velocity ϑkn = ∂kεkn, the collision operator simplifies to

I (ρ̂)|kn1n2 = πNimp

h̄

[U2
kn1

ϑkn1

+ U2
kn2

ϑkn2

−Ukn1 Ukn2

(
1

ϑkn1

+ 1

ϑkn2

)]
ρkn1n2 (A3)

= 	kn1n2ρkn1n2 , (A4)

where we have defined the relaxation rate 	kn1n2 as the prefac-
tor of ρkn1n2 in the collision term. 	kn1n2 encodes microscopic
information that measure the timescale in which the density
matrix element ρkn1n2 relaxes to equilibrium due to the scat-
tering with impurities. It naturally vanishes when n1 = n2,
ensuring that the collision operator is zero when evaluated
at a diagonal density matrix such as the equilibrium density

matrix ρ̂0. Generally it follows from Eq. (A3) that, given
two states |k, n1〉 and |k, n2〉, the more different are their
band velocities and the more different are their couplings to
the impurity potential, the slowest the relaxation of ρkn1n2 is.
These microscopic details are erased by the two additional
approximations that yield Eq. (4), namely, neglecting of the
relaxation rate dependence on the Landau level indexes and
on the momentum.

Let us briefly comment on their possible effects on our
results. Once at the level of approximation of Eq. (A3), the
{n1, n2} dependence of the relaxation rate is irrelevant for the
discussion of the Hall effect in a 2DEG with a single magnetic
field boundary presented in Sec. II. The fundamental reason
for this is that, different to Eq. (A2), in Eq. (A3) the collision
operator does not mix different elements of the density ma-
trix. The dependence on momentum is also irrelevant since
the derivation in that section does not use the momentum
dependence of the density matrix. In conclusion, all results in
Sec. II remain intact replacing 	 by 	kn1n2 . On the other hand,
the momentum dependence of 	 is implicitly considered in
Appendix C and may affect the results of that Appendix if 	

is not even in k.
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APPENDIX B: DISSIPATIONLESS NONLINEAR
HALL CURRENT

In this Appendix we show a reciprocity relation satisfied by
the second-order Hall conductivity tensor in the limit 	 → 0
that implies the vanishing of Eq. (12). We leave the case of
finite relaxation rate for future study.

First, we note that the matrix elements of the position and
velocity operators are related to each other by

x̂α;kn1n2 = ih̄ v̂γ ;kn1n2

εkn2 − εkn1

, (B1)

which follows from the Heisenberg equation of motion

v̂γ ;kn1n2 = d

dt
x̂α;kn1n2 = [x̂α, Ĥ0]kn1n2

ih̄
(B2)

= d

dt
x̂α;kn1n2 = x̂α;kn1n2 (εkn2 − εkn1 )

ih̄
. (B3)

Consequently, the rectification term of the nonlinear Hall re-
sponse can be rewritten as

χ0
αβγ ∝

∑
k,ni

v̂α;kn2n1 x̂β;kn1n3 x̂γ ;kn3n2 W0
kn1n2n3

(B4)

∝
∑
k,ni

−v̂α;kn2n1 v̂β;kn1n3 v̂γ ;kn3n2

(εkn1 − εkn3 )(εkn3 − εkn2 )
W0

kn1n2n3
. (B5)

In 2D, the transverse components of the second-order conduc-
tivity tensor read

χ0
αββ ∝

∑
k,ni

−v̂α;kn2n1 v̂β;kn1n3 v̂β;kn3n2

(εkn1 − εkn3 )(εkn3 − εkn2 )
W0

kn1n2n3
, (B6)

χ0
βαβ ∝

∑
k,ni

−v̂β;kn2n1 v̂α;kn1n3 v̂β;kn3n2

(εkn1 − εkn3 )(εkn3 − εkn2 )
W0

kn1n2n3
, (B7)

χ0
ββα ∝

∑
k,ni

−v̂β;kn2n1 v̂β;kn1n3 v̂α;kn3n2

(εkn1 − εkn3 )(εkn3 − εkn2 )
W0

kn1n2n3
, (B8)

for α = x, β = y and vice versa. By taking the complex con-
jugates of Eqs. (B7) and (B8), we find

χ0
βαβ

∣∣∗ ∝
∑
k,ni

−v̂α;kn2n1 v̂β;kn1n3 v̂β;kn3n2

(εkn1 − εkn2 )(εkn2 − εkn3 )
W0

kn1n3n2

∣∣∗, (B9)

χ0
ββα

∣∣∗ ∝
∑
k,ni

−v̂α;kn2n1 v̂β;kn1n3 v̂β;kn3n2

(εkn3 − εkn1 )(εkn1 − εkn2 )
W0

kn3n2n1

∣∣∗, (B10)

where we have also interchanged the indices n2 ↔ n3 and
n1 ↔ n3 inside them, respectively.

We also see that W0
kn1n2n3

|∗ = W0
kn2n1n3

, and subsequently,

χ0
βαβ |∗ = χ0

ββα . Putting all the above results together, we find

χ0
αββ + χ0

βαβ + χ0
ββα ∝

∑
k,ni

v̂α;kn2n1 v̂β;kn1n3 v̂β;kn3n2

×
[ W0

kn1n2n3

(εkn1 − εkn3 )(εkn3 − εkn2 )

+ W0
kn3n1n2

(εkn1 − εkn2 )(εkn2 − εkn3 )

+ W0
kn2n3n1

(εkn1 − εkn2 )(εkn3 − εkn1 )

]
. (B11)

Then, using Eq. (11), and taking the limit of 	 → 0, we obtain

χ0
αββ + χ0

βαβ + χ0
ββα

∝ −
∑
k,ni

v̂α;kn2n1 v̂β;kn1n3 v̂β;kn3n2

(εkn1 − εkn2 )(εkn2 − εkn3 )(εkn3 − εkn1 )

× [
Wω

13 − Wω
32 + Wω

32 − Wω
21 + Wω

21 − Wω
13

+ {ω → −ω}] = 0, (B12)

where the the compact notation Wω
i j = Wω

knin j
has been used.

We notice that the sum of these second-order Hall responses
in the limit of 	 → 0 vanishes irrespective of the details of
the model encoded in the velocity matrix elements v̂α;knn′ ,
and that due to the broken-time reversal symmetry each of
these terms do not necessarily vanish in such limit, as shown
by the example presented in Sec. II. Last, since we have
seen that χ0

βαβ |∗ = χ0
ββα , the reciprocity relation (B12) can

be equivalently written as χ0
αββ + χ0

βαβ |∗ + χ0
ββα|∗ = 0 and,

therefore, the power dissipation attributed to the second-order
transverse conductivity [Eq. (12)] vanishes.

APPENDIX C: HALL RESPONSE UNDER COMBINED
TIME-REVERSAL AND TRANSLATION SYMMETRY

In this Appendix we elucidate that in the presence of an ad-
ditional symmetry which is the combination of time-reversal
symmetry with a half-period spatial translation denoted by
Ŝ = �̂ × T̂1/2, the nonlinear Hall responses become iden-
tically zero. An example of a magnetic profile with this
symmetry is shown in Fig. 2(a). It should be noted that since
time-reversal operator �̂ changes the direction of the sign
of magnetic field and also the momenta, equivalently, we
can assume this symmetry as a screw displacement which is
a combination of π rotation around x axis and half-period
spatial translation (Ŝscrew = R̂π,x × T̂1/2).

In the presence of Ŝ symmetry, the magnetic field profile
should satisfy the relation B(x) = −B(x + W ) which also
leads to A(x) = −A(x + W ) + cte. Since any constant term
in the vector potential can be dropped, as it has no physical
effect due to the gauge invariance, we can always consider
A(x) = −A(x + W ). So we can deduce the symmetry

Ŝ Vk (x) Ŝ−1 = V−k (x + W ) = Vk (x), (C1)

for the effective potential in Eq. (3). Subsequently, we find that
the eigenenergies are symmetric in k as εk,n = ε−k,n, and for
a given eigenstate φk,n(x) with energy εk,n, the corresponding
state Ŝφk,n(x) = φ−k,n(x + W ) is also an eigenstate.

Now based on above symmetry relations, we see that
the matrix elements of the x̂ operator are also symmetric
as

x̂kn1n2 =
∫

dx φ∗
k,n1

(x) x φk,n2 (x)

=
∫

dx φ∗
k,n1

(x) Ŝ−1 (Ŝ x Ŝ−1) Ŝ φk,n2 (x)

=
∫

dx φ∗
−k,n1

(x + W ) (x + W ) φ−k,n2 (x + W )
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=
∫

dx φ∗
−k,n1

(x) x φ−k,n2 (x)

= x̂−kn1n2 . (C2)

In the same way we find that the vector potential also satisfies

Akn1n2 =
∫

dx φ∗
k,n1

(x) A(x) φk,n2 (x)

=
∫

dx φ∗
k,n1

(x) Ŝ−1 [Ŝ A(x) Ŝ−1] Ŝ φk,n2 (x)

= −
∫

dx φ∗
−k,n1

(x + W ) A(x + W ) φ−k,n2 (x + W )

= −A−kn1n2 . (C3)

From Eq. (C3) we can readily see that the transverse veloc-
ity vy whose matrix elements are given by the gauge-invariant
form

v̂y|kn1n2 = h̄k

m
δn1,n2 − e

mc
Akn1n2 (C4)

is odd under the change of the momentum sign (k → −k).
However, Eq. (C2) indicates that the position operator matrix
elements x̂kn1n2 are even with respect to k as well as the
transition-rate functions such as W2ω

kn1n2n3
and W0

kn1n2n3
. The

latter can be readily seen from the fact that the transition-rate
functions only depend on the energies (and not the eigen-
states) which remain unchanged under k → −k. Note that this
statement does not hold if the relaxation rate 	 is not even in
k. Therefore, the overall summands in the linear and nonlinear
Hall responses (including all orders) are odd with respect to k.
Therefore, in the presence of Ŝ symmetry, the contributions of

FIG. 4. Fourier transform of the average velocity. In (a) and
(b) the parameters are chosen as those for Figs. 2(d) and 2(e),
respectively.

opposite k’s in any order cancel out each other and the Hall
response identically vanishes.

APPENDIX D: FOURIER ANALYSIS

Figure 4 shows the Fourier transform of the Hall current
presented in Figs. 2(d) and 2(e), respectively. As expected,
only the even harmonics of the driving frequency are finite.
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[22] H. Rostami and V. Juričić, Probing quantum criticality using
nonlinear Hall effect in a metallic Dirac system, Phys. Rev.
Research 2, 013069 (2020).

[23] D. Wawrzik, J.-S. You, J. I. Facio, J. van den Brink, and I.
Sodemann, Infinite Berry Curvature of Weyl Fermi Arcs, Phys.
Rev. Lett. 127, 056601 (2021).

[24] C. Ortix, Nonlinear Hall effect with time-reversal symmetry:
Theory and material realizations, Adv. Quantum Technol. 4,
2100056 (2021).

[25] Z. Z. Du, H.-Z. Lu, and X. C. Xie, Nonlinear Hall effects, Nat.
Rev. Phys. (2021), doi: 10.1038/s42254-021-00359-6.

[26] R. K. Malla, A. Saxena, and W. J. M. Kort-Kamp, Emerging
nonlinear Hall effect in Kane-Mele two-dimensional topologi-
cal insulators, arXiv:2108.07860.

[27] Z. Z. Du, C. M. Wang, S. Li, H.-Z. Lu, and X. C. Xie, Disorder-
induced nonlinear Hall effect with time-reversal symmetry, Nat.
Commun. 10, 3047 (2019).

[28] C. Xiao, Z. Z. Du, and Q. Niu, Theory of nonlinear Hall effects:
Modified semiclassics from quantum kinetics, Phys. Rev. B
100, 165422 (2019).

[29] S. Nandy and I. Sodemann, Symmetry and quantum kinetics of
the nonlinear Hall effect, Phys. Rev. B 100, 195117 (2019).

[30] Z. Z. Du, C. M. Wang, H.-P. Sun, H.-Z. Lu, and X. C. Xie,
Quantum theory of the nonlinear Hall effect, Nat. Commun. 12,
5038 (2021).

[31] H. Isobe, S.-Y. Xu, and L. Fu, High-frequency rectification via
chiral bloch electrons, Sci. Adv. 6, eaay2497 (2020).

[32] B. T. Zhou, C.-P. Zhang, and K. T. Law, Highly Tunable Non-
linear Hall Effects Induced by Spin-Orbit Couplings in Strained
Polar Transition-Metal Dichalcogenides, Phys. Rev. Appl. 13,
024053 (2020).

[33] H. K. Avetissian and G. F. Mkrtchian, High laser harmonics
induced by the Berry curvature in time-reversal invariant mate-
rials, Phys. Rev. B 102, 245422 (2020).

[34] D. Kumar, C.-H. Hsu, R. Sharma, T.-R. Chang, P. Yu, J.
Wang, G. Eda, G. Liang, and H. Yang, Room-temperature
nonlinear Hall effect and wireless radiofrequency

rectification in Weyl semimetal TaIrTe4, Nat. Nanotechnol. 16,
421 (2021).

[35] P. He, H. Isobe, D. Zhu, C.-H. Hsu, L. Fu, and H. Yang, Quan-
tum frequency doubling in the topological insulator Bi2Se3,
Nat. Commun. 12, 698 (2021).

[36] Y. Gao and B. Ge, Second harmonic generation in Dirac/Weyl
semimetals with broken tilt inversion symmetry, Opt. Express
29, 6903 (2021).

[37] Y. Zhang and L. Fu, Terahertz detection based on nonlinear Hall
effect without magnetic field, Proc. Natl. Acad. Sci. USA 118,
e2100736118 (2021).

[38] J. E. Müller, Effect of a Nonuniform Magnetic Field on a Two-
Dimensional Electron Gas in the Ballistic Regime, Phys. Rev.
Lett. 68, 385 (1992).

[39] A. Matulis, F. M. Peeters, and P. Vasilopoulos, Wave-Vector-
Dependent Tunneling through Magnetic Barriers, Phys. Rev.
Lett. 72, 1518 (1994).

[40] J. Reijniers and F. M. Peeters, Snake orbits and related magnetic
edge states, J. Phys.: Condens. Matter 12, 9771 (2000).

[41] T. Taychatanapat, J. Y. Tan, Y. Yeo, K. Watanabe, T. Taniguchi,
and B. Özyilmaz, Conductance oscillations induced by ballistic
snake states in a graphene heterojunction, Nat. Commun. 6,
6093 (2015).

[42] D. Weiss, K. V. Klitzing, K. Ploog, and G. Weimann, Mag-
netoresistance oscillations in a two-dimensional electron gas
induced by a submicrometer periodic potential, Europhys. Lett.
8, 179 (1989).

[43] P. D. Ye, D. Weiss, R. R. Gerhardts, and H. Nickel, Mag-
netoresistance oscillations induced by periodically arranged
micromagnets (invited), J. Appl. Phys. 81, 5444 (1997).

[44] X.-D. Yang, R.-Z. Wang, Y. Guo, W. Yang, D.-B. Yu, B. Wang,
and H. Yan, Giant magnetoresistance effect of two-dimensional
electron gas systems in a periodically modulated magnetic field,
Phys. Rev. B 70, 115303 (2004).

[45] A. Nogaret, Electron dynamics in inhomogeneous magnetic
fields, J. Phys.: Condens. Matter 22, 253201 (2010).

[46] W.-K. Tse and A. H. MacDonald, Magneto-optical Faraday and
Kerr effects in topological insulator films and in other layered
quantized Hall systems, Phys. Rev. B 84, 205327 (2011).

[47] D. Culcer, E. M. Hankiewicz, G. Vignale, and R. Winkler, Side
jumps in the spin Hall effect: Construction of the Boltzmann
collision integral, Phys. Rev. B 81, 125332 (2010).

[48] D. Culcer, A. Sekine, and A. H. MacDonald, Interband co-
herence response to electric fields in crystals: Berry-phase
contributions and disorder effects, Phys. Rev. B 96, 035106
(2017).

[49] F. T. Vasko and O. E. Raichev, Quantum Kinetic Theory and
Applications: Electrons, Photons, Phonons (Springer Science
& Business Media, New York, 2006).

[50] W. Kohn and J. M. Luttinger, Quantum theory of electrical
transport phenomena, Phys. Rev. 108, 590 (1957).

[51] M. Kocan, AlGaN/GaN MBE 2DEG heterostructures: interplay
between surface-, interface-and device-properties, Ph.D. thesis,
Rheinisch-Westfälische Technische Hochschule, Aachen, 2003,
https://core.ac.uk/download/pdf/36425795.pdf.

[52] M. G. Betti, V. Corradini, G. Bertoni, P. Casarini, C. Mariani,
and A. Abramo, Density of states of a two-dimensional electron
gas at semiconductor surfaces, Phys. Rev. B 63, 155315 (2001).

[53] J. Ishihara, G. Kitazawa, Y. Furusho, Y. Ohno, H. Ohno,
and K. Miyajima, Zero-field spin precession dynamics of

165303-8

https://doi.org/10.1103/PhysRevB.98.121109
https://doi.org/10.1103/PhysRevLett.121.266601
https://doi.org/10.1103/PhysRevLett.121.246403
https://doi.org/10.1103/PhysRevLett.123.196403
https://doi.org/10.1103/PhysRevLett.124.067203
https://doi.org/10.1103/PhysRevLett.125.046402
https://doi.org/10.1103/PhysRevB.102.245116
https://doi.org/10.1103/PhysRevB.97.195151
https://doi.org/10.1103/PhysRevResearch.2.013069
https://doi.org/10.1103/PhysRevLett.127.056601
https://doi.org/10.1002/qute.202100056
https://doi.org/10.1038/s42254-021-00359-6
http://arxiv.org/abs/arXiv:2108.07860
https://doi.org/10.1038/s41467-019-10941-3
https://doi.org/10.1103/PhysRevB.100.165422
https://doi.org/10.1103/PhysRevB.100.195117
https://doi.org/10.1038/s41467-021-25273-4
https://doi.org/10.1126/sciadv.aay2497
https://doi.org/10.1103/PhysRevApplied.13.024053
https://doi.org/10.1103/PhysRevB.102.245422
https://doi.org/10.1038/s41565-020-00839-3
https://doi.org/10.1038/s41467-021-20983-1
https://doi.org/10.1364/OE.414524
https://doi.org/10.1073/pnas.2100736118
https://doi.org/10.1103/PhysRevLett.68.385
https://doi.org/10.1103/PhysRevLett.72.1518
https://doi.org/10.1088/0953-8984/12/47/305
https://doi.org/10.1038/ncomms7093
https://doi.org/10.1209/0295-5075/8/2/012
https://doi.org/10.1063/1.364565
https://doi.org/10.1103/PhysRevB.70.115303
https://doi.org/10.1088/0953-8984/22/25/253201
https://doi.org/10.1103/PhysRevB.84.205327
https://doi.org/10.1103/PhysRevB.81.125332
https://doi.org/10.1103/PhysRevB.96.035106
https://doi.org/10.1103/PhysRev.108.590
https://core.ac.uk/download/pdf/36425795.pdf
https://doi.org/10.1103/PhysRevB.63.155315


RESONANT NONLINEAR HALL EFFECT IN … PHYSICAL REVIEW B 104, 165303 (2021)

high-mobility two-dimensional electron gas in persistent spin
helix regime, Phys. Rev. B 101, 094438 (2020).

[54] J. Schluck, J. Feilhauer, K. Pierz, H. W. Schumacher, D.
Kazazis, U. Gennser, and T. Heinzel, Quantum signatures of
competing electron trajectories in antidot superlattices, Phys.
Rev. B 98, 165415 (2018).

[55] J. Shi, F. M. Peeters, K. W. Edmonds, and B. L. Gallagher,
Even-odd transition in the Shubnikov–de Haas oscillations in
a two-dimensional electron gas subjected to periodic magnetic
and electric modulations, Phys. Rev. B 66, 035328 (2002).

[56] C. Xiao, B. Xiong, and F. Xue, Boltzmann approach to spin–
orbit-induced transport in effective quantum theories, J. Phys.:
Condens. Matter 30, 415002 (2018).

[57] O. Matsyshyn, F. Piazza, R. Moessner, and I. Sodemann, Rabi
Regime of Current Rectification in Solids, Phys. Rev. Lett. 127,
126604 (2021).

[58] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.
Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).

[59] M.-C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hof-
stadter spectrum: Semiclassical dynamics in magnetic Bloch
bands, Phys. Rev. B 53, 7010 (1996).

[60] G. D. Mahan, Many-Particle Physics, Physics of Solids and
Liquids (Springer, New York, 2013).

[61] G. Sundaram and Q. Niu, Wave-packet dynamics in slowly per-
turbed crystals: Gradient corrections and Berry-phase effects,
Phys. Rev. B 59, 14915 (1999).

[62] Y. Gao, S. A. Yang, and Q. Niu, Field Induced Positional Shift
of Bloch Electrons and Its Dynamical Implications, Phys. Rev.
Lett. 112, 166601 (2014).

[63] N. Rostoker, Test particle method in kinetic theory of a plasma,
Phys. Fluids 7, 491 (1964).

[64] C. W. J. Beenakker and H. van Houten, Quantum transport in
semiconductor nanostructures, Solid State Phys. 44, 1 (1991).

[65] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Electric field effect in atomically thin carbon films, Science 306,
666 (2004).

[66] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically
Thin MoS2: A New Direct-Gap Semiconductor, Phys. Rev. Lett.
105, 136805 (2010).

[67] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Coupled Spin
and Valley Physics in Monolayers of MoS2 and Other Group-VI
Dichalcogenides, Phys. Rev. Lett. 108, 196802 (2012).

[68] H. Rostami, A. G. Moghaddam, and R. Asgari, Effective lattice
Hamiltonian for monolayer MoS2: Tailoring electronic struc-
ture with perpendicular electric and magnetic fields, Phys. Rev.
B 88, 085440 (2013).

[69] A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at
the LaAlO3/SrTiO3 heterointerface, Nature (London) 427, 423
(2004).

[70] A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler,
J. C. Maan, W. G. van der Wiel, G. J. H. M. Rijnders,
D. H. A. Blank, and H. Hilgenkamp, Magnetic effects at the
interface between non-magnetic oxides, Nat. Mater. 6, 493
(2007).

[71] G. Khalsa and A. H. MacDonald, Theory of the SrTiO3 surface
state two-dimensional electron gas, Phys. Rev. B 86, 125121
(2012).

[72] V. Vildosola, F. Güller, and A. M. Llois, Mechanism to Generate
a Two-Dimensional Electron Gas at the Surface of the Charge-
Ordered Semiconductor BaBiO3, Phys. Rev. Lett. 110, 206805
(2013).

165303-9

https://doi.org/10.1103/PhysRevB.101.094438
https://doi.org/10.1103/PhysRevB.98.165415
https://doi.org/10.1103/PhysRevB.66.035328
https://doi.org/10.1088/1361-648X/aadea7
https://doi.org/10.1103/PhysRevLett.127.126604
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/PhysRevB.53.7010
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevLett.112.166601
https://doi.org/10.1063/1.1711228
https://doi.org/10.1016/S0081-1947(08)60091-0
https://doi.org/10.1126/science.1102896
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevB.88.085440
https://doi.org/10.1038/nature02308
https://doi.org/10.1038/nmat1931
https://doi.org/10.1103/PhysRevB.86.125121
https://doi.org/10.1103/PhysRevLett.110.206805

