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The spin-orbit entangled quantum states in 4d/5d compounds, e.g., the Jeff = 1
2 and Jeff = 3

2 states, have
attracted great interests for their unique physical roles in unconventional superconductivity and topological
states. Here, the key role of tetragonal distortion is clarified, which determines the ground states of 4d1/5d1

systems to be the Jeff = 3
2 one (e.g., K2NbCl6) or the S = 1

2 one (e.g., Rb2NbCl6). By tuning the tetragonal
distortion via epitaxial strain, the occupation weights of dxy/dyz/dxz orbitals can be subtly modulated, competing
with the spin-orbit coupling. Consequently, quantum phase transitions between the S = 1

2 state and the Jeff = 3
2

state, as well as between different Jeff = 3
2 states, can be achieved, resulting in significant changes of local

magnetic moments. Our prediction points out a reliable route to engineer new functionality of Jeff states in these
quantum materials.

DOI: 10.1103/PhysRevB.104.165150

I. INTRODUCTION

Controlling electronic states in materials is one of the most
important topics of condensed matter physics, which can lead
to new functional devices. In strongly correlated electronic
systems, the interactions among multiple degrees of freedom
(spin, lattice, orbital, and charge) establish subtle balances
among rich quantum states, which provide unique opportu-
nities for abundant functionalities, including but not limited
to high-temperature superconductivity, colossal magnetoresis-
tivity, and multiferroicity [1–7].

In the past decade, the spin-orbit coupling (SOC) has
attracted more and more attention in many branches of con-
densed matter. In particular, for those heavy transition metal
elements with 4d or 5d orbitals, the synactic effect of SOC
and electron correlation can lead to emergent quantum phe-
nomena such as topological phase [8–10], unconventional
superconductivity [11–14], Kitaev spin liquid [15,16], large
anisotropic magnetoresistivity [17,18], as well as magnetic
quadrupole moments [19,20]. These SOC-entangled quantum
states should be highly sensitive to external stimulations,
which provides the opportunities to manipulate them. How-
ever, in such an emergent field, most attention has been
focused on the realization of these quantum states and their
unique physical properties, while the manipulation of these
states is rarely touched upon until now.

Our recent theoretical work predicted that the 4d1 electron
in K2NbCl6 is in the Jeff = 3

2 state, which could be tuned to
the S = 1

2 state by rotating the spin axis [19]. A key char-
acteristic of the ideal Jeff = 3

2 state is that its spin magnetic
moment and orbital magnetic moment should cancel each
other, leading to a quenched net magnetic dipole moment
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(i.e., ideally 0μB/Nb). However, a recent neutron study found
that its sister compound Rb2NbCl6 exhibited a large magnetic
moment up to 0.96μB/Nb [20], which was close to the S = 1

2
limit instead. For comparison, A2TaCl6 (A = K, Rb, Cs) with
5d1 electronic configuration exhibited much smaller magnetic
moments ∼0.25–0.30μB/Ta [20], closer to the Jeff = 3

2 case,
although not so ideal.

In this work, the underlying physics of these Jeff = 3
2

candidates will be studied theoretically, to clarify why some
of them are in the S = 1

2 state while some are close to the
Jeff = 3

2 state. Besides the previously known SOC and Hub-
bard U , the tetragonal distortion (i.e., the static Jahn-Teller
Q3 mode) is found to play a decisive role in Jeff = 3

2 states
of 4d1/5d1 systems. Furthermore, quantum phase transitions
between the S = 1

2 and Jeff = 3
2 states, as well as between dif-

ferent Jeff = 3
2 states, are tuned by epitaxial strain. Although

the influences of Jahn-Teller distortion on physical properties
have been touched more or less in these SOC systems [20–27],
its essential role to the Jeff states, especially how to manipulate
the Jeff states via the strain, has not been reported yet.

II. MODEL AND METHODS

The atomic SOC model Hamiltonian can be written as

HSOC = λL · S, (1)

where λ is the SOC coefficient, L is the orbital moment
operator, and S is the spin operator.

In the octahedral crystal field, the d orbitals will be split
into the low-lying t2g triplets (dxz/dyz/dxy) and higher-energy
eg doublets (d3z2−r2/dx2−y2 ). For electron configurations from
d1 to d3, the eg doublets can be neglected, and only the t2g

triplets are essential. If the tetragonal distortion is considered,
there will be an on-site energy splitting between dxz/dyz and
dxy. The details of the SOC model Hamiltonian for t2g levels
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FIG. 1. Schematic of the collaborative effect of SOC and Q3

mode distortion for the 4d1/5d1 electron states in the octahedral
crystal field. Here, Q3 is defined as (2lz − lx − ly )/

√
6, where l de-

notes the bond length along a particular axis [34]. For an undistorted
octahedron (i.e., Q3 = 0), the SOC leads to four degenerate low-
lying Jeff = 3

2 levels (�1, �2, �3, and �4) and high-lying Jeff = 1
2

doublets (not shown here). For the d1 configuration, the Jeff = 3
2

levels are quarter-filled. For nonzero Q3, the Jeff = 3
2 levels are split

into two groups: �1/�2 and �′
3/�

′
4, the latter of which are mixed

with the Jeff = 1
2 states, more or less. Once this mixture is heavy,

�′
3/�

′
4 are close to the S = 1

2 states. The sign of Q3 determines
whether �1 (�2) or �′

3 (�′
4) is the lowest-energy one.

and its solution can be found in the Supplemental Material
(SM) [28].

In addition to the model study, concrete materials are
also studied by density functional theory (DFT). Our DFT
calculations were performed using the projector augmented
wave pseudopotentials as implemented in the Vienna ab init io
Simulation Package (VASP) code [29,30]. The revised Perdew-
Burke-Ernzerhof for solids functional and the generalized
gradient approximation (GGA) method are adopted to de-
scribe the crystalline structure and electron correlation [31].
Using the Dudarev implementation [32], the Hubbard repul-
sion Ueff ’s are imposed on Nb’s 4d and Ta’s 5d orbitals. The
cutoff energy of the plane wave is 450 eV and the 7 × 7 × 5
Monkhorst-Pack k-point mesh is centered at the � point. Both
the lattice constants and atomic positions are fully relaxed
until the Hellman-Feynman forces converged to less than
0.01 eV/Å.

III. RESULTS AND DISCUSSION

A. Atomic orbital model

To give an elegant physical scenario, let us start from a
local atomic orbital model. The atomic SOC can split the t2g

levels into the low-lying Jeff = 3
2 quartets and higher-energy

Jeff = 1
2 doublets, as shown in Fig. 1. The wave functions of

these low-lying Jeff = 3
2 states can be expressed using the t2g

bases (dxy, dyz, dxz) as follows [28]:

�1 = 1√
2

(|dyz ↑〉 + i|dxz ↑〉),

�2 = 1√
2

(|dyz ↓〉 − i|dxz ↓〉),

�3 = 1√
6

(|dyz ↓〉 + i|dxz ↓〉 − 2|dxy ↑〉),

�4 = 1√
6

(|dyz ↑〉 − i|dxz ↑〉 + 2|dxy ↓〉), (2)

where ↑/↓ denote the spin up/down. And the wave functions
of higher-energy Jeff = 1

2 states can be expressed as

�5 = 1√
3

(|dyz ↓〉 + i|dxz ↓〉 + |dxy ↑〉),

�6 = 1√
3

(|dyz ↑〉 − i|dxz ↑〉 − |dxy ↓〉). (3)

Then, for the d1 configuration, the Jeff = 3
2 levels are

quarter-filled, as sketched in Fig. 1. The one electron can
occupy any of the �i’s (i = 1–4) or their linear combinations.
The other three levels can be pushed upward in energy by
the Hubbard repulsion, and a Mott gap can be opened if the
Hubbard U is enough, resulting in a Jeff = 3

2 Mott state. Such
a scenario is a standard one to demonstrate the Jeff states,
similar to the Jeff = 1

2 case [33].
However, for such a system with partially occupied de-

generate levels, the tetragonal distortion should be active. In
fact, in all A2NbCl6 and A2TaCl6 (as well as Sr2IrO4), their
octahedra are distorted, with different bond lengths along the
z axis and in the x-y plane, as sketched in Fig. 1. Such a
tetragonal distortion can lift the degeneracy between dxy and
dxz/dyz, characterized by the coefficient ω (the ratio of distor-
tion energy splitting and the SOC coefficient, as explained in
the SM [28]), which is in proportion to the intensity of the
Q3 mode distortion. Then the eigenenergies [Fig. 2(a)] and
corresponding wave functions of the t2g levels can be obtained.

Comparing with the undistorted case, �1 and �2 are not
affected since they only involve dxz and dyz. However, �′

3 and
�′

4 deviate from their ideal limits, by mixing some Jeff = 1
2

components. In particular, �′
i (i = 3–6) can be expressed as

�′
3 = 1√

2 + a2
(|dyz ↓〉 + i|dxz ↓〉 + a|dxy ↑〉),

�′
4 = 1√

2 + a2
(|dyz ↑〉 − i|dxz ↑〉 − a|dxy ↓〉),

(4)

�′
5 = 1√

2 + b2
(|dyz ↓〉 + i|dxz ↓〉 + b|dxy ↑〉),

�′
6 = 1√

2 + b2
(|dyz ↑〉 − i|dxz ↑〉 − b|dxy ↓〉),

where a = [(ω − 1) −
√

(ω − 1)2 + 8]/2 and b = [(ω −
1) +

√
(ω − 1)2 + 8]/2. Then the evolution of the dxy, dyz,

and dxz weights in �′
i (i = 3–6) can be obtained as a function

of ω, as shown in Fig. 2(b).
In particular, for the tetragonal elongation (Q3 > 0, i.e.,

ω > 0), �1 and �2 are lower in energy than �′
3 and �′

4, since
the on-site energy of dxy is higher than that of dxz/dyz. Thus,
the ground state remains the ideal Jeff = 3

2 state. In contrast,
for the tetragonal compression (Q3 < 0), the lower-energy dxy

orbital makes �′
3 and �′

4 more favorable. For the ideal �3

or �4, the weight of the dxy orbital already reaches 66.7%.
The negative Q3 (ω) will further enhance its weight. In the
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FIG. 2. Numerical results of the atomic orbital model to demon-
strate the scenario proposed in Fig. 1. (a) Eigenenergies, (b) t2g

orbital weights, and (c) spin (ms) and orbital (ml ) magnetic moments
(along the z axis), as a function of Q3 intensity, characterized by ω.
The ω and eigenenergy are in units of λ, the SOC coefficient. In (b),
the red and blue symbols are for �′

3 (�′
4) and �′

5 (�′
6), respectively.

mn: net magnetic moment (= ml + ms).

large limit of negative Q3, �′
3 or �′

4 will be eventually close
to the pure dxy orbital, i.e., an S = 1

2 state. In this sense, the
tetragonal distortion can tune the phase transitions between
the Jeff = 3

2 states and the S = 1
2 one.

The ω-dependent magnetic moments of �1 (or �2) and �′
3

(or �′
4) are presented in Fig. 2(c), including both the spin

component and orbital component. For the positive Q3 case
(ω > 0), the occupied state is always �1 or �2, which will
be split by Hubbard repulsion. The most interesting physical
property of �1 (or �2) is that its spin magnetic moment (1μB)
just cancels the orbital magnetic moment (−1μB), leading
to a zero net magnetization [19]. In the opposite direction,
i.e., ω < 0, �′

3 (or �′
4) becomes the low-lying level. With

increasing negative ω, �′
3’s spin magnetic moment along the z

axis gradually increases from 1
3μB to approach the limit 1μB,

while the orbital magnetic moment gradually decreases from
− 1

3μB to the limit 0μB, as expected for the transition from the
Jeff = 3

2 state to the S = 1
2 state.

B. Materials

The aforementioned physical scenario can be well demon-
strated in real materials, e.g., hexachlorides A2MCl6 (A = K,

FIG. 3. (a)–(c) Schematic crystal structures of A2MCl6. (b) Top
view of A = Rb, space group I4/mmm (No. 139). (c) Top view of A
= K, space group P4/mnc (No. 128). The smaller K ion leads to a
smaller in-plane lattice constant, which results in the elongation (i.e.,
Q3 > 0) and rotation of octahedra. Since these octahedra are almost
isolated, the effect of octahedral rotation to the electronic states is
negligible. (d)–(g) Comparison of density of states (DOS) between
the GGA+U and GGA+U+SOC calculations. Here, Ueff = 1 and
0.7 eV are applied on Nb’s 4d and Ta’s 5d orbitals, respectively.
Insets: the electron clouds of valence bands near the Fermi level, i.e.,
the d1 electrons.

Rb, Cs; M = Nb, Ta). The crystal structures of this family
are shown in Figs. 3(a)–3(c). Unlike perovskite oxides where
oxygen octahedra are connected via the corner-, edge-, or
face-sharing manner, these MCl6 octahedra are nearly isolated
[26]. In this sense, the electron hoppings between M ions
are significantly suppressed, leading to narrow bands near
the Fermi level. According to their experimental structures
[20,26], all MCl6 octahedra in these hexachlorides are tetrag-
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TABLE I. DFT calculated magnetic moments of A2MCl6 in units
of μB/M, including the spin magnetic moments (ms), orbital mag-
netic moments (ml ), and the net moments (mn = ms + ml ).

K2NbCl6 Rb2NbCl6 K2TaCl6 Rb2TaCl6

ms 0.877 0.733 0.694 0.343
ml −0.697 −0.100 −0.522 −0.316
mn 0.180 0.633 0.172 0.027
State �1 dxy �1 �3

onally distorted, i.e., with the static Jahn-Teller Q3 mode
distortion. In addition, the d-p hybridization in the chloride
family is much weaker than that in oxides, which makes the
d-orbital levels more pure. In this sense, these MCl6 octahedra
provide an ideal playground to study the SOC-assisted Mot-
tness of its 4d/5d orbitals.

Previously, some of the hexachlorides A2MCl6 (e.g.,
A2TaCl6, K2NbCl6) were claimed to host the Jeff = 3

2 state
[19,20], while Rb2NbCl6 was found to be close to the S = 1

2
state [20]. These puzzling contradictions can be well an-
swered in our DFT calculations [28], as summarized in
Figs. 3(d)–3(g), Table I, as well as Table S1 in the SM [28].

In K2NbCl6, the NbCl6 octahedra are spontaneously elon-
gated along the crystalline c axis (i.e., the z axis of octahedra),
i.e., Q3 > 0, which prefers the pure Jeff = 3

2 state �1 (or �2)
[Fig. 3(d)]. The spin and orbital magnetic moments obtained
in our DFT calculation are close to their ideal limits (see
Table I). The band gap can only be opened with the help of
SOC, implying the SOC-assisted Mottness [19].

In contrast, for Rb2NbCl6, the NbCl6 octahedra are spon-
taneously compressed along the crystalline c axis (i.e., the
z axis of octahedra), i.e., Q3 < 0, which prefers the �′

3 (or
�′

4) state [Fig. 3(e)]. And a band gap is already opened
even without SOC, due to the tetragonal distortion splitting.
Meanwhile, its spin magnetic moment is large but its orbital
magnetic moment is rather small (see Table I), in agreement
with the experimental large magnetic moment [20]. Therefore,
this distorted �′

3 (or �′
4) is closer to S = 1

2 (dxy), instead
of the Jeff = 3

2 state �3 (or �4). Previously, the absence of
the Jeff = 3

2 state in Rb2NbCl6 was attributed to its relative
weak SOC intensity of 4d orbitals [20]. However, the present
work suggests a more decisive role of Q3 mode distortion in
Rb2NbCl6; since its sister member K2NbCl6 can exhibit the
pure Jeff = 3

2 state [19], even its SOC intensity is not as strong
as the 5d counterparts.

The story of K2TaCl6 is very similar to K2NbCl6, with a
positive Q3 and an even larger SOC, which can lead to the �1

(or �2) state, as shown in Fig. 3(f). The only difference is that
the weaker Hubbard U of 5d orbitals may be not insufficient
to open a Mott gap.

The story of Rb2TaCl6 is unique. Its Q3 mode is nega-
tive, which seems to be similar to Rb2NbCl6. However, the
large SOC of 5d orbitals makes a small ω (the ratio between
tetragonal distortion splitting and the SOC coefficient). Thus
the 5d1 state in Rb2TaCl6 is close to Jeff = 3

2 (�3 or �4),
instead of S = 1

2 (dxy). As evidence of �3, its spin and orbital
magnetic moments are close to 1

3 and − 1
3μB/Nb, respectively

(see Table I).

FIG. 4. Biaxial strain tuned electronic state transitions between
S = 1

2 and Jeff = 3
2 (�1 and �3) in (a), (b) Rb2NbCl6 and (c),

(d) Rb2TaCl6. (a) and (c) The band gaps (with/without SOC). (b) and
(d) The magnetic moments of a Nb/Ta ion (with SOC). The bound-
ary Q3 = 0 (vertical broken line) locates at ε ∼ −3.8% and ε ∼
−3.0%, respectively. Insets: the electron clouds of valence bands
near the Fermi levels.

C. Strain tuning of Jeff = 3
2 states

Although the 4d1 electron in Rb2NbCl6 is not in the Jeff =
3
2 state, it provides an appropriate candidate to study the strain
effect. Here the epitaxial biaxial strain is imposed to control
the sign and amplitude of the Q3 mode. The biaxial strain is
defined as ε = (a − a0)/a0, where a0 and a are the in-plane
lattice constants before and after the strain, respectively. Upon
the biaxial strain, the atomic positions and lattice constant
along the c axis are further optimized.

As shown in Fig. 4(a), without SOC, the band gap is grad-
ually closed with increasing compressive strain. This is due to
the half-filling of the low-lying degenerate dyz and dxz orbitals
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in the positive Q3 case. However, the SOC can open the band
gap by forming the Jeff state (�1 or �2). In other words, the
band gap ∼0.3 eV in the whole presented region of ε is driven
by different mechanisms: (1) Q3+U in the S = 1

2 side; (2)
SOC+U in the Jeff = 3

2 side.
Correspondingly, the evolution of magnetic moments

is shown in Fig. 4(b). When Q3 turns to be positive,
the spin moment slightly increases from ∼0.7μB/Nb to
∼0.9μB/Nb, while the orbital moment increases rapidly from
∼ − 0.1μB/Nb to ∼ − 0.7μB/Nb, indicating the transition
from the S = 1

2 state to the Jeff = 3
2 one.

For comparison, the strain effect to Rb2TaCl6 is also stud-
ied, which provides an appropriate candidate to tune the two
states of Jeff = 3

2 (�1 vs �3). As shown in Fig. 4(c), with-
out SOC, the system is always metallic in the whole strain
range, due to the weaker Hubbard repulsion (Ueff = 0.7 eV
used here) and more spatially expanding wave function of
5d orbitals. With increasing compressive strain, the band gap
(opened by SOC) gradually decreases to zero and reopens.
The gap closing point is just at the Q3 = 0 boundary, at which
�i’s (i = 1–4) are originally degenerated (before the Hubbard
splitting). This Q3 = 0 boundary just separates �1 and �3,
although both of them are Jeff = 3

2 states.
This transition can be also evidenced in the magnetic mo-

ments, as shown in Fig. 4(d). Although the net magnetic
moment is always close to zero in the whole range, the spin
magnetic moment and orbital magnetic moment change from
∼0.3μB/Ta to ∼0.7μB/Ta.

All the above results demonstrated that the Jeff states in the
4d1 and 5d1 systems could be efficiently tuned by strain, via
the tetragonal distortion.

IV. SUMMARY

Our theoretical studies, based on both the atomic orbital
model and first-principles calculations, clarified the diver-
gent results regarding the Jeff = 3

2 states in the 4d1 and
5d1 systems. Different from the previous argument which
relied on the difference of SOC intensity [37], our study
highlighted the key role of the Q3 mode distortion. With
different signs of Q3 mode and SOC intensities, four typical
hexachlorides, K2NbCl6, Rb2NbCl6, K2TaCl6, and Rb2TaCl6,
own three types of electronic states: Jeff = 3

2 state �1 (or �2)
for both K2NbCl6 and K2TaCl6; Jeff = 3

2 state �3 (or �4)
for Rb2TaCl6; but S = 1

2 state dxy for Rb2NbCl6. In addition,
our work also proposed an efficient route to control these
electronic states in 4d1/5d1 systems. By tuning the tetragonal
distortion through epitaxial strain, quantum phase transitions
between these three states can be achieved. Following experi-
ments are encouraged to manipulate these Jeff = 3

2 quantum
states in this way. More theoretical investigations on other
distortions beyond the simplest Q3 mode are also encouraged,
which may lead to more emergent physical phenomena in
these strong SOC quantum materials.
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