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Sign reversal of magnetoresistivity in massive nodal-line semimetals
due to the Lifshitz transition of the Fermi surface
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Topological nodal-line semimetals offer an interesting research platform to explore exotic phenomena associ-
ated with its torus-shaped Fermi surface. Here, we study magnetotransport in the massive nodal-line semimetal
with spin-orbit coupling and finite Berry curvature distribution which exists in many candidates. The magnetic
field leads to a deformation of the Fermi torus through its coupling to the orbital magnetic moment, which turns
out to be the main scenario of the magnetoresistivity (MR) induced by the Berry curvature effect. We show
that a small deformation of the Fermi surface yields a positive MR ∝ B2, different from the negative MR by
pure Berry curvature effect in other topological systems. As the magnetic field increases to a critical value, a
topological Lifshitz transition of the Fermi surface can be induced, and the MR inverts its sign at the same time.
The temperature dependence of the MR is investigated, which shows a totally different behavior before and after
the Lifshitz transition. Our work uncovers a unique scenario of the MR induced solely by the deformation of the
Fermi surface and establishes a relation between the Fermi surface topology and the sign of the MR.
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I. INTRODUCTION

In a solid electronic system, the thermal and transport
properties are mainly determined by the electron distribution
near the Fermi surface [1]. Therefore, the change of Fermi
surface by applying pressure, doping, or external field may
lead to considerable variation of the electronic properties such
as the specific heat and conductivity. Interestingly, apart from
continuous deformations, the Fermi surface can also undergo
abrupt changes in its topology, so-called topological Lifshitz
transition [2]. At such a critical point, anomalies in the ther-
mal and kinetic quantities may appear [2,3], which may even
induce phase transition [4–10].

Besides the topology of the Fermi surface geometry, the
electronic band structures can also have nontrivial topol-
ogy encoded in the Bloch wave functions [11]. In the
past two decades, the study on such band topology has
opened the exciting research field of topological matters,
which includes topological insulators, superconductors, and
semimetals [12–14]. The effects of the nontrivial band topol-
ogy are manifested mainly in two aspects: the existence
of exotic surface states on the boundaries of the sample
and the modification of the dynamics of the bulk electrons.
The latter can give rise to a variety of interesting transport
phenomena such as anomalous Hall effect [15], negative
longitudinal magnetoresistivity (MR) owning to the chiral
anomaly [14,16–18], and most recently, the nonlinear Hall
effect induced by the Berry curvature dipole [19–22].

*Corresponding author: pchenweis@gmail.com

Given that the deformation of the Fermi surface and
nontrivial band topology may appear simultaneously, it is
interesting to explore the exotic effects caused by the inter-
play between them. In particular, in a topological material
with nonvanishing Berry curvature, the interaction between
the band topology and the Fermi surface deformation can be
achieved by simply applying an external magnetic field. The
Berry curvature results in a nonzero orbit magnetic moment
(OMM) of the electron [11,23], of which a coupling with
the magnetic field modifies the electronic dispersion and ac-
cordingly the shape of the Fermi surface. The benefit of this
scenario is that the relevant physical effects can be visibly
revealed by the MR measurement. For example, it was shown
recently that the coupling of the OMM to the magnetic field
in the Weyl semimetal induces a deformation of the Fermi
surface from a sphere to an egg shape [24]. As a result, the
negative MR due to the chiral anomaly can even have the
opposite sign as the internode scattering is taken into account
simultaneously [24]. Besides the smooth deformation of the
Fermi surface, topological Lifshitz transition of the Fermi
surface is studied as well in various topological materials
[25–30], which is driven by different methods such as the
temperature. An interesting question that arises is whether
both the smooth deformation and the abrupt Lifshitz transition
of the Fermi surface can be implemented by imposing a mag-
netic field, such that the underlying physics can be manifested
under the same framework of MR measurements. Apparently,
in systems with a Fermi sphere of zero genus it is hard to
achieve this purpose.

In this work, we study the topological Lifshitz transition of
a torus-shaped Fermi surface with genus one in a doped mas-
sive nodal-line semimetal [cf. Fig. 1(a)] driven by a magnetic
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FIG. 1. (a) Schematic diagram of the torus-shaped Fermi surface
in nodal-line semimetal, with the major radius k0, minor radius κ ,
toroidal angle θ , and poloidal angle ϕ. (b) Finite distribution of Berry
curvature in the poloidal cross section. (c)–(e) Fermi surface defor-
mation induced by the magnetic field, with (c) a slight deformation,
(d) critical point of topological Lifshitz transition, and (e) Fermi
surface with genus one.

field and predict the corresponding transport signatures. With-
out a gap opening, the nodal-line semimetals are characterized
by the linear band crossing along open lines or closed loops
which have been confirmed in a variety of candidates [31–57]
and may exhibit interesting transport properties [58–61]. The
topological property of the bands is encoded in the π Berry
flux carried by the nodal line, while the Berry curvature van-
ishes elsewhere in the Brillouin zone. As a result, the OMM
and its coupling to the magnetic field are absent without spin-
orbit coupling. However, sizable spin-orbit coupling generally
exists in many candidates of the nodal-line semimetals, which
may give rise to a gap � of order 10–100 meV in the energy
spectrum [62,63]. In these materials, the π Berry flux spreads
into a finite-region distribution of the Berry curvature in the
momentum space [see Fig. 1(b)]. As the sample is slightly
doped, a deformation of the Fermi torus can be achieved by
coupling the OMM with the external magnetic field B [see
Figs. 1(c)–(e)].

Here, we study the magnetotransport in the massive
nodal-line semimetals in the diffusive limit by using the
semiclassical Boltzmann formalism and taking into account
the Berry curvature effect. We show that the OMM induced
deformation of the Fermi surface is the key scenario for the
MR, in contrast to the negative MR in other topological ma-
terials by pure Berry curvature effect without OMM [18,64].
Specifically, it is found that a slight deformation of the Fermi
torus results in a positive MR ∝B2�2. Remarkably, as B
increases to a critical value, the topological Lifshitz transition
occurs for the Fermi surface [cf. Fig. 1(d)], which is proved to
coincide with a sign reversal of the MR. Our results provide
a perspective to understand the MR in nodal-line semimetals
and establish a fascinating relationship between the sign of
MR and the Fermi surface topology.

The rest of this paper is organized as follows. In Sec. II, we
calculate the OMM in the massive nodal-line semimetal and
its coupling to the magnetic field. In Sec. III, we derive the
general conductance formula using the semiclassical Boltz-
mann equation. In Sec. IV, we study the magnetic transport

properties and their physical origins both analytically and
numerically. In Sec. V, we give a discussion on the different
manifestation of our scenario from others. In Sec. VI, we draw
our main conclusion.

II. OMM IN MASSIVE NODAL-LINE SEMIMETALS

We start with a minimal model of the nodal-line semimetal
with two bands crossing along a single nodal loop as [31]

H0 = h̄λ
(
k2

x + k2
y − k2

0

)
τx + h̄vkzτy, (1)

where τx,y are the Pauli matrices acting on the orbital de-
gree of freedom. The eigenvalues of the Hamiltonian εk =
±

√
h̄2λ2(k2

x + k2
y − k2

0 )2 + h̄2v2k2
z define a band-degeneracy

line k2
x + k2

y = k2
0 , which is a nodal loop with a radius k0 in the

reciprocal space. The energy scale near the band crossing is of
the most interest, where the Hamiltonian (1) can be linearized
and parametrized to [59]

H = h̄v0κ (cos ϕτx + sin ϕτy), (2)

through the substitution kx = (k0 + κ cos ϕ) cos θ , ky = (k0 +
κ cos ϕ) sin θ , kz = κ sin ϕ/α with v0 = 2λk0 and α = v/v0

the ratio between the velocity along the z direction and that
in the x-y plane. The parameters κ, θ, ϕ are the coordinates
defined on the torus as shown in Fig. 1(a).

In the presence of spin-orbit coupling, a mass term should
be added as [62]

H = H + �τzσz, (3)

with its sign depending on that of the spin σz. Accordingly,
the energy spectrum becomes ε±

k (κ ) = ±
√

(h̄v0κ )2 + �2, in
which a gap of 2� is induced along the nodal loop. We focus
on the regime that the effect due to the Zeeman coupling
between the magnetic field and the spin is negligibly small.
Then it can be shown that the main results do not rely on the
spin or equivalently, the sign of the mass, so that we set σz = 1
in the following.

Without loss of generality, we consider a positive Fermi
energy, such that only the electrons in the conduction
band contribute to the transport and the wave function
is found to be |uk〉 = (κe−iϕ/

√
κ2 + γ 2, γ /

√
κ2 + γ 2) with

γ = √
m2 + κ2 − m and m = �/(h̄v0). The Berry curvature

defined by �k = i〈∇kuk| × |∇kuk〉 has only a nonzero value
along the toroidal direction in the parametric coordinates as

�k = − m

2(κ2 + m2)3/2
êθ , (4)

which reduces to a Berry flux density as m → 0. The Berry
curvature induces a self-rotation of the electron wave packet
which gives rise to a finite OMM [11,23]. In the present
two-band system, the OMM is related to the Berry curvature
through Mk = e

2h̄�k(ε+
κ − ε−

κ ), yielding

Mk = − mev0

2(κ2 + m2)
êθ , (5)

which is also a vector field along the toroidal direction.
One can infer that as an external magnetic field is imposed,

only its components in the x-y plane couple to the OMM.
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Without loss of generality, we consider a magnetic field B =
Bx̂ in the x direction, which gives rise to a coupling energy as

δεk(κ, θ ) = −Mk · B = −(mev0B) sin θ/[2(κ2 + m2)].

(6)

The whole energy of the conduction band becomes

ε̃k(κ, θ ) = ε+
k (κ ) + δεk(κ, θ ), (7)

which now depends on the toroidal angle θ . A direct re-
sult of this anisotropy is a deformation of the Fermi torus,
as shown in Figs. 1(c)–(e). We will demonstrate in the fol-
lowing that such a deformation is the main scenario of the
magnetotransport.

III. SEMICLASSICAL THEORY

In this section, we solve the transport problem in the
presence of impurity scattering using the semiclassical Boltz-
mann formalism. We assume that the magnetic field satisfies
B � εF /(v2

0eτ ) with εF the Fermi energy and τ the elastic
scattering time, which means that the Landau level spacing
h̄v2

0eB/εF near the Fermi energy is much less than the energy
uncertainty h̄/τ due to scattering and thus the effects of the
Landau quantization can be ignored. The semiclassical equa-
tions of motion are given by [11,65]

ṙ = 1

h̄
∇kε̃k − k̇ × �k, k̇ = − e

h̄
(E + ṙ × B), (8)

where r and k are the central position and momentum of the
wave packet, respectively. −e is the electron charge, and E
and B are the external electric and magnetic fields. We focus
on the linear-response regime (E = 0) and solving Eq. (8)
gives an effective velocity as

ṙ = [ṽk + (e/h̄)B(ṽk · �k)]/Dk, (9)

where D−1
k is the correction to the density of states [66] with

Dk = 1 + e

h̄
B · �k, (10)

and ṽk = (1/h̄)∇kε̃k yields

ṽk = vk − 1

h̄
∇k(Mk · B). (11)

One can see that apart from the pure effect of the Berry
curvature on the velocity in Eq. (9), the OMM introduces a
correction of the velocity as vk → ṽk, which is essential for
the MR in the massive nodal-line semimetals. Similarly, we
have

k̇ = − e

h̄Dk

[
E + ṽk × B + e

h̄
(B · E )�k

]
. (12)

The steady Boltzmann equation is interpreted as

k̇ · ∇k f = − f − f0

τ
, (13)

where a uniform condition and the relaxation time approxima-
tion are adopted. The function f is the distribution function
and f0 = 1/[e(ε̃k−εF )/kBT + 1] is the Fermi-Dirac equilibrium
distribution. Substituting Eq. (12) into Eq. (13) and keeping

the terms to the first order of E on both sides yields

f1 = eτ

Dk

[
E + e

h̄
(E · B)�k

]
· ṽk

∂ f0

∂ε̃
, (14)

where f1 = f − f0 is the first-order deviation of the distribu-
tion from the equilibrium. The current density is solved by

J = −e
∫

dk
(2π )3

f1Dkṙ, (15)

and the longitudinal conductivity defined by Jμ = σμEμ (μ =
x, y, z) takes the form of [64]

σμ = −
∫

d3k
(2π )3

e2τ

Dk

(
ṽ

μ

k + e

h̄
Bμṽk · �k

)2 ∂ f0

∂ε̃
. (16)

IV. MAGNETOTRANSPORT PROPERTIES

First, we note that a magnetic field B = Bẑ in the z direc-
tion has no coupling to the OMM, i.e., Mk · B = 0, which
does not result in any deformation of the Fermi torus. Accord-
ingly, we have ṽk = vk and ṽk · �k = 0 in Eq. (16), which
indicates that no B dependence of the conductivity or MR
appears. Hereafter, we consider the external magnetic field
applied in the x direction, so that a coupling between the
OMM and the magnetic field can be achieved. It induces a
deformation of the Fermi torus which increases with B and
the gap � induced by the spin-orbit coupling. Moreover, the
conductivity in Eq. (16) depends on B in general, indicating a
MR induced by the deformation of the Fermi torus.

A. Symmetry analysis

Before we go into further detail, let us first perform a sym-
metry analysis on the conductivity σ (B, m). Note that Eq. (16)
is invariant as B and m change their signs simultaneously, that
is,

σμ(B, m) = σμ(−B,−m). (17)

Additionally, the nodal-line semimetal possesses the rotation
symmetry about the z axis, which means that as we invert
both B and E (equivalent to a rotation of the fields by π ),
the conductivity remains the same, that is,

σμ(B, m) = σ−μ(−B, m). (18)

Finally, the following relation holds:

σμ(B, m) = σ−μ(B, m), (19)

which ensures that there is no spontaneous current flowing as
E = 0. Combining Eqs. (17), (18), and (19) leads to

σμ(B, m) = σμ(B,−m),

σμ(B, m) = σμ(−B, m),
(20)

which shows that σμ(B, m) is an even function of both B and
m and confirms that the MR is independent of the sign of
the mass as mentioned before. It is convenient to separate the
conductivity into two terms as σμ(B, m) = σ

μ
0 + δσμ(B, m),

with σ
μ
0 the Drude conductivity for B = 0 and δσμ(B, m)

being the magnetoconductivity, which scales as ∝B2m2 to the
lowest order of B and m according to the symmetry analysis
above.
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B. Slight Fermi torus deformation and positive MR

In order to get some analytic results, we first solve the
conductivity (16) in the weak field limit B � ε2

F /(h̄ev2
0 ), i.e.,

the Landau level spacing is much smaller than the Fermi
energy. This condition is equivalent to κF �B � 1, with κF =
εF /(h̄v0) the Fermi wave vector and �B = √

h̄/(eB) the mag-
netic length. Moreover, we also assume that κF � m, such
that the spin-orbit coupling can be considered as a perturba-
tion. The zero-temperature conductivity calculated by Eq. (16)
is obtained as (see Appendix A for details)

σ x
0 = σ

y
0 = σ z

0/2α2 = e2k0εF τ

8παh̄2 ,

δσ x = δσ y/3 = δσ z/4α2 = −3αe4v6
0 h̄2k0τ

32πε5
F

B2m2,

(21)

which is consistent with our symmetry analysis that δσμ ∝
B2m2. The magnetic conductivities in three directions differ
from each other by noting that the deformation of the Fermi
torus breaks the rotational symmetry in the x-y plane.

Here, the coupling between the OMM and the magnetic
field and the resultant deformation of the Fermi surface play
a decisive role for the magnetoconductivity. The pure Berry
curvature effect cannot lead to this result. This is in stark
contrast to the situations for the Weyl semimetal [18] and the
topological insulator [64], where the finite Berry curvature
leads to a negative MR. The results in Eq. (21) indicate a
positive longitudinal MR in the weak field limit defined by

MRμ(B) = 1/σμ(B) − 1/σμ(0)

1/σμ(0)
. (22)

Therefore, the MR (∝B2m2) induced by the Berry curvature
through the OMM effect in the massive nodal-line semimetal
is opposite in sign to that of the Weyl semimetal (in the
absence of internode scattering) [18,24] and the topological
insulator [64]. Note that the OMM induced deformation of
the Fermi surface also introduces a positive correction to the
MR in the Weyl semimetal [24], which is in agreement with
our results.

C. Lifshitz transition and sign reversal of MR

In the previous section, our analytical results show that a
slight deformation of the Fermi torus yields a positive MR
which exhibits the B2 dependence of the magnetic field. In this
section, we evaluate the conductivity in Eq. (16) numerically
for more general cases. First, the numerical results for the
limit κF � m shown in Fig. 2 confirm the B2 scaling of the
positive MR. A stronger deformation of the Fermi torus occurs
as either B or the ratio m/κF increases, which yields a stronger
coupling between B and the OMM. Interestingly, the MR does
not obey a monotonic dependence on B, which can be seen in
Fig. 3(a). The MR first goes up to its maximum and then drops
rapidly as B increases. Dramatically, the MR changes its sign
from positive to negative as B increases further.

The sign reversal of the MR induced by the Berry cur-
vature cannot be found in other topological systems such as
Weyl semimetals [18] and topological insulators [64], which
indicates a possible different physical scenario of the MR in

FIG. 2. MR as a function of magnetic field B for different gap
� in the regime of slight Fermi surface deformation. The relevant
parameters are εF = 41 meV, T = 5 K, k0 = 10 nm−1, τ = 10−14 s,
and v0 = 105 m/s

the massive nodal-line semimetal. Note that a key difference
between the nodal-line semimetal and other topological sys-
tems lies in its nontrivial Fermi surface topology. In contrast
to a conventional Fermi sphere, the Fermi torus may undergo
a topological Lifshitz transition at some critical point from
genus one to zero (cf. Fig. 1). Such abrupt change of the Fermi
surface can lead to anomalous physical properties [2–10],
which provides a possible explanation for the sign reversal
of the MR. In the following, we prove that it is the Lifshitz
transition that inverts the sign of the MR.

Next, we focus on the limit κF � m which generates a thin
Fermi torus with the Lifshitz transition taking place with an
accessible field strength. We mark the critical field B∗ for
the Lifshitz transition points by open circles in Fig. 3(b).
One can see a good coincidence between B∗ and the sign
reversal points of the MR. The numerical results are obtained
by setting the temperature to T = 0.25 K rather than absolute
zero (due to the computational capability). We have confirmed
the tendency that the match between critical B∗ and the sign
reversal points gets better as T decreases, indicating a strong

FIG. 3. (a) MR as a function of B for different gap � with and
without sign reversal. (b) Correspondence between the sign reversal
point and the critical field B∗ (open circles) for the Lifshitz phase
transition. The right panel of (b) illustrates the Lifshitz transition
induced by the magnetic field, which can be compared with the MR
results. Other parameters are the same as those in Fig. 2.
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FIG. 4. Temperature dependence of MR for different Fermi energies εF (a) without and (b) with Lifshitz transition illustrated by the inset.
The parameters are � = 20 meV, B = 3 T and the others are the same as those in Fig. 2.

connection between the sign change of the MR and the topo-
logical Lifshitz transition of the Fermi torus.

Moreover, the scenario of topological Lifshitz transition
induced sign reversal of the MR can be proved strictly in
the limit κF � m, where the energy can be expressed as
εF 
 h̄v0(m + η) with the parameter η � m. The critical field
for the Lifshitz transition can be obtained as B∗ = 2h̄mη/e.
By expanding the expression of the conductance in Eq. (16) to
the linear order of η, we obtain σμ(B∗) = σμ(0), which means
that the Lifshitz transition coincides exactly with the sign
reversal point of the longitudinal MR in all three directions
(see Appendix B for details).

D. Finite temperatures

Next, we investigate the effect of finite temperature on the
MR in Fig. 4. We choose the magnetic field B and the gap
� to be fixed so that the deformation of the Fermi surface
is determined by the energy. As εF > 20.5 meV, the critical
value for the Lifshitz transition defined at zero temperature,
the genus of the Fermi surface is one, corresponding to a
slight deformation [see the inset of Fig. 4(a)]. In this regime,
the positive MR first increases with temperature and then
undergoes a rapid decrease to zero, exhibiting a nonmonotonic
behavior. For εF < 20.5 meV, Lifshitz transition occurs and
the genus of the Fermi surface becomes zero [see the inset
of Fig. 4(b)]. Correspondingly, the MR is negative and its
magnitude decreases monotonically to zero as the temperature
rises [see Fig. 4(b)].

One can see that in the two regimes with genus equal to
one or zero, the temperature cannot invert the sign of the
MR. This indicates that the sign of the MR provides a ro-
bust signature of the topology of the Fermi surface against
finite temperature effect. Moreover, the different temperature
dependence of the MR in the two regimes can serve as an addi-
tional manifestation for the identification of the Fermi surface
topology. For the low temperature, a smaller magnitude of the
MR corresponds to a larger Fermi energy in Figs. 4(a) and
4(b). This stems from the fact that for a higher energy, the
coupling between the OMM and the magnetic field becomes
weaker, which has the same effect as the reduction of the
gap � as shown in Fig. 2. For sufficiently high temperature

kBT ∼ εF − �, the Fermi surface is no longer well defined
so that the MR induced by its deformation quenches. Finally,
at the critical point of Lifshitz transition εF 
 20.5 meV, MR
equals zero for both T = 0 and T � (εF − �)/kB and pos-
sesses a negative value in between.

V. DISCUSSIONS

It is important to compare our results to other scenarios of
the MR and their manifestation in the nodal-line semimetals.
The existing transport experiments on the nodal-line semimet-
als have reported a variety of transport properties [54–56,67–
71], such as large positive MR [55,56,67–70] or cusplike
behavior of MR in low magnetic field [70,71]. Different mech-
anisms have been adopted to explain these results, such as the
electron-hole compensation [55,67,69] and weak localization
and antilocalization [68,70,71]. The former results in a posi-
tive MR with a B2 dependence, not much different from that
in a conventional metal [1]. The latter may lead to either weak
localization or antilocalization with

√
B or ln B scaling which

is determined by the types of the impurity and the resultant
diffusion dimensionality [59].

The OMM induced MR predicted in our work can be
discriminated from both mechanisms above. First, the MR
exhibits a nonmonotonic B dependence for a strong deforma-
tion of the Fermi torus which can even invert its sign as B
approaches B∗ (cf. Fig. 3). Such a phenomenon has not been
discovered previously, which can be explained neither by the
electron-hole compensation nor the weak (anti-)localization
effect. It can serve as a unique transport property of the topo-
logical Lifshitz transition induced by the coupling between
OMM and magnetic field. Second, the MR is positive and
proportional to B2 for the slight deformation of the Fermi
torus when B � B∗ (cf. Fig. 2), which differs in sign from the
weak localization and in scaling law from the weak antilocal-
ization scenario [68,70,71]. The mechanism of electron-hole
compensation results in the same sign and scaling, but it gives
an MR whose magnitude is several orders larger than that
in our results [55,67,69]. Third, the distinctive temperature
dependence of the MR in the two regimes with genus one
and zero (cf. Fig. 4) further helps to discriminate the current
mechanism from others.
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In real materials, additional terms satisfying the time-
reversal symmetry of the Hamiltonian (1) may also exist.
Without changing the Berry curvature distribution, the sim-
plest correction allowed by the symmetry is a quadratic term
of Ak2 which is diagonal in both orbital and spin spaces.
Although this term does not change the band topology, it does
modify the dispersion relation through ε±

k (κ ) → ε±
k (κ ) +

2Ak0κ by linearizing Ak2 around the nodal loop. It can be
shown that the Lifshitz transition can still be induced by the
magnetic field as 2Ak0κF is small compared with εF . More-
over, the main results of the MR maintain, which are (i) a
slight deformation of the Fermi surface induces a positive MR
and (ii) the MR inverts its sign as the magnetic field exceeds
a certain critical value. However, the coincidence between the
Lifshitz transition and the sign reversal point of the MR does
not hold anymore.

VI. CONCLUSIONS

To conclude, we predict a unique mechanism for the mag-
netotransport in nodal-line semimetals which stems from the
Fermi surface deformation induced by the coupling between
the OMM and magnetic field. Specifically, a small deforma-
tion results in a positive MR with a quadratic dependence of B.
Most interestingly, the strong distortion causes the topological
Lifshitz transition of the Fermi torus that is in coincidence
with a sign reversal of the MR. The key ingredient of our
mechanism is the spin-orbit coupling induced mass term
which exists in many nodal-line semimetal candidates [62,63].
Large spin-orbit coupling and low Fermi energy are favorable
for the realization of strong Fermi surface deformation and
Lifshitz transition. Specifically, the nodal-line semimetals in
the CaP3 family (CaP3, CaAs3, SrP3, BaAs3) possess an en-
ergy gap of dozens of meV [63], thus making it an ideal
platform to test our theory. Our work uncovers a scenario
of the MR induced solely by the Fermi surface deformation,
which also opens an avenue for studying topological Lifshitz
transition by magnetotransport.
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APPENDIX A: MAGNETOCONDUCTIVITY WITH SLIGHT
DEFORMATION OF THE FERMI TORUS

Here, we provide a detailed derivation of the magnetocon-
ductivity as the deformation of the Fermi torus is weak. We
first solve the conductivity with α = 1 and then generalize the
results to α �= 1. The expression of the conductivity (16) con-
tains various terms. The velocity components in the Cartesian

coordinates are

ṽx = −ṽθ sin θ + ṽκ cos θ cos ϕ,

ṽy = ṽθ cos θ + ṽκ sin θ cos ϕ,

ṽz = ṽκ sin ϕ,

(A1)

with

ṽk = v0

(
κ√

κ2 + m2
+ Beκm sin θ

h̄(κ2 + m2)2

)
,

ṽθ = − Bemv0 cos θ

2h̄(κ2 + m2)(k0 + κ cos ϕ)
,

ṽϕ = 0.

(A2)

We focus on the weak field limit B � ε2
F /(h̄ev2

0 ) and m/κF �
1 so that εk 
 h̄v0κ and

ṽκ 
 v0

(
1 + m sin θ

�2
Bκ3

)
,

ṽθ 
 −v0
m cos θ

2�2
Bκ2k0

,

ṽϕ = 0.

(A3)

The correction to the density of states reduces to

1

Dk

 1 − m sin θ

2�2
Bκ3

. (A4)

Note that the distribution function f0 in Eq. (16) is a function
of ε̃k instead of εk. In the aforementioned limit, we have

δεk 
 −h̄3mv3
0 sin θ/

(
2�2

Bε2
)
, (A5)

and accordingly

∂ f0

∂ε̃
= ∂ f0(ε + δε)

∂ε

∂ε

∂ε̃


 ∂[ f0(ε) + f ′
0(ε)δε]

∂ε

(
1 − ∂δε

∂ε

)

= ( f ′
0 + δε′ f ′

0 + δε f ′′
0 )(1 − δε′),

(A6)

which further reduces to

∂ f0(ε̃)

∂ε̃

 ∂ f0(ε)

∂ε
+ δε

∂2 f0(ε)

∂ε2
, (A7)

by keeping the terms to the linear order of δε. By inserting
all these simplified terms into the integration in Eq. (16) and
transferring the integral variables to (κ, θ, ϕ), the conductivity
at zero temperature can be obtained as σμ = σ

μ
0 + δσμ with

σ x
0 = σ

y
0 = σ z

0/2 = e2k0εF τ

8π h̄2 ,

δσ x = δσ y/3 = δσ z/4 = −3e4v6
0 h̄2k0τ

32πε5
F

B2m2,

(A8)

in which the condition k0 � κF is adopted.
The results for α �= 1 can be obtained straightforwardly

by the substitutions kz → αkz and accordingly, �z(kz ) →
�z(αkz ), �x,y(kz ) → α�x,y(αkz ), Mz(kz ) → Mz(αkz ),

165149-6



SIGN REVERSAL OF MAGNETORESISTIVITY IN … PHYSICAL REVIEW B 104, 165149 (2021)

Mx,y(kz ) → αMx,y(αkz ), which yields

σ x
0 = σ

y
0 = σ z

0/2α2 = e2k0εF τ

8παh̄2 ,

δσ x = δσ y/3 = δσ z/4α2 = −3αe4v6
0 h̄2k0τ

32πε5
F

B2m2,

(A9)

which is Eq. (21) in the main text.

APPENDIX B: PROOF OF THE CORRESPONDENCE
BETWEEN THE LIFSHITZ TRANSITION AND SIGN

REVERSAL OF MR

In this section, we prove the coincidence between the Lif-
shitz phase transition of the Fermi torus and the sign reversal
point of the MR in the limit κF � m. Without loss of general-
ity, we focus on the longitudinal conductivity in the y direction
and express Eq. (16) in the parametric coordinates as

σ y(B) = −
∫

e2τ

(2π )3

κ (k0 + κ cos ϕ)

Dk

× (ṽθ cos θ + ṽκ sin θ cos ϕ)2 ∂ f0

∂ε̃
dκ dθ dϕ,

(B1)

where ṽθ and ṽκ take the general form in Eq. (A2). Note that
ṽθ � ṽκ generally holds; we can neglect the ṽθ cos θ term
in parentheses. The Lifshitz transition can be induced by an
accessible magnetic field in the limit κF � m, in which the
energy can be expressed as εF = h̄v0(m + η) with η � m.

The critical field B∗ for the Lifshitz transition is defined by

ε̃(κ = 0, θ = −π/2, B = B∗) = εF , (B2)

which gives the critical magnetic field

B∗ = 2h̄mη/e (B3)

by neglecting (κ/m)2 terms.
Next we evaluate the integration in Eq. (B1) at the critical

point B∗ in which the relevant terms can be simplified to

∂ f0

∂ε̃

 δ[h̄v0κ

2/(2m) − h̄v0η(sin θ + 1)],

1

Dk



(
1 − η

m
sin θ

)
,

ṽκ = v0
κ√

m2 + κ2

(
1 + 2η sin θ

m

)
(B4)

in the limit κ � m. By performing the integration by keeping
the term η/m to its first order we arrive at

σ y(B∗) = σ
y
0 , (B5)

which means that at the critical field for the topological Lif-
shitz transition, the magnetoconductivity and thus the MR is
zero, corresponding to the sign reversal point of the MR [cf.
Fig. 3(b) in the main text]. The same conclusion of the MR in
the x and z directions can also be proved in a similar way.
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