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Two electrons in harmonic confinement coupled to light in a cavity
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The energy and wave function of a harmonically confined two-electron system coupled to light is calculated
by separating the wave functions of the relative and center-of-mass (CM) motions. The relative motion wave
function has a known quasianalytical solution. The light only couples to the CM variable and the coupled
equation can be solved analytically. The approach works for any coupling strength. Examples of wave functions
of light-matter hybrid states are presented.
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I. INTRODUCTION

Analytically or numerically easily solvable systems (e.g.,
by “exact diagonalization”) have always been important test
grounds for models and approximations. Recently, there is
an intense interest in strongly coupled light-matter systems
[1–15]. In these systems, the light-matter coupling cannot
be treated perturbatively. The electronic excitations and the
photons are superimposed, forming hybrid light-matter ex-
citations. In this regime, there are only a few analytical
approaches available to test and develop efficient numerical
methods. Reviews of the recent theoretical and experimental
development can be found in Refs. [16–18].

In this paper, we consider a two-electron system inter-
acting via the Coulomb interaction, confined by a harmonic
oscillator interaction coupled to light in a cavity. The system
is described on the level of the Pauli-Fierz (PF) nonrel-
ativistic quantum electrodynamic (QED) Hamiltonian. The
two-electron system in harmonic oscillator confinement is a
quasiexactly solvable (QES) problem. The wave function can
be written as a product of the wave functions of the relative
and center-of-mass (CM) motion. The relative motion wave
function can be expanded into an infinite series. For certain
oscillator parameters, this infinite series can be reduced to
a recursion [19]. The wave function of the CM motion is a
simple harmonic oscillator eigenfunction. We will show that
the photons only couple to the CM coordinate and the coupled
CM photon system can be solved exactly using shifted Fock
states.

The two-particle systems have long been investigated
due to their analytic and quasiexact solvability, which pro-
vides straightforward intuition for the physical system under
scrutiny as well as an excellent benchmark test for numerical
computations. Examples of QES quantum systems are the
two-dimensional (2D) harmoniums [19,20] and the hydro-
genlike atoms in homogeneous magnetic fields [21]. These
QES problems have been generalized to relativistic cases as
well [22,23]. For harmonium systems, the separability condi-
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tion guarantees the quasi-exact solvability for the Schrödinger
equation [24], and linearly coupled oscillators have been
studied under this condition [25]. For hydrogenlike models,
solutions have been found for particular forms of the inhomo-
geneous magnetic fields [26,27]. Examples of other known
QES models include the planar Dirac electron in hydrogen-
like atoms [28,29], one-body problems in power-law central
potentials [30,31], relativistic 2D pion in constant magnetic
fields [32], and 1D and 3D regularized Calogero models
[33,34]. QES models with different forms of confinements,
e.g., two electrons in one [35] or two [36] 1D rings, two
electrons on the surface of the n-sphere (spherium)[37,38],
have also been studied.

The exact or even the numerical solution for light-matter
coupled systems is very difficult even on the level of a
minimal coupling Hamiltonian in the long-wavelength limit
[39], because the photons substantially increase the number
degrees of freedom of the system. Theoretical approaches
have been developed to tame the light-matter coupled sys-
tems using approximations and transformations [15,39–48].
In Refs. [41,42], an electron in a 2D potential coupled to a
single photon mode is used as a numerical benchmark test.
The spatial part of the wave function is represented on a real
space grid and coupled to the Fock space of the photons. The
Hamiltonian of the system can be diagonalized in this repre-
sentation and the light coupled wave function can be studied.
In Ref. [43], the spatial wave function of the He, HD+, and
H+

2 three-particle system is represented using a 3D product of
pseudospectral basis functions, and a few Fock space states
of a single photon mode are coupled to the spatial part. The
energy and wave function is calculated by exact diagonaliza-
tion of the PF Hamiltonian and the Jaynes-Cummings limit
for electronic and rovibrational transitions are studied. 1D
model systems of atoms and molecules [1,44], often using the
Shin-Metiu potential [49], are also useful to describe potential
energy surfaces in cavities and test numerical approaches.

The free electron gas also allows analytical treatment [48].
In Ref. [48], the free electron gas in cavity is analytically
solved in the long-wavelength limit for an arbitrary number of
noninteracting electrons. It is found that the electron-photon
ground state is a Fermi liquid containing virtual photons.

2469-9950/2021/104(16)/165147(12) 165147-1 ©2021 American Physical Society

https://orcid.org/0000-0002-9704-0265
https://orcid.org/0000-0002-9693-6035
https://orcid.org/0000-0002-8093-1096
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.165147&domain=pdf&date_stamp=2021-10-27
https://doi.org/10.1103/PhysRevB.104.165147


HUANG, AHRENS, BEUTEL, AND VARGA PHYSICAL REVIEW B 104, 165147 (2021)

Approaches to reformulating the problem have also been
proposed. In Ref. [15], the light and matter degrees of freedom
are decoupled using a unitary transformation. In the trans-
formed frame, both the light and the matter Hilbert spaces can
be truncated systematically to facilitate an efficient solution.
In Ref. [7] a variational formulation is developed and the
semianalytical formula is derived for the ground and excited
state energies.

II. FORMALISM

We consider two particles with positions r1, r2 and charges
z1, z2. Later we show that an analytical approach only works
for z1 = z2, but it is useful to consider the general case to show
the origin of the coupling to the CM. The Hamiltonian of the
system is

H = He + Hph = He + Hp + Hep + Hd . (2.1)

He is the matter Hamiltonian, Hph describes the matter-photon
interaction, which is a sum of three terms, the photon Hamil-
tonian Hp, the matter-photon coupling Hep, and the dipole
self-interaction Hd . The electron-photon interaction can be
described by using the PF nonrelativistic QED Hamiltonian.
The PF Hamiltonian can be rigorously derived [3,6,10,12,50]
by applying the Power-Zienau-Woolley gauge transformation
[51], with a unitary phase transformation on the minimal
coupling (p · A) Hamiltonian in the Coulomb gauge,

Hph = 1

2

Np∑
α=1

[
p2

α + ω2
α

(
qα − λα

ωα

· D
)2]

, (2.2)

where D = ∑N
i=1 qiri is the dipole operator. The photon fields

are described by quantized oscillators. qα = 1√
2ωα

(â+
α + âα )

is the displacement field and pα = −i
√

ωα

2 (âα − â+
α ) is the

conjugate momentum. This Hamiltonian describes Np photon
modes with frequency ωα and coupling λα . The coupling term
is usually written as [52]

λα =
√

4π Sα (r)eα, (2.3)

where Sα (r) is the mode function at position r and eα is the
transversal polarization vector of the photon modes.

The three components of the electron-photon interaction
are as follows: The photonic part is

Hp =
Np∑

α=1

(
1

2
p2

α + ω2
α

2
q2

α

)
=

Np∑
α=1

ωα

(
â+

α âα + 1

2

)
. (2.4)

By using the creation and annihilation operators, the photon
states |nα〉 can be generated by multiple applications of the
creation operators on the vacuum state |nα〉 = (â+

α )n|0〉. All
other photon operations can be done by using âα and â+

α . The
interaction term is

Hep = −
Np∑

α=1

ωαqαλα · D = −
Np∑

α=1

√
ωα

2
(âα + â+

α )λα · D.

(2.5)
Only photon states |nα〉, |nα ± 1〉 are connected by âα and
â+

α . The matrix elements of the dipole operator D are only
nonzero between spatial basis functions with angular momen-
tum l and l ± 1 in 3D or m and m ± 1 in2D. The strength

of the electron-photon interaction can be characterized by the
effective coupling parameter

gα = |λα|
√

ωα

2
. (2.6)

The dipole self-interaction is

Hd = 1

2

Np∑
α=1

(λα · D)2, (2.7)

which describes the effects of the polarization of the matter
back on the photon field. The importance of this term for the
existence of a ground state is discussed in Ref. [6].

A. Separation of the relative and center of mass equations

For simplicity we only consider a single photon mode. The
formalism can be easily extended to many photon modes as
described in Appendix B and Appendix C. We will define
the coupling strength as λ = (λ, λ, 0). A more general case
is described in Appendix C. In this section, we consider the
Hamiltonian that acts only in the matter space

He + Hd = −1

2
∇2

1 + 1

2
ω2

0r2
1 − 1

2
∇2

2 + 1

2
ω2

0r2
2

+ z1z2

|r1 − r2| + 1

2
(z1λ · r1 + z2λ · r2)2. (2.8)

Atomic units h̄ = m = e = 1 are used throughout and unit
charges are assumed.

Defining relative and CM coordinates as

r = r2 − r1,

R = 1
2 (r1 + r2),

(2.9)

the Hamiltonian decouples into a relative and CM Hamilto-
nian

He + Hd = −∇2
r + 1

4
ω2

0r2 + z1z2

r
− 1

4
∇2

R + ω2
0R2

+ 1

2

(
λ ·

(
(z1 + z2)R + 1

2
(z1 − z2)r

))2

≡ Hr + HR, (2.10)

and the corresponding eigenvalue problem is

(Hr + HR )�(r, R) = (ε + η)�(r, R), (2.11)

and E = ε + η is the eigenenergy. Note that there is no cross
term between R and r. For like charges, the last term only
contributes to HR, and for opposite charges it only contributes
to Hr.

1. z1 = −z2

In this case the photon only couples to r = (x, y, z). The
CM wave function is a harmonic oscillator eigenfunction with
frequency 2ω0. By introducing u = x+y√

2
, and v = −x+y√

2
, the

relative motion Hamiltonian takes the form

Hr = −∇2
u − ∇2

v − ∇2
z + 1

2
ω2

uu2 + 1

2
ω2

vv
2 + 1

2
ω2

z z2

− 1

(u2 + v2 + z2)1/2 ,

(2.12)
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where ωu
2 = 2λ2 + 1

2ω0
2, ωv

2 = ωz
2 = 1

2ω0
2. This is a sin-

gle particle Coulomb problem in an anisotropic harmonic
potential. The derivation is detailed in the next section. We are
not aware of any existing analytical solutions to this system.
One can, in principle, solve this problem using a product basis
of the u − v − z harmonic oscillators, but we do not pursue
this case any further in this paper.

2. z1 = z2

In the following, we will consider z1 = z2 because, in this
case, the equation for the relative motion can be analytically
found for certain frequencies as mentioned before. After mul-
tiplying the relative part by 1/2 and the CM part by 2 to bring
the equations in a more convenient form, we have[

−1

2
∇2

r + 1

2
ω2

r r2 + 1

2

1

r

]
ϕ(r) = ε′ϕ(r), (2.13)

where ωr = 1
2ω0 and ε′ = 1

2ε, and[− 1
2∇2

R + 1
2ω2

RR2 + 4(λ · R)2
]
ξ (R) = η′ξ (R), (2.14)

where ωR = 2ω0 and η′ = 2η. The total wave function can be
written as

�(r, R) = ϕ(r)ξ (R). (2.15)

In this case, the CM motion in the z direction is described by
a harmonic oscillator eigenfunction, and we drop this part for
now.

In 2D, using R = (X,Y ) one can rewrite HR as (in 3D one
simply has to multiply the CM wave function with a harmonic
oscillator function of frequency 2ω0 in the Z direction)

HR = −1

2

∂2

∂X 2
− 1

2

∂2

∂Y 2
+ 1

2
ω2

X X 2 + 1

2
ω2

Y Y 2 + 1

2
ω2

XY XY,

(2.16)
where

ω2
X = ω2

Y = ω2
R + 8λ2, ω2

XY = 16λ2. (2.17)

Using a unitary transformation (a generalized version is pre-
sented in Appendix B)

U = X + Y√
2

, V = −X + Y√
2

, (2.18)

we have

HR = −1

2

∂2

∂U 2
− 1

2

∂2

∂V 2
+ 1

2
ω2

UU 2 + 1

2
ω2

V V 2

≡ HU + HV , (2.19)

where

ω2
U = 1

2

(
ω2

X + ω2
XY + ω2

Y

) = ω2
R + 16λ2, (2.20)

ω2
V = 1

2

(
ω2

X − ω2
XY + ω2

Y

) = ω2
R. (2.21)

This Hamiltonian is analytically solvable: the lowest en-
ergy is

η = 1

2

(
ω0 +

√
ω2

0 + 4λ2
)
. (2.22)

Hr is also analytically solvable, in this case, for certain fre-
quencies [19,53]. For example, for ω0 = 1 one gets ε = 2 (see

the Table in Ref. [53]) and the total energy is E = 2 + 1
2 +

1
2

√
1 + 4λ2.
The Hamiltonian in Eq. (2.14) is multiplied by 2. To return

the the normal Hamiltonian one has to define

u =
√

2U, v =
√

2V, ωu = ωU

2
, ωv = ωV

2
(2.23)

and

Hu = −1

2

∂2

∂u2
+ 1

2
ω2

u, Hv = −1

2

∂2

∂v2
+ 1

2
ω2

v . (2.24)

With these transformations HU = 2Hu and HV = 2Hv , and Hu

and Hv will be used from now. The wave function of the CM
motion now can be written as

ξ (R) = φk (u)φl (v), (2.25)

where φk is the kth eigenfunction of the one-dimensional
harmonic oscillator,

φk (u) =
( √

ωu√
π 2kk!

) 1
2

e− ωu
2 u2

Hk (
√

ωu u), (2.26)

where Hk is the Hermite polynomial. The eigenfunctions are
defined similarly for v.

B. Photon-electron coupling

For a single photon mode, the coupling term Eq. (2.5) takes
the form

Hep = −
√

ω

2
(â + â+)λD = −ωqλD, D = 2u (2.27)

so only the u harmonic oscillators are coupled with photons.
The Hamiltonian that we have to solve is reduced to a single
one-dimensional electronic Hamiltonian coupled to light:

Hc = Hu + Hp − 2ωλqu, (2.28)

where Hp is defined in Eq. (2.4). In the above Hamiltonian
the eigenstates of the CM Hamiltonian are the φk (u) harmonic
oscillator eigenfunctions, the eigenstates of Hp = ω(â+â + 1

2 )
are the photon Fock states |n〉, and the last term couples the
CM and photon harmonic oscillators.

The Hamiltonian in Eq. (2.28) can be diagonalized in two
different ways. In the first approach, new variables are intro-
duced to decouple the CM and photon harmonic oscillators
[54], in the second one a product basis of the CM and photon
harmonic oscillators, φk (u)|n〉 is used. The advantage of the
first approach is that it is exact, while numerical diagonaliza-
tion is needed in the second approach. The advantage of the
second approach is that the solution is directly obtained as a
product of spatial and photon spaces.

1. Shifted Fock states

By introducing the coordinate rotation

s = u sin(α) + q cos(α), (2.29)

and

t = −u cos(α) + q sin(α), (2.30)
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the coupling term in Eq. (2.28) can be eliminated by choosing

tan(2α) = 4ωλ

χ
, χ = ω2

u − ω2, (2.31)

where ω2
u = ω2

0 + 4λ2. The Hamiltonian in Eq. (2.28) be-
comes

Hc = −1

2

∂2

∂s2
+ 1

2
ω2

s s2 − 1

2

∂2

∂t2
+ 1

2
ω2

t t2, (2.32)

where

ωs = | sin α|
√

ω2
0 + (2λ − ω/ tan α)2, (2.33)

ωt = | cos α|
√

ω2
0 + (2λ + ω tan α)2. (2.34)

The energy spectrum of Hc is

E (ns, nt ) = (
ns + 1

2

)
ωs + (

nt + 1
2

)
ωt , (2.35)

and the eigenfunction is

φnsnt (s, t ) = φns (s)φnt (t ). (2.36)

Note that the arguments of the harmonic oscillator functions
are now coupled light-matter coordinates, shifted Fock states
[41]. One can rewrite these as products of spatial variables
and photon Fock spaces by expanding the harmonic oscil-
lator functions. The next section shows a different solution
which gives the results directly as a product of CM harmonic
oscillators and photon states. The results of this section is
generalized for multiphoton modes in Appendix A.

To study the dependence of ωs and ωt on ω we first con-
sider the cases when the numerator or the denominator is zero
in Eq. (2.31). In the first case, ω = 0 and α = 0, therefore

ωs = 0, ωt = ωu. (2.37)

There is no coupling so we get back the CM harmonic oscilla-
tor, but the important thing is that we know that ωs starts from
zero. If the denominator is zero, χ ≈ 0,

ω ≈ ωu =
√

ω2
0 + 4λ2 (2.38)

and we have two limiting cases. If χ → 0+ then α → π/4
and

ωs = ω
√

1 − 2λ/ω, (2.39)

ωt = ω
√

1 + 2λ/ω, (2.40)

and if χ → 0− then α → −π/4 and

ωs = ω
√

1 + 2λ/ω, (2.41)

ωt = ω
√

1 − 2λ/ω, (2.42)

note that the frequencies are real Eq. (2.38). This shows that
there is a discontinuity at ω = ωu and ωs and ωt are ωs and ωt

are swapped at this frequency. It is also clear from Eq. (2.38)
that for a given confinement and coupling strength this transi-
tion always exists for a suitable ω.

The transition occurs at ωu which is the characteristic fre-
quency of the CM motion. If the coupling strength is weak,
then ωu ≈ ω0 and the transition frequency is determined by
the confinement alone. In this case the system behaves like a

multilevel Jaynes-Cummings model, where the atomic energy
levels (now harmonic oscillator levels) define the transition.
To show this we introduce x = λ/

√
ω so that the coupling is

as Eq. (2.27) shows proportional to g = ω as in the Jaynes-
Cummings model. Now Eq. (2.31) can be written as

tan(2α) = 4ω3/2x

ω2
0 + (4x2 − 1)ω2

. (2.43)

If x > 0.5 then right-hand side is positive for any ω and there
is no transition (this does not happen in the previously dis-
cussed general case because there ω and λ are independent).
If x < 0.5 then there is a transition and if x 	 1 (λ 	 1)
then the transition happens at the energy level difference of
the harmonic oscillator, ω ≈ ω0. Figure 1(a) shows ωs and ωt

for x = 1/10 and ω0 = 0.5. At ω ≈ ω0 the lower frequency
mode, ωs, becomes the higher frequency mode, and the higher
frequency ωt mode becomes the lower frequency mode. The
transition energy (Rabi splitting) is

� = 2λ. (2.44)

Figure 1(b) shows the energies, E (ns, nt ), for nt + ns � 3.
Transition occurs between (nt , ns) and (ns, nt ) states when
nt 
= ns.

2. Exact diagonalization

The Hamiltonian in Eq. (2.28) can also be solved by exact
diagonalization using the product of center of mass eigenfunc-
tions and photon Fock states as basis states

φk (u)|n〉. (2.45)

For the diagonalization, one needs the matrix elements of the
Hamiltonian which are readily available. The operators Hu and
u act on the real space, and â + â+ acts on the photon space.
For the coupling term in the photon space:

q|n〉 = 1√
2ω

(â + â+)|n〉 (2.46)

= 1√
2ω

(|√n|n − 1〉 + √
n + 1|n + 1〉),

and the matrix elements of q are

〈m|q|n〉 = 1√
2ω

Dmn, (2.47)

where

Dmn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
√

1 0 0 0 . . .√
1 0

√
2 0 0 . . .

0
√

2 0
√

3 0 . . .

0 0
√

3 0
√

4 . . .

0 0 0
√

4 0 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.48)

The Hamiltonian Hu is diagonal in the harmonic oscillator
bases

〈φi|Hu|φ j〉 = (
j + 1

2

)
ωuδi j . (2.49)

The matrix elements of the photon Hamiltonian are

〈n|ω(
â+â + 1

2

)|m〉 = (
n + 1

2

)
ωδnm. (2.50)
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(b)

FIG. 1. (a) Frequencies of the eigensolutions of Eq. (2.32) as a function of photon frequency; ωs (black curve starts at zero at ω = 0) and ωt

(red curve) for x = 1/10. (b) The lowest eigenstates of Hc with ns + nt � 3 for x = 10. The lowest transition is between states (ns = 0, nt = 1)
and (ns = 1, nt = 0) at ω = ω0 with energy gap �. Next, in the middle, there is a transition between the (0, 2) and (2, 0) states with energy
gap 2�. In the top, there is a transition between states (0, 3) and (3, 0) with 3� and between states (2, 1) and (1, 2) with energy gap �.

The last piece is the matrix elements of the position opera-
tor in harmonic oscillator bases:

〈φi|u|φ j〉 = 1√
2ωu

Di j . (2.51)

Thus, the matrix elements of Hc are

〈m, φi|Hc|n, φ j〉 = δmnδi j
(

j + 1
2

)ωu

2
+ δmnδi j

(
n + 1

2

)
ω

+
√

2ω

ωu
λ DmnDi j . (2.52)

This is a very sparse matrix and can be diagonalized with
sparse matrix approaches even for very large dimensions. In
practice, a few dozen photon bases |n〉 and harmonic oscillator
bases φi give converged energies. This matrix is generalized
for Np photon modes in Appendix B.

After the diagonalization, we have the eigenenergies η j and
the eigenfunctions. The spatial part of the eigenfunctions is a
linear combinations of the product of basis functions

ψ j (R) = φ0(v)φ j (u), (2.53)

and the eigenfunction for the CM motion is

ξk (R) =
Kn∑

n=0

(
Ku∑
j=0

ck
j,nψ j (R)

)
|n〉

=
Ku∑
j=0

(
Kn∑

n=0

ck
j,n|n〉

)
ψ j (R), (2.54)

where Ku and Kn are some suitably chosen upper limits that
control the convergence of the eigenvalues. For the v part of
the CM motion, we have chosen the lowest state. The first
line in Eq. (2.54) emphasizes the coupling of the spatial part
to photon spaces; the second line emphasizes the coupling
of the linear combination of photon states to a given CM
eigenfunction.

III. RESULTS AND DISCUSSION

In this section we present results using the exact diagonal-
ization approach. The analytical and numerical diagonaliza-
tion results are in perfect agreement if the basis dimension is
sufficiently high. We use the exact diagonalization approach in
this section because it gives the result directly in the product
of coordinate and photon space.

For the calculations, we have picked an oscillator fre-
quency ω0 from the Table of Ref. [53], calculated the
radial part of the relative wave function as described in
Refs. [19,20,53], and multiplied it with the corresponding
spherical function. This function is then multiplied by ξk (R)
calculated using Eq. (2.54).

The wave function can be decomposed into spatial and
photon components. The spatial part can be decomposed fur-
ther into different CM excitations. In the following we explore
the wave function components in these subspaces.

First, we show the wave functions for different CM ex-
citations. In this case, two variables determine the behavior:
the confining strength ω0 and the coupling parameter λ. We
show 2D examples because it is easier to visualize the electron
density in 2D. The 3D cases are very similar, with the only
difference being that the wave function is multiplied by the
lowest harmonic oscillator function with frequency 2ω0 in the
z direction.

A. Spin singlet case

We start with the spin-singlet case with confinement
strength ω0 = 1. The energy of the relative motion in this
case is ε = 1 a.u. (see the Table in Ref. [53]). The eigen-
state with the j = 0 harmonic oscillator CM wave function is
spherically symmetric for small λ [lambda = 0.5, Fig. 2(a)].
For larger λ, (λ = 2), the anharmonicity of the CM harmonic
oscillators dominates (ωv << ωu) and a slightly ellipsoidal
structure appears [Fig. 2(b)]. For j = 1, the CM state is mul-
tiplied by u (H1(

√
ωu u) = 2

√
ωu u) and it becomes elongated

in the diagonal direction [Fig. 2(c)]. This direction is set by
the choice of λ = (λ, λ), and other choices would simply
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FIG. 2. Two-dimensional electron densities of two electrons con-
fined in a harmonic potential with ω0 = 1, ω = 0.5 a.u. and spin
S = 0 for different j (CM quantum number) and λ values. First row:
j = 0, (a) λ = 0.5, (b) λ = 2. Second row: j = 1, (c) λ = 0.5,
(d) λ = 2. Third row: j = 2, (e) λ = 0.5, (f) λ = 2. Fourth row:
j = 5, (g) λ = 0.5, (h) λ = 2. The x axis is the horizontal, the y axis
is the vertical direction. The color bar shows the probability.

change the direction (see Appendix B). For larger λ value, the
confinement by ωu is much stronger and the elongation disap-
pears [Fig. 2(d)]. For higher j values the elongation increases
due to the higher order Hj (

√
ωuu) polynomials [Figs. 2(e) and

2(g)]. Higher λ values decrease the elongation [Figs. 2(f) and
2(h)] because the confinement is stronger. This trend contin-
ues for even higher j values as well. Solutions with other ω0

values show very similar behaviors.
Figure 3 shows the singlet state energy spectrum as a func-

tion of photon frequency ω. The ground state energy is 3 a.u.
in this case. Infinitely many photon states and infinitely many
CM states can couple to this state. Without coupling of the
photons to the center of mass, the energy of the photon states
increases linearly with ω and the energy of the CM states
increases linearly with ωu. Figure 3 shows the lowest 30 states.
The coupling is defined as λ = x

√
ω. For x = 1 [Fig. 3(a)],

some states (primarily photon states) move linearly up with ω

for small frequencies, while other states (primarily CM states)
only slowly increase with ω. Now we repeat the same calcu-
lation as in Sec. II B 1 (shown in Fig. 1) with the CM photon
product states. Figure 3(b) shows the energy spectrum. There
are many more lines in Fig. 3(b) than in Fig. 1(b) because each
CM states is coupled with many photon states. The lowest
two states are the same in Figs. 1(b) and 3(b). Then one can
see the first transition (note that the transition is shown with a
vertical line but there is no swapping between the two states
in this case). In this transition case, the lower curve starts at
E = 1

2ω0 and the upper curve starts at E = 3
2ω0 in Fig. 1(b).

This is also true in Fig. 3(b), but now there are many energy
levels (those are raising photon replica states) intersect the
path. Figure 3(b). also shows the other transitions presented
in Fig. 1(b) with a vertical line in the sea of the photon replica
states. This calculation also shows that the analytical shifted
Fock states and the numerical diagonalization gives the same
result.

To calculate the full energy spectrum of the system, one has
to include the excited states of the relative motion. As those
states are orthogonal, the complete spectrum can be obtained
by shifting the energy levels in Fig. 3 by the energies of the
excited states.

0 1 2 3 4 5
ω

4

6

8

10

12

14

16

18

E

(a)

0 0.2 0.4 0.6 0.8 1
ω

0

1

2

3

4

E

(b)

FIG. 3. The energy levels as a function of ω for different λ values (the confinement strength is ω0 = 0.5 a.u.): (a) λ = √
ω and (b) λ =√

ω/10. The energy of the relative motion is added to the energy in (a), but not in (b) so that (b) can be compared to Fig. 1(b).
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FIG. 4. Two-dimensional densities of two electrons confined by a harmonic potential with ω0 = 1/3, ω = 0.5 a.u. and spin S = 1. for
different j (CM quantum number) and λ values. First row: j = 0, (a) λ = 0.01, (b) λ = 0.5, (c) λ = 2. Second row: j = 1, (d) λ = 0.01, (e)
λ = 0.5, (f) λ = 2. Third row: j = 2, (g) λ = 0.01, (h) λ = 0.5, (i) λ = 2. Fourth row: j = 5, (j) λ = 0.01, (k) λ = 0.5, (l) λ = 2. The x axis
is the horizontal, the y axis is the vertical direction. The color bar shows the probability.

B. Spin-triplet case

In the spin-triplet case in 2D we choose ω0 = 1/3 a.u., and
the energy of the relative motion is ε = 1 a.u. in this case.
Figure 4 shows the densities of the spin-triplet configiration.
This system is more sensitive to the choice of λ and we use
three different λ values (0.01, 0.5, 2) to illustrate the differ-
ences. In the spin-triplet case, the spin function is symmetric,
and the spatial part is antisymmetric (m = ±1 in Eq. (1.2) in
Ref. [53]). Two peaks appear in the electron density plot for
j = 0 as shown in Figs. 4(a), 4(b), and 4(c). By increasing λ

the CM u oscillator squeezes the electrons closer to each other
but due to the repulsion the separation between the two peaks

is more visible (the density between the peaks being lower).
There are three peaks for j = 1 for λ = 0.01 and λ = 0.5,
but as the u confinement gets stronger the two peak structure
returns [Figs. 4(d), 4(e), and 4(f)]. The three-peak structure is
a nontrivial case because, unlike the simple spherical structure
in the singlet state, the relative motion function, in this case,
is in an m = 1 angular momentum state and it is multiplied by
u.

For higher j states, the elongation caused by Hj continues
[see Figs. 4(g) and 4(j)], and the nodal structure of Hj also
contributes to the structure of the density. Overall it seems that
the λ = 0.01 case captures the general trend very well. For
larger λ values the same structures appear later as j increases.

165147-7



HUANG, AHRENS, BEUTEL, AND VARGA PHYSICAL REVIEW B 104, 165147 (2021)

FIG. 5. Two-dimensional electron densities for the S = 1 case
(ω0 = 0.18055 a.u., ω = 1 a.u. and λ = 1 a.u.) in different photon
subspaces: (a) total density, (b) density in the n = 1 space, (c) density
in the n = 3 space, (d) density in the n = 5 space. The x axis is the
horizontal, the y axis is the vertical direction. The color bar shows
the probability.

For a given j, increasing λ squeezes the elongation due to the
CM ωu confinement, as in the singlet case.

The wave function of the system will be a linear com-
bination of wave functions shown in Figs. 2 and 4, with
coefficients defined in the second line of Eq. (2.54). These
coefficients depend on the values of ω, ω0, and λ. For a single
photon mode, the lowest CM harmonic oscillator states often
dominate and it is hard to pick parameters that favor a single
j CM mode or higher j values. In Fig. 5(a) we present an
example for the triplet case where the square of the linear
coefficients are 0.55, 0.18, 0.10, 0.06, 0.04, 0.03 ( j = 0, ...5),
so a few j 
= 0 contribute to the density. Figures 5(b), 5(c),
and 5(d) show the square of the wave function in the n = 1, 3
and 5 spaces. The n = 0 density is very similar to Fig. 4(b).
The squares of the linear coefficients in n space are 0.49, 0.13,
0.11, 0.07, 0.05 (n = 0, ..., 5). This example shows that the
spatial wave functions in different photon subspaces can be
very different and quantum mechanical methods have to look
for accurate wave functions in different photon spaces.

The calculations can be extended to more than one photons
modes. Examples are shown in Appendix D

IV. SUMMARY

In a harmonically confined two-electron system, the light
couples to the dipole moment which is proportional to the
CM coordinate. By separating the relative and CM motion,
we have shown that the coupled photon CM system can be
solved analytically using shifted Fock states and the relative
motion part has analytical solutions for certain frequencies.
We have also presented a solution which is based on a product
of CM harmonic oscillator states and photon states. Using the
three main variables of the problem, the frequency of light, the
strength of the confinement and the coupling one can define
the frequency of the transition between states and the energy

difference at the transition frequency. This may be useful in
experiments designing two level systems for quantum infor-
mation processing.

The coupling of the light to the CM coordinate leads to
elongated wave functions. The symmetry axis of the electron
density is determined by the polarization direction. The den-
sity has several peaks depending on the CM excitation and
the symmetry axis of the density. The competition between
the confinement due to the coupling to light and the node
structure of the CM excitation influences the location of the
density peaks.

We have shown that the spatial wave functions belonging to
different photon spaces are very different, and this means that
quantum mechanical approaches solving coupled light-matter
problems have to determine the wave functions in each photon
subspace, which might be a difficult task.

This approach can be extended to many photon modes and
the only limitation is the dimension of the Hamiltonian matrix.
As this matrix is very sparse, one can easily diagonalize it
even for very large matrices.

As there are only very few light-matter coupled systems
with analytical solutions, the present work might be useful to
test and develop efficient approximations.

A similar approach can be used for a larger electron
number, but then the relative motion part has to be solved
numerically.
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APPENDIX A: DECOUPLING Np PHOTON MODES

In the case of Np photon modes the light coupled center of
mass Hamiltonian is

Hc = −1

2

∂2

∂u2
+ 1

2
ω2

uu2

+
Np∑
i=1

(
−1

2

∂2

∂q2
i

+ 1

2
q2

i ω
2
i − 2λiωiqiu

)
. (A1)

By introducing ui = u
√

Np and ωui = ωu/Np the Hamiltonian
becomes

Hc =
Np∑
i=1

(
−1

2

∂2

∂u2
i

− 1

2

∂2

∂q2
i

+ 1

2
ω2

uu2
i

)

+
(

1

2
ω2

i q2
i − 2ωiλi

√
Npuiqi

)
. (A2)

By introducing the coordinate rotation

si = ui sin(αi ) + qi cos(αi), (A3)

and

ti = −ui cos(αi ) + qi sin(αi ), (A4)

the coupling terms can be eliminated by choosing

tan(2αi ) = 2ωiλi

(ωu/2)2 − ωi
. (A5)
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The Hamiltonian becomes

Hc =
Np∑
i=1

−1

2

∂2

∂s2
i

+ 1

2
ω2

si
s2

i − 1

2

∂2

∂t2
i

+ 1

2
ω2

ti t
2
i , (A6)

where

ω2
si

= sin2(αi )(ωu/2)2 + cos2(αi )ω
2
i − 4 sin(αi) cos(αi )λiωi,

(A7)

ω2
ti = cos2(αi )(ωu/2)2 + sin2(αi )ω

2
i + 4 sin(αi ) cos(αi)λiωi.

(A8)

APPENDIX B: DIAGONALIZATION WITH Np

PHOTON MODES

Consider the same system as in Sec. II A 2, except that here
np photons are coupled. Hence, there are Np = 2np photon
modes involved.

|�n〉 = |n1, n2, . . ., nNp〉. (B1)

Define the vector Kronecker delta as

δ�n �m =
Np∏

k=1

δnkmk , (B2)

δl
�n �m =

Np∏
k=1,k 
=l

δnkmk . (B3)

It is straightforward to generalize Eq. (2.52)

〈 �m, φi|H |�n, φ j〉 = δ �m�nδi j

(
j + 1

2

)
ωu

2
+ δ �m�nδi j

Np∑
k=1

(
nk + 1

2

)
ωk

+
Np∑

k=1

√
2ωk

ωu
λ Dnkmk Di jδ

k
�n �m. (B4)

APPENDIX C: CENTER-OF-MASS MOTION
FOR MANY PHOTONS

We assume Np = 2np photon modes, and λα’s are not nec-
essarily isotropic in the x, y directions. Thus, the Hamiltonian
becomes

H = −1

2
∇2

1 + 1

2
ω2

0r2
1 − 1

2
∇2

2 + 1

2
ω2

0r2
2

+ z1z2

|r1 − r2| + 1

2

Np∑
α=0

(z1λα · r1 + z2λα · r2)2. (C1)

Still imposing z1 = z2, the radial part remains unchanged
and can be solved by Refs. [19,20,53]. Now we solve the CM
part. Equation (2.14) becomes[

−1

2
∇2

R + 1

2
ω2

RR2 + 4
Np∑

α=0

(λα · R)2

]
ξ (R) = η′ξ (R).

(C2)

Suppose λα = (λα1, λα2, 0). We further define

λ̃1 =
Np∑

α=0

λα1
2
,

λ̃2 =
Np∑

α=0

λα2
2
,

λ̃12 =
Np∑

α=0

λα1λα2,

(C3)

and Eq. (2.16) and (2.17) now read

HR = −1

2

∂2

∂X 2
− 1

2

∂2

∂Y 2
+ 1

2
ω2

X X 2 + 1

2
ω2

Y Y 2 + 1

2
ωXY XY,

(C4)
where

ω2
X = ω2

R + 8λ̃1,

ω2
Y = ω2

R + 8λ̃2,

ωXY = 16λ̃12.

(C5)

This linearly coupled Hamiltonian can be easily decoupled
with the following unitary transformation:

U = 1

(1 − ab)1/2
(X + aY ),

V = 1

(1 − ab)1/2
(bX + Y ),

(C6)

where

a =
(λ̃1 − λ̃2) +

√
(λ̃1 − λ̃2) 2 + 4λ̃12

2

2λ̃12
,

b = −
(λ̃1 − λ̃2) +

√
(λ̃1 − λ̃2) 2 + 4λ̃12

2

2λ̃12
.

(C7)

In this case, the decoupled Hamiltonian reads

HR(U,V ) = −1

2

∂2

∂U 2
− 1

2

∂2

∂V 2
+ 1

2
ω2

UU 2 + 1

2
ω2

V V 2, (C8)

where

ωU =
√

ω2
R + 4(λ̃1 + λ̃2) + 4

√
(λ̃1 − λ̃2)2 + 4λ̃12

2
,

ωV =
√

ω2
R + 4(λ̃1 + λ̃2) − 4

√
(λ̃1 − λ̃2)2 + 4λ̃12

2
.

(C9)
Same as in Eq. (2.19), this is just the Hamiltonian for two

noninteracting harmonic oscillators. Hence, the energies for
the CM part are

η = 1
2η′ = 1

2 (nU + 1
2 )ωU + 1

2 (nV

+ 1
2 )ωV , nU , nV = 0, 1, 2... (C10)

and the ground state energy is

η0 = 1
4 (ωU + ωV ). (C11)

Finally, the corresponding wave function is just the product
of that of the two independent harmonic oscillators.
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FIG. 6. The logarithm of the occupation numbers in case of two
the photon modes. The photon frequencies are ω and 2ω. The cou-
pling vectors are λ and −λ. The vertical axis is the photon number
for ω, the horizontal axis is the photon number for 2ω (ω0 = 1 a.u.,
ω = 1 a.u., λ = 1 a.u.).

APPENDIX D: TWO-PHOTON MODE EXAMPLES

The calculation can be extended to many photon modes
as it is shown in Appendix B. In this Appendix we show
examples of two-photon mode calculations in Figs. 6 and 7.
In particular, Fig. 6 shows the photon occupation numbers for
the two-photon modes, ω and 2ω. The occupation probability
tilts toward the ω axis, showing that the ω modes have higher
probabilities than the 2ω ones. Figure 7 is the same calculation
as is shown in Fig. 3(a), but with two-photon modes. Overall,
the two figures are very similar. The two-photon case reaches
higher energies and there are more level crossings. This is
because some of the states shown in Fig. 7 are 2ω states and
move higher faster. Increasing the number of photon modes
helps to reach higher j states and multiphoton modes might
be a way to select higher j states or single out a desired j
value.
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ω
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10

12

14

16

18

E

FIG. 7. Energy levels as a function of ω for the two-photon
modes. The photon frequencies are ω and 2ω, the coupling vectors
are λ and −λ, with λ = √

ω (ω0 = 1 a.u.)
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FIG. 8. (a) Probability of the occupation of a jn subspace (λ =
0.5 a.u. and ω = 0.5 a.u.), Pj (n). (b) Pn = ∑

j Pn( j). (c) Pj =∑
n Pn( j). ω0 = 1/3 a.u. is used in the calculations.

APPENDIX E: DECOMPOSITION IN DIFFERENT SPATIAL
AND PHOTON SPACES

The total wave function will be a linear combination of
the φ(r)ψ j (R)|n〉 components. The probability of a given
component is given by

Pj (n) = |c0
jn|2 (E1)

and depends on ω0, ω and λ. An example for Pj (n) is given in
Fig. 8(a). First, we note that due to the structure in Eq. (2.52),
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the probabilities follow a checkerboardlike structure: odd
photon numbers couple to odd j and even photon numbers
couple to even j. The probabilities decrease for large photon
numbers. The low CM excitations, j = 0, 1, 3, are the most
dominant terms for low photon numbers. The probability of
the higher CM excitations ( j = 2, 3, 4, 5) first increases with
the photon number, then reaches a maximum and starts to
decrease.

Figure 8(b) shows the sum Pn = ∑
j Pn( j). By increasing

λ, the higher photon spaces are coupled and the occupation
of lower photon numbers increases. However, the effect of
ω is more complicated. The coupling increases as

√
ω but

with larger photon frequency the photon harmonic oscillator
states move higher in energy (nh̄ω) and their occupation de-
creases. This latter effect seems to be dominant for smaller
λ. In Fig. 8(b), in the case of λ = 0.5 a.u., Pn is the same for

n = 0, 1 for ω = 0.5 a.u. and ω = 5 a.u., but for higher n, Pn

is much smaller for ω = 5 a.u. For higher λ values this effect
becomes less important. The oscillations (the even states have
higher occupation than the odd states) in the case of ω = 0.5,
λ = 5 a.u. always appear when ω is much smaller than λ and
probably due to the checkerboardlike coupling.

Figure 8(c) shows the sum Pj = ∑
n Pn( j). By increasing

ω, the occupations of the low photon number states decrease
and the occupations of the higher states increase. Increasing
λ increases ωu and pushes the CM states higher, and those
states do not couple with the low j sector, so increasing λ

decreases Pj . The effect of λ is similar to ω in the previous
case: λ increases the coupling, but larger λ means larger ωu

and the CM states are pushed higher. For low ω, increasing λ

relaxes the occupation, but for large ω, the coupling dominates
and the λ increases the occupation of the higher n states.
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