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Doping a Mott insulator in an Ising-Kondo lattice: Strange metal and Mott criticality
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Metallic quantum states coined strange metal (SM), with robust linear-7 resistivity, have been widely observed
in many quantum materials under strong electron correlations, ranging from high-7, cuprate superconductors
and organic superconductors to twisted multilayer graphene and MoTe,/WSe, superlattices. Despite decades of
intensive studies, the mystery of SM still defies any sensible theoretical explanation and has been a key puzzle in
modern condensed matter physics. Here, we solve a doped Mott insulator model called an Ising-Kondo lattice,
which includes static spin fluctuation. With Monte Carlo simulation, the Ising-Kondo lattice unambiguously
exhibits SM phenomena accompanied with quantum critical scaling in observables, e.g., resistivity, susceptibil-
ity, and specific heat. A closer look at SM reveals the breakdown of Landau’s Fermi liquid theory without any
symmetry breaking, i.e., the violation of Luttinger theorem. Our paper reveals that the long-overlooked static
fluctuations in literature may play an essential role in non-Fermi liquid behaviors in correlated electron systems.
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I. INTRODUCTION

Metallic quantum states deviated from the prediction of
Landau Fermi liquid (FL) theory have been widely observed
in many quantum materials since the discovery of high-T
cuprate superconductor [1-3]. Among these non-Fermi liquid
(NFL) states, the strange metal (SM) with robust linear-T7
resistivity stands out due to its ubiquitousness in correlated
superconductors, heavy fermion compounds and recently un-
covered twisted multilayer graphene. Since in many cases of
copper oxides the superconductivity emerges directly as an
instability of the SM phase, it is believed that understanding
the nature of SM should be the key step to solve the high-T7;
problem in cuprates and to establish the general framework
for NFL phenomena [1-13].

To attack SM, plenty of intriguing theoretical proposals are
created wherein the aspect of doped Mott insulator (MI) due
to Phil Anderson suggests a fruitful pathway culminated in
classic SU(2) gauge field theory [1,14]. Unfortunately, the
strong coupling nature of gauge theory hinders the correct
solution of doped MI though the perturbative calculation does
predict a linear-7 behavior in resistivity [15,16]. Alterna-
tively, recent progress on the doped Hubbard model armed
with state-of-the-art dynamic-mean-field theory (DMFT) re-
visits the issue of doped MIs, concluding that the elusive SM
behaviors are caused by the doping-driven Mott quantum crit-
icality [17,18]. Furthermore, a determinant quantum Monte
Carlo (QMC) simulation performed in finite clusters confirms
SMs at high-T regimes [19]. In addition, recent research
revealed the violation of the Luttinger theorem in several
typical strongly correlated electron models, e.g., the spinless
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t —V model, the t — J model, and also the Hubbard model,
which unambiguously suggests doping the correlation-driven
insulator/MI leads to the breakdown of Landau FL [19-28].

However, we have to emphasize that the mystery of SM has
not been demystified due to the following reasons: (1) Since
nonlocal spatial fluctuation, which is important in quantum
criticality, has been greatly neglected in DMFT, the Mott
criticality-driven SM phenomena may be fragile when spatial
fluctuations are recovered [17,18]. (2) The QMC study only
establishes the existence of SM at rather high-7 (T ~ ¢) while
the fate of SM at physically more relevant low-T regime (7' <
t, relevant to realistic experiments) has not been clarified due
to the notorious fermions minus-sign problem in QMC [19].
(3) Even though the Hubbard model has been carefully ex-
amined, however, models besides Hubbard are also crucial to
the understanding of many-bands systems like heavy fermion
compounds [29-31].

Motivated by the aforementioned important progress and
unsolved issues, in this paper we seek a clear and com-
plete understanding about SM behaviors in doped MI with
the help of an alternative model, which allows for nearly
complete numerical treatment. Our departure is the doped
Ising-Kondo lattice (IKL) model, which naturally mimics the
strongly correlated f-electron materials CelrSn [32], TmB4
[33], hidden order compound URh,Si, [34] and, at the
same time, could be simulated by the unbiased Monte Carlo
methods.

In this solid platform, we find that the competition between
local and itinerant tendency leads to a rich phase diagram (the
schematic phase diagram in Fig. 1) and reveals the desirable
nontrivial SM physics. The macroscopic anomalies of SM are
observed, which include the robust nonsaturating, 7 -linear
resistivity and the logarithmic temperature dependence of
specific-heat coefficient. Such exotic SM behaviors beyond
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FIG. 1. Schematic phase diagram of the hole-doped Ising-Kondo
lattice (IKL) model. The low-temperature regime is divided into
an antiferromagnetic insulator (AFMI) and a ferromagnetic metal
(FMM) by a first-order transition, which transforms to a weak first-
order transition and finally ends at the critical end point (CEP).
At high temperature above CEP, a quantum critical region (QCR)
is induced by doping-driven Mott insulator-metal transition, which
displays the strange metal (SM) behaviors. Out of QCR, there exists
a Mott insulator (MI) at lower doping and a non-Fermi liquid (NFL)
at a higher doping. Inset in MI shows two-band structure active at
strong coupling while only lower band is depicted for SM and NFL.

the Landau’s quasiparticle paradigm turn out to be intrinsi-
cally connected with the quantum criticality, which has also
been observed in the vicinity of the quantum critical point
(QCP) in various quantum critical heavy electron materials
[4]. We also find that the absence of a quasiparticle picture is
clearly indicated by a strong violation of Luttinger theorem
throughout the paramagnetic regime in our model’s finite-T
phase diagram.

The remainder of this paper is organized as follows: In
Sec. II, the IKL model is introduced and its phase diagram is
briefly discussed. In Sec. III, the SM state is demonstrated by
the calculation of resistivity and specific heat. The quantum
critical scaling is also shown in this section. In Sec. IV, we
show that the Luttinger theorem is violated in the IKL in
terms of direct numerical calculation. Finally, Sec. IV gives
a discussion on the relation of the IKL to the other models
and ends with a summary.

II. MODEL AND PHASE DIAGRAM

We consider the IKL model on square lattice whose Hamil-
tonian is defined as

N o J A b .
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where éja (Cjo ) is ¢ electron’s creation (annihilation) operator
with spin o =1, | at site j. S‘j denotes the spin-1/2 localized
moment. In the language of heavy fermions, the c electron
corresponds to the conduction electron while the localized
moment results from the low-energy multiple states of 4f or
5f electrons [34]. The z-term denotes the hopping integral and
only nearest-neighbor hopping is considered for simplicity. J
is the longitudinal Kondo coupling between the ¢ electron and
localized moment at the same site [Fig. 2(a)]. In our previous

work [35], a MI has been established in a half-filled system
(u = 0) in the strong coupling regime (J/¢t > 1), which has
a clear gap in the single-particle density of states around the
Fermi energy.

Considering some readers may not be familiar with the
above IKL model, we emphasize that it can be seen as the
anisotropic limit of the more familiar Kondo lattice model
[35]. The general (anisotropic) Kondo lattice model is written
as

A= =13 8 25 + 3 [1(85 + §i5) +555]

i,jo J

~w) tia, 6)
jo

where the spin density of Ehe c electron at the j site is de-
scribed as 3¢ =}, éja%éjaf with « = x,y,z. J,J are
the transverse and longitudinal Kondo couplings, respectively.
Now, we realize that in the limit J, /J = 0, the above Kondo
lattice reduces to the IKL as expected.

Inspired by the general consensus that doping the undoped
MI would give rise to SM behavior, in this paper, we dope the
half-filled IKL system and focus on the hole doping case by
tuning the chemical potential w. Since it is straightforward to
translate the results in the hole-doping case to the electron-
doping one, the latter will not be explicitly studied in this
paper.

The method of choice for solving our IKL model Eq. (1) is
the classical Monte Carlo simulation, which has been success-
fully used in the famous Falicov-Kimball model [36]. For the
IKL, we observe that [S‘j A ] = 0, thus the local moment S'j at

each site is conserved. Then, if we choose eigenstates of S‘j as
basis, Eq. (1) will reduce into an effective free fermion model
under fixed background {g;}, (¢; = £1, $’§|qj) = %lqj)) thus
permits a straightforward classical (lattice) Monte Carlo sim-
ulation. The detailed algorithm of the Monte Carlo simulation
for IKL can be found in the Supplemental Material of our
previous work [35].

Here, the Monte Carlo simulations of the IKL are carried
out on the square lattice with periodic boundary conditions,
where a 20 x 20 square lattice is mainly used. Accordingly,
the two-dimensional Brillouin zone is sampled by a 20 x
20 k-point grid. The nearest-neighbor hopping integral is used
as the unit (r = 1) to measure all energy scales. To attack the
Mottness, we focus on the strong coupling regime (J = 14)
[35].

In the IKL model, the competition between itinerant and
local tendency leads to different magnetic orders, and thus
further conspire to construct rich quantum states, including
antiferromagnetic insulators (AFMIs), ferromagnetic metal
(FMM) at low temperature, and paramagnetic phases as MI,
SM, NFL at high temperature [Fig. 2(b)]. The AFMI state has
finite checkerboard order and the Fermi energy is just located
in the gap, while the FMM state has finite ferromagnetic order
and the density of states is finite around the Fermi energy. The
magnetic-paramagnetic phase transition [Fig. 2(b), purple line
with circle] is determined by the peak in heat capacity [see
Fig. 2(d)] and belongs to the two-dimensional Ising universal-
ity class, which is similar to the half-filled IKL [35]. There is
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FIG. 2. Schematic picture, phase diagram of IKL, and SM behaviors in QCR. (a) Schematic representation of the doped IKL. (b) Phase
diagram of the doped IKL model on square lattice in . — T plane with J = 14. Rich quantum states include AFMI, FMM, M]I, insulatorlike
non-Fermi liquid (NFL-I), SM, and the second non-Fermi liquid (NFL-II). The background is a color map of the resistivity. Thermal fluctuation-
driven magnetic-paramagnetic phase transition is denoted by the purple line with circle mark. The first-order phase transition at ground state
is marked by a blue asterisk. The CEP is marked by a red pentagram. The QCR is delimited by the crossover temperature (red dashed
line). (c) Unconventional quantum scaling behavior of resistivity in the QCR. Family of resistivity curves are calculated along lines parallel
to the separatrix u*(7) and all can be rescaled in the formula o(T, $u)/p*(T) = f(T /To(51)). Inset plots the quantum scaling behavior
of thermodynamic properties, i.e., heat capacity C, of ¢ electron and the susceptibility of f electron x,;. (d)—(f) Anomalous transport and
thermodynamics in the SM. (d) Specific heat under different dopings. The peak position corresponds to 7, of magnetic-paramagnetic phase
transition. (e) The same plot of specific heat in paramagnetic region with the y axis magnified. In SM, C(T')/T exhibits logarithm temperature
dependence. The solid line is fitted by a 1og(7*/T ) function. (f) Resistivity under different dopings. In the QCR, p(T') satisfies a power-law
dependence of temperature (o(T) = py + AT"). With increasing doping, the resistivity changes from 72-dependent behavior (1 = —2.76) to

a linear-T dependence (1 = —3.0, —3.4, —4.0), indicating the SM behavior

a lack of quasiparticles in all high-temperature phases. In the
metallic region, the NFL state is confirmed by the anomalous
resistivity or capacity heat behavior, whereas the SM state
is more particular to additionally show quantum criticality
and a logarithmic temperature dependence of specific-heat
coefficient.

There exists a critical end point [CEP, see the red penta-
gram in Fig. 2(b)], below which a first-order phase transition
separates the IKL system into AFMI and FMM. Above CEP,
a QCR with unusual quantum scaling behavior is uncovered.
Our main result about the doped IKL is summarized in the
u — T phase diagram [see Fig. 2(b)], where the color bar
denotes resistivity scaled by the one in the separatrix line
(dotted line) of QCR. We also elaborate a phase diagram in
the n. — T plane in Supplemental Material [37]. Although
rich quantum states are uncovered, in the rest of the paper we
will not further discuss the properties of AFMI, FMM, and
MI states. More details about low-7 magnetic states can be
found in the Supplemental Material [37]. Next we will focus
on the nontrivial properties of the SM state and the violation
of Luttinger theorem.

III. STRANGE METAL AND QUANTUM
CRITICAL SCALING

As we know, the SM state is a particular NFL state with
nontrivial characteristics. The presence of the SM state could
be ascertained by anomalous thermal and transport proper-
ties [5,6,38,39]. We plot the evolution of heat capacity C(T)
and resistivity p(7") with varying doping in Figs. 2(d)-2(f).
In the SM phase, the heat capacity coefficient C(T)/T in-
creases with decreasing temperature, exhibiting an obvious
dependence proportional to log(7*/T) before approaching
the magnetic phase transition, where 7* is the cutoff temper-
ature. As for resistivity, an obvious linear-7' dependence is
revealed, which is nonsaturating with increasing temperature.

It has been suggested that it is the quantum critical physics
that leads to both linear-T' resistivity and high-7, super-
conductivity. In most heavy fermion materials, the linear-T
resistivity is observed when tuning some external parameters
like magnetic field and pressure to create the QCP [40—44].
In our model, even without explicit second-order/continuous
quantum phase transition, canonical signatures of quantum
criticality are uncovered in a fanlike region together with
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the SM phase in various physical properties, including the
resistivity, heat capacity, and the magnetic susceptibility. In
Fig. 2(c), we plot the unconventional quantum scaling be-
havior of these transport and thermodynamic observables. As
a whole, resistivity in the QCR [see Fig. 2(f)] demonstrates
a power-law dependence of temperature, satisfying p(T') =
po +AT", and the n gradually changes from 2 to 1 as the
crossover to SM is occurring [37]. Detailed study indicates
the resistivity of QCR satisfies the following quantum critical
scaling:

p(T, 8u) = p™(T)f(T/To(Sp)), 3

where To(Sp) = c|dul?’, Su = u — w*(T) and w*(T) is the
critical zero-field trajectory corresponding to the separatrix
line. p*(T) is calculated for u = w*(T) and f(x) denotes the
unknown scaling function. The resistivity on the separatrix
is almost independent with temperature. Note that at high
temperatures, the resistivity curves depend weakly on differ-
ent parameters, while as temperature is reduced the critical
line separates resistivity curves to two branches. These results
are crosschecked by a DMFT study [37]. Here, we refer the
insulatorlike branch to the first NFL state (NFL-I) and the
metallic one to SM, respectively. Out of QCR, at the high
temperature region with larger doping, we dub the NFL state
without quantum scaling behavior as the second non-Fermi
liquid (NFL-II) [37].

The resistivity curves in the QCR region display the bi-
furcating characteristic. Crossing the center line, there is a
change in trend with varying temperature. Both branches
display the power-law scaling To(6u) = c|éu|?’ with the
same exponents zv = 1.25, and Tp(5u) vanishes as i — 0,
indicating a quantum criticality instead of classical phase
transition. As shown in Fig. 2(c), we reveal that the critical
exponent for ¢ electron [(zv), = 1.25] is different from the
one of the f electron [(zv); = 0.55].

In previous DMFT studies of the Hubbard model, the
separatrix line w*(7) (the so-called instability trajectory) is
determined as the minimum of curvature of the free-energy
functional, i.e., the so-called quantum Widom line [17,18].
However, this method is no longer feasible in our Monte Carlo
simulation. Fortunately, existing theoretical and experimental
studies have confirmed that the scaling behavior is not sensi-
tive to the choice of w*(7T") [18]. Therefore, in this paper we
alternatively determine the separatrix by the minimum of error
bar with varying doping at a specific temperature in Monte
Carlo simulation to mark the states in equal proximity to both
FMM and AFMI. The error bar is an appropriate quantity to
determine the separatrix, which has an intrinsic dynamic fea-
ture. Since the minimum of error bar infers that the calculated
quantity is least relevant to the magnetic configuration, thus it
corresponds to the state with no more tendency to either com-
peting phase. We carry out a careful Monte Carlo simulation
and reveal the separatrix is located at © = —2.76 (denoted as
red dotted line in all plots), which is almost independent upon
variation of temperature.

IV. VIOLATION OF LUTTINGER THEOREM

Given the unconventional quantum criticality, it is nat-
ural to further examine the quasiparticle properties in the

exotic SM phase. To this aim, we examine the validity of the
Luttinger theorem in our model [45-48], which states that
if Landau quasiparticle exists, the volume enclosed by the
Fermi surface is consistent with its density of particles. Such
theorem has been proved originally by Luttinger in terms of
perturbation theory [46,47], and later by Oshikawa’s nonper-
turbation topological argument [48]. It now has been accepted
as a key feature of FL. Mathematically, Luttinger theorem
means the Luttinger integral (IL) below must be equal to
density of particles (n.):

IL = Z / A%k “)

~ JoReGk.o=0y) 27

Here, G(k, w) is the retarded single-electron Green’s function
and 0 (x) is the standard unit step function with (x > 0) = 1
and O(x < 0) = 0. For the lattice model with finite sites, the
above momentum integral should be replaced by discrete sum-
mation. Frankly speaking, Eq. (4) is strictly valid only for zero
temperature, however, interesting physics like SM or other
NFLs often exist at finite-7. Here, we follow the recent QMC
study on the doped Hubbard model in Ref. [21] and still use
Eq. (4) to estimate the validity of Luttinger theorem at finite
temperature. [Temperature effect seems to be small at high-T
regime, see, e.g., Fig. 3(a)].

Interestingly, according to our Monte Carlo data, we see
the whole high-temperature region of the IKL violates the Lut-
tinger theorem heavily. The strong violation of the Luttinger
theorem is demonstrated in Fig. 3(a), which is robust with
arbitrary doping for the strong coupling (J = 14, IL > n.). It
suggests a robust NFL-like nature for all paramagnetic phases
in the phase diagram [see Fig. 2(b)], including SM. As a
reference, we also show that the Luttinger theorem works well
in the weak coupling case (J = 2, IL ~ n,), agreeing with its
FL nature. The extra feature in Fig. 3(a) is that the IL shows
incipient divergence around n, ~ 0.53, which is close to the
boundary of QCR.

The violation of Luttinger theorem could be characterized
clearly by the c electron’s single-particle spectral properties.
As shown in Fig. 3(b), the c¢ electron’s spectral function
Ag(w = 0) and the real part of Green’s function ReG(k, v =
0) at Fermi energy are carefully studied. We compare the IL
and electron density in FL (left panel), SM (middle panel),
and NFL-II (right panel).

According to Luttinger theorem, electron density can be
denoted by the size of the Fermi surface’s volume in the free
system. In Fig. 3(b), we use the white line to mark such a
Fermi surface for the free system. It shows nicely and clearly
the working of the Luttinger theorem for the FL. Under weak
coupling, the volume enclosed by the Fermi surface is consis-
tent with the one in the free system (n, = 0.36). It suggests the
presence of a quasiparticle, which means the correspondence
between interacting and noninteracting ¢ electrons is valid,
since in this weak coupling situation the volume enclosed
by the Fermi surface has not changed due to interaction. To
the contrary, both the SM (n, = 0.67) and NFL-II (n, = 0.31)
states display violation of Luttinger theorem, where the elec-
tron density is deviated from the volume enclosed by the
Fermi surface, underlying the destruction of the quasiparticle
in the paramagnetic regime of the doped IKL.
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FIG. 3. Violation of Luttinger theorem. (a) Luttinger integral
(IL) versus density of electron n.. In FL (J = 2), the electron density
is in accordance with the Luttinger theorem. At strong coupling (J =
14), IL strongly deviates from the density of electron for most doping
regimes, thus confirming its NFL nature. IL diverges close to the
boundary of QCR. Divergence is indicated by the arrow. (b) Spectral
function at Fermi energy Ax(w = 0) (upper panel) and real part of
Green’s function at Fermi energy ReG(k, w = 0) (lower panel) in
different high-temperature phases: FL (left panel, / =2, T = 0.4,
u=-0.8),SM{ =14,T = 0.4, u = —3.0, middle panel), NFL-II
(=14, T =04, u = —4.6, right panel). Electron density is de-
noted by the size of the Fermi surface’s volume in a free system
(white circle). The maximum of spectral function corresponds to the
Fermi surface under strong coupling.

A careful reader may ask why physically SM and NFL
show the violation of Luttinger theorem. Here, we provide
a possible explanation. First, one may note that when J/t is
large (e.g., J = 14), the single-particle density of states in SM
and NFL shows a two-band structure just like the familiar
upper and lower Hubbard subband in the Hubbard model (see
Fig. 6 in the Supplemental Material [37] or in our previous
paper Ref. [35]). In contrast, if / = 0, only one band exists as
the free electron band. Then, the evolution from the one-band
to two-band picture is not consistent with the correspondence
between noninteracting and interacting electrons, which is the
core idea of Landau’s quasiparticle and the FL theory. Thus,
the violation of Luttinger theorem is expected in SM and NFL,
which are both paramagnetic states in doped ML

V. DISCUSSION AND CONCLUSION

We remark that a similar phase diagram like Fig. 2(b)
has been reported in the Hubbard model with the DMFT

approximation [17,18]. Comparing the anomalous phenom-
ena in the IKL and the Hubbard model, we find these two
models share several common properties around MI-metal
transition as follows. (i) A robust NFL state is revealed around
the transition with a linear-T resistivity [e.g., Fig. 2(f)]. (ii)
The Mott transition turns out to be third order, indicated by
the divergence of %% (iii) Resistivity satisfies a quantum
critical scaling like Eq. (3) with a similar critical exponent
[(zv)1xe = 1.25, (2V)nubbara = 1.35].

There also exist some differences. The doped MI in the IKL
has a rigid band while in the Hubbard model spectral-weight
transfer leads to a nonrigid band. Furthermore, our Monte
Carlo simulation in the IKL includes both local and nonlocal
correlation and, consequently, the low temperature phases of
the IKL turn out to be magnetic ordered states. Even without
QCP, the quantum scaling behavior is confirmed in this solid
platform. However, the DMFT applied in the Hubbard model
makes a strong approximation such that the magnetic orders
are suppressed at low temperature. Considering multiple low-
temperature competing orders are all neglected, the uncovered
QCP and even the quantum critical behavior in DMFT study
might be artificial.

Comparing the IKL to solvable doped MI in the Hatsugai-
Kohmoto (HK) model [49], one can see that no Luttinger
surface exists in the IKL (also in the Sachdev-Ye-Kitaev
model and the Hubbard model) while the HK supports robust
Luttinger surface characterized by zeros of Green’s function.
Thus, the Luttinger surface may not be a generic feature for
doped MI though it does kill FL.

In conclusion, by studying a numerically solvable doped
MI, exotic SM behaviors are revealed in the QCR, includ-
ing the nonsaturating 7 '-linear resistivity and the logarithmic
temperature dependence of the specific-heat coefficient. These
exotic behaviors elucidate the absence of quasiparticles, and
it is further confirmed unambiguously by the violation of
Luttinger theorem throughout the whole paramagnetic region
of the phase diagram. Compared with the classic Hubbard
model, our study suggests that SM, Mott quantum criticality,
and the presence of Fermi surface are the intrinsic features
of doped MI, which are promising to be revealed in generic
strongly correlated electron systems.
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APPENDIX A: PHASE DIAGRAM WITH
COMPRESSIBILITY

A similar phase diagram is also elaborated with color-
coded compressibility, on both 7 — u and n. — T plane (see
Fig. 4) to provide a more intuitive insight into IKL. The MI
state turns out to emerge in a quite small region with Fermi
level in the band gap. Since in the band gap the particle
number is not sensitive to the change of chemical potential,
the MI region looks much larger in the T — p phase diagram.
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FIG. 4. Phase diagram of the doped IKL in the background of
color-coded charge compressibility in (a) u — T plane, (b) n, — T
plane. The low-temperature regime is divided into an AFMI and a
FMM by a first-order transition, which transforms to a weak first-
order transition and finally ends at the CEP. At high temperature
above CEP, a QCR is induced by doping-driven Mott insulator-metal
transition, which displays the SM behavior in the metallic part. We
refer the insulatorlike part to NFL-I. Out of QCR, there exists a MI
at lower doping and the NFL-II at a higher doping.

Actually, as shown in Fig. 4(b), the SM behavior sustains
within a quite wide range of doping.

APPENDIX B: DYNAMICAL MEAN-FIELD ANALYSIS

In this section, we cross-check the scaling behavior ob-
served by Monte Carlo simulation with the single-site DMFT.
Even without nonlocal correlations, the DMFT could still
provide a completely nonperturbative description of the strong
interaction effect. Especially at the high temperature where
most nonlocal correlations are destroyed by thermal fluctua-
tion, the DMFT is quite reliable. Its result could help identify
the effect of insulator-metal crossover and exclude the influ-
ence of magnetic transition. The QCR is just located in the
paramagnetic region and could be understood in the frame-
work of DMFT.

In Figs. 5(a) and 5(b), we plot the scaling behavior of the
resistivity curves parallel with the separatrix line. We report
that the results obtained with Monte Carlo simulation and
DMEFT qualitatively agree with each other at / = 14. In both
branches, the scaling parameters are chosen in the power-law
form with the same exponents. The scaling holds in the doping
region (—0.04 < 6u < 0.04), which is very small due to the
strong correlation. In addition, we note that a perfect mirror
symmetry is revealed at all parameters. As in the analysis in
previous studies [18], the authors provide a smart method to
evaluate the exponent,i.e., in the systems with such remark-
able mirror symmetry the resistivity curve along the separatrix
could be fitting with exponent zv as

9logp* (1. T
dtogp™ (. 1) p-t (B1)
au

With this formula, we display a perfect fitting behavior
in Fig. 5(c) and it does cover a quite large temperature
scale. The exponent is fitted as zv = 1, which is applied
in Fig. 5. The critical exponent in the DMFT zv =1 in-
dicates the scaling behavior might belong to the classical
Ising universality class. What’s more, the low-temperature
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FIG. 5. (a) Resistivity curves calculated by dynamical mean
field theory (DMFT), which are plotted along different trajectories
—0.04 < éu < 40.04 with respect to the separatrix line (black dash
line). (b) Scaling behavior of resistivity. (c) Derivative of resistivity
with respect to i (dp(p, T)/dul,, ) along the separatrix line. It fits
well to a power-law curve with exponent —1, indicating the scaling
formula exponent zv = 1.

magnetic transition emanated from the CEP also displays
the standard classical liquid-gas universality class. This Ising
scaling could be understood in the way that the phase dia-
gram is mainly divided to two magnetic states, i.e., the FM
one and the AFM one, and these two dominant phases as
two whole parts compete with each other. Thus it leads to
kinds of Ising-like criticality through the entire parameter
region.
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FIG. 6. Density of states (DOS) in low-temperature regions (left
panel, T = 0.06) and high-temperature regions (right panel, T =
0.4). Position of Fermi level is marked with right dashed line.

APPENDIX C: MAGNETIC STATES AT LOW
TEMPERATURE

1. Magnetic states

In previous studies about the half-filling IKL [35], we
confirm the theorem proved by Kennedy and Lieb [50] with
Monte Carlo simulation, i.e., the ground-state configuration
{gi} has the twofold degenerated checkerboard order g; =
+(—1)/. In this paper, we report that, not only for the half-
filling situation, at any doping level the IKL system always
has a magnetic-ordered ground state. In addition, due to the
strong longitudinal Kondo coupling, ¢ electrons construct the
same magnetism with local moments. In this section, we will
illustrate the mechanism of each state and analyze transition
properties between different states.

At the left side of CEP, as shown in Fig. 2(b), the {g;}
has Néel AFM configuration. Around the half-filling situation,
IKL is a MI with AFM order. With increasing doping, there
is a crossover to the normal AFMI state. Further increasing
doping holes leads to the FMM state, when across the CEP
to its right side. We confirm different magnetic structures
with a significant structure factor in the Brillouin zone. The
insulating and metallic states are confirmed by the behavior of
DOS and resistivity. In the left panel of Fig. 6, we demonstrate
the DOS at different doping levels. The zero DOS(w = 0) at

FIG. 7. Schematic explanation of the magnetic structure at differ-
ent doping levels. f electrons are denoted by red balls, and itinerant
electrons are denoted by green balls. (a) Around half filling, anti-
ferromagnetic (AFM) configuration permits the virtual hopping of
¢ electrons, leading to delocalization with lowered kinetic energy
E(gz) ~ — g. In the ferromagnetic (FM) background, the virtual hop-
ping is instead forbidden by the Pauli exclusion principle. (b) Away
from half filling, FM configuration could enhance the conductivity
of ¢ electrons, where ¢ electrons could freely move in the FM
background without the charge of energy elevation. To the contrary,
electron movement would be hindered in the AFM configuration,
since the spin orientations of c¢ electron and its neighbor local
moments are parallel to each other and thus hopping will greatly
enhance the energy (AE ~ ﬁ).

small doping and finite DOS(w = 0) at large doping suggest a
transition from insulator to metal. AFMI is characterized by a
fully open gap and increasing resistivity with decreasing tem-
perature. In the FMM state, it instead has finite DOS(w = 0)
and the resistivity decreases with decreasing temperature. In
Fig. 6(c), (left panel), the clear quasiparticle peak suggests
a FL-like behavior. Even at the metallic state (u = —5, —6),
resistivity still has an upward tendency at sufficiently low tem-
perature, which is attributed to the weak localization property
of a two-dimensional system.

The mechanism of different magnetism at small and large
dopings is illustrated in Fig. 7, respectively. Under strong
interaction, the Kondo coupling term could be taken as the
zero-order Hamiltonian while the hopping term is merely
taken as perturbation. Due to strong correlation, double
occupation would significantly elevate the energy and give the
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FIG. 8. DOS calculated at T = 0.06 at different levels of doping.
For clarity, we adjust the x axis w to unify the location of gap in
different curves.

energy change AE ~ zJT’ thus c¢ electrons can hardly move on
lattice. Therefore, around half filling, the ground state is insu-
lating, where ¢ electrons localized at each site (n. < 1). The
tendency from antiferromagnetism to ferromagnetism with
increasing doping can be understood under the framework
of perturbation theory. In antiferromagnetism, the process of
virtual hopping of ¢ electrons leads to delocalization and thus

decreases the kinetic energy [E(gz) ~ — %, see Fig. 7(a)]. This
mechanism is similar to the one in the half-filled Hubbard
model [51]. As to large doping, the lattice is away from half
filling and hopping of ¢ electrons is no longer forbidden. Thus
the charge transport would be hindered by the presence of an
AFM background, whereas the FM background can greatly
enhance the conductivity. (In the AFM background, spin of
¢ electron would be antiparallel to the on-site local moment,
whereas parallel to the nearest-neighbor local moment.) Thus,
with increasing doping the delocalization of ¢ electrons occurs
together with a magnetic-structure transformation, leading to
a FMM state.

Actually, before approaching the AFMI-FMM phase tran-
sition, the competition between different magnetic structures
is already present and leads to spin excitations. In Fig. 8,
we display the DOS around the transition in the AFMI
state. When exceeding a critical doping (around p = —2.2),
a bound state emerges in the fully opened Mott gap. The
bound state is caused by the domain-wall excitation of an
AFM configuration in the parameter region away from half
filling. It is the lead up to the magnetic phase transition.

2. Magnetic phase transition

The transition property of IKL is complicated, which
combines the competing between both metal-insulator and
AFM-FM structures. As shown in the main text, at ground
state the AFM-FM transition occurs around p. = —2.76 and
is a strong first-order phase transition (marked by a blue
asterisk). In Fig. 9, we plot the finite-size scaling behavior of
checkerboard order parameter ¢, to investigate the transition
properties. In a small doping region (—2.80 < u < —2.74),
the checkerboard order parameter and the c-electron density
(n. ~ 0.76) are almost invariant [see Fig. 9(a)]. This suggests
a strong first-order phase transition located along a coexis-
tence dome, which includes the spin density wave states with
0,0), (w,m), (7,0), (0, ) order. The coexistence regime
would be much larger under a weak correlation. Increasing
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2
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S
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FIG. 9. Finite-size scaling behavior of checkerboard order pa-
rameter ¢, for different temperatures (a) 7 = 0.02, (b) T = 0.04,
() T =0.06, (d) T = 0.10. At sufficiently low temperature (a), the
flat order parameter suggests a first-order phase transition, along with
the coexistent region of antiferromagnetism and ferromagnetism.
The crossing of the different system sizes at T, reveals a scaling be-
havior belongs to a 2D Ising universality class at (b), (c), suggesting
a weak first-order phase transition. At higher temperature (d), the
scaling behavior vanishes, instead indicating a crossover or phase
transition in higher order.

temperature leads to a weak first-order phase transition. In
Figs. 9(b) and 9(c), the finite-size scaling behavior, which
belongs to the two-dimensional Ising universality class, indi-
cates a weak first-order phase transition. This phase transition
finally terminates at the CEP (T = 0.06, © = —2.76). Further

T3/2
0.2 0.4 0.6 0.8 1.0

100 —$-p $cCv 0
. i 40 .
6ol 100
40 ° 60
02 04 0.6 0.8 10

FIG. 10. Anomalous transport and thermodynamics in the first
non-Fermi liquid state (NFL-I, © = —2.0), which is the insulatorlike
part of the QCR. Specific heat (orange) displays a 7*/> dependence
at high-temperature region, which is out of the FL paradigm. The
resistivity (blue) increases with decreasing temperature, indicating
insulatorlike transport properties.
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FIG. 11. Anomalous transport and thermodynamics in the sec-
ond non-Fermi liquid state (NFL-II, © = —4.6), which is the high
temperature region out of the QCR. The resistivity (blue) displays an
obvious linear-7 dependence.

increasing the temperature, a metal-insulator crossover occurs
instead [see Fig. 7(d)].

APPENDIX D: NON-FERMI LIQUID STATES AT HIGH
TEMPERATURE

As shown in Fig. 4, there are four different states at high
temperature: MI, NFL-I, SM, and NFL-II. With increasing
temperature, an obvious transformation of DOS occurs with
the thermally driven magnetic-paramagnetic phase transition.
At high temperature, the two-peaked spectral function is

‘ - 29
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24 = : : 23— : :
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T T
27 ‘ T
o MC
—px T1.8
25+
Q
23+
1n=-2.9
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FIG. 12. Resistivity around the crossover from NFL-I to SM.
The resistivity changes from T2-dependent behavior to a linear-T
dependence.
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FIG. 13. Finite-size effect of the violation of the Luttinger theo-
rem. The Luttinger integral is calculated in systems of different sizes
(N; = 400, 900, 1600).
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robust (see the right panel of Fig. 6). Due to strong coupling,
most paramagnetic region of doped IKL displays robust NFL
behavior, which is indicated by the violation of Luttinger’s
theorem.

We refer the insulatorlike part of QCR to the NFL-I. In
Fig. 10, we demonstrate the anomalous transport and ther-
modynamics of the NFL-I state (u = —2.0). In NFL-I, the
capacity heat displays an obvious 7?2 dependence, which
is out of the FL paradigm. As shown in the main text, the
resistivity curves display unconventional quantum scaling be-
havior. However, the insulating properties dominate in a quite
large temperature region and thus the resistivity cannot be well
scaled by 7*.

In Fig. 11, we demonstrate the anomalous transport and
thermodynamics of the NFL-II, which is referred to as the
large doping regime out of QCR. In the NFL-II a linear-T
resistivity is revealed. We distinguish the NFL-II from SM
by the absence of both quantum critical scaling behavior and
logarithmic temperature dependence of the specific-heat coef-
ficient.

The SM regime displays a 7"-dependence resistivity. Close
to the crossover of NFL-I to SM, n changes from 2 to 1
gradually (see Fig. 12).

APPENDIX E: FINITE SIZE EFFECT OF VIOLATION
OF LUTTINGER THEOREM

At high occupied situations, the Luttinger integral far devi-
ates from n., where IL ~ 2n, is satisfied. When n,. < 0.53,
the curves are closer to IL = n.. Here we check the effect
due to the finite size and the Luttinger theorem is discussed in
systems of different sizes (NV; = 400, 900, 1600). As shown in
Fig. 13, the deviation is robust although the value at small n,
is smaller than the high occupied situation. For strongly corre-
lated systems, the Luttinger theorem is violated in the almost
doping regime. On the contrary, at the weak coupling situation
the Luttinger integral is exactly on the n, curve (J = 2). This
result is reasonable since the strong coupling induces robust
two-peak spectral function with varying doping. The robust
Mott gap destroys the quasiparticle picture.
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