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Anomalous spin exciton with a magnetoroton minimum in a quantum
Hall ferromagnet at a filling factor ν = 2
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In ZnO-based two-dimensional electron systems with strong Coulomb interaction, the anomalous spin-exciton
branch is revealed. As probed by inelastic light scattering, in a ferromagnetic quantum-Hall state with the filling
factor ν = 2, a spin exciton has a negative momentum dispersion with steepness dependent on the electron
density. The negative dispersion of the spin exciton is associated with its interaction with higher-energy spin-flip
modes that exist near ν = 2. Surprisingly, the anti-Stokes light scattering on spin excitons at ferromagnetic state
ν = 2 is amplified by orders of magnitude, indicating the macroscopic accumulation of these excitations. The
experimental findings are confirmed by the exact diagonalization method—these calculations show a magnetoro-
ton minimum in the dispersion of spin excitons and also the attractive interaction between magnetoroton spin
excitations.

DOI: 10.1103/PhysRevB.104.165144

I. INTRODUCTION

The physics of collective effects in two-dimensional elec-
tron systems (2DESs) has brought about a new stream of
puzzles with recent progress in the fabrication of new ul-
trapure heterostructures with strong interaction—ZnO, AlAs,
GaN, SiGe, and others. Among them, the material parameters
of MgZnO/ZnO heterostructures enable the most direct ac-
cess to the properties of strongly interacting electrons, since
the material is single valley, with weak spin-orbit interaction
and, most importantly, hosts 2D electrons with high values of
Wigner-Seitz parameter rs � 1 at extra-high mobilities [1].
The quality of ZnO-based systems has recently reached a level
sufficient for the brightest collective phenomena—fractional
quantum Hall effect (QHE) [2], Stoner transition with and
without quantizing magnetic field [3,4], and even Wigner-
crystallization [4] at rs ∼ 30.

The explored collective effects in strongly interacting
2DESs raise many questions concerning the modification of
their energy spectrum, the microscopic structure of the ground
state, and the properties of excitations. The increased role of
many-particle interaction, dominating over the kinetic energy,
modifies the character of electron-electron correlations and
complicates their analysis due to the lack of a small parameter
in theory. It is thus expedient to investigate the properties
of the simplest excitations in 2DESs, which determine the
stability of many-particle phases and their energy spectrum.
The easiest way to do this is in the QHE regime: the sys-
tem is incompressible, the kinetic energy of electron states is
completely quantized, and the electron energy scales in the
magnetic field can be separated.

In QHE states, the collective excitations, called magne-
toexcitons [5], often present quasiparticles with intriguing
properties. Magnetoexcitons carry information of the many-

particle properties of QHE systems, their energy scales,
define the energy gaps of incompressible states [6,7]. In
specific cases, the lowest energy magnetoexcitons acquire
extraordinary properties, such as extra-long lifetimes in the
millisecond/second scale [8], magnetoroton [9], and magne-
togravitonlike [10] peculiarities in dispersions, bose, or anyon
statistics. Physics becomes more and more fascinating when
these quasiparticles accumulate macroscopically [11,12] in
the system and even form coherent condensates.

For direct-gap semiconductor heterostructures, such as
MgZnO/ZnO, the energy and dispersion of collective exci-
tations can be effectively probed by inelastic light scattering
(ILS or Raman method). In different states of the QHE, the
set of excitations is specific, and the many-particle contribu-
tions to their energies correspond to exchange and correlation
properties. Nontrivial findings have been explored at rs � 1
in the state of quantum Hall ferromagnet at ν = 1. The most
notable change concerns the scale of exchange interaction
of spin-polarized electrons [13,14]—it is suppressed dramati-
cally from the level e2/εlB to values of the order of cyclotron
energy h̄ωc.

At other integer filling factors, electron-electron correla-
tions can rearrange the Landau level (LL) sequence, which
results in phase transitions. In particular, at ν = 2 the system
switches from a paramagnetic (PM) to ferromagnetic (FM)
spin configuration [2,3,15]. This QH state provides the most
straightforward platform for the controllable FM transition—
the energy competition between two spin-configurations,
where crucial parameters, such as Zeeman, cyclotron split-
tings, and exchange energy, are all separately controllable.
Meanwhile, the instability mechanism at ν = 2 has just been
explicitly described for one direction—from a PM to FM
state [16]. There, the energy gap is determined by the low-
est spin component of cyclotron spin-flip magnetoexcitons
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(CSFMs)—thoroughly studied in GaAs structures [17,18] and
ZnO-based systems [16]. These excitations are shifted fairly
below the cyclotron gap due to the correlation energy; more-
over, they demonstrate a magnetoroton minimum at q�B ∼ 1.
CSFM excitations in magnetoroton minimum are extremely
long-lived; they can accumulate and form macro-occupied
coherent states [11]. Eventually, the attractive interaction
between them leads to the dramatic gain in energy, their soft-
ening, and avalanchelike spin-flip process in the system—FM
instability.

The description of reverse transition requires analysis of
excited states for the FM phase, which is complicated due
to the strong Landau-level mixing and problems even for a
description of the FM ground state. The conventional Hartree-
Fock approximation (HFA) fails to describe the transition in
terms of soft spin-flip excited states—all excited states seem
to have energies above Zeeman splitting [19]. So, the micro-
scopic mechanism of the Stoner transition at ν = 2 and the
energy spectrum of the FM phase remained obscure.

Here we address this problem in a complex manner by
combining the Raman scattering method for probing the
lowest-energy magnetoexcitons and the exact diagonalization
method for calculating the energy spectrum of the sys-
tem. Raman scattering studies of the series of high-quality
MgZnO/ZnO heterostructures enabled us to reveal anomalous
momentum-dispersion of the lowest in energy spin exci-
tons (SEs) in the FM phase ν = 2. In contrast to magnons
in conventional ferromagnets or well-known quantum Hall
ferromagnet at ν = 1, here the excitation has a negative mo-
mentum dispersion with steepness strongly dependent on the
electron density. The theoretical description of spin excita-
tions was carried out by the exact diagonalization of the
electron spectrum and, alternatively, in terms of a single-mode
approximation for a system of Fermi-liquid quasiparticles
at their Landau levels. Both approaches give a comparable
answer and agree with the experiment. The anomalous dis-
persion of the lowest SE is the result of its hybridization
with higher spin-flip modes. Unexpectedly, the deep mag-
netoroton minimum appears below Zeeman energy in the
dispersion of the SE. Another impressive fact is that we found
experimental evidence of the macroscopic accumulation of
these low-energy SEs as a nonlinear growth of the anti-Stokes
Raman signal. It indicates the formation of a macroscopic en-
semble of SEs. The prerequisites for accumulation of SEs also
follow from their calculated dispersion with a magnetoroton
minimum, high density of states, and attractive interaction.

II. EXPERIMENTAL TECHNIQUE

Experimental studies were performed on five MgZnO/ZnO
heterostructures grown by molecular beam epitaxy [1]. A
2DES was formed in the ZnO layer near the heterointerface,
occupying one size-quantized subband. Electron densities
in samples ranged from 1.75× to 4.5 × 1011 cm−2 and
low-temperature mobilities exceeded 400 000 cm2/V s. The
measurements were carried out in a 3He vapor evacuation
cryostat with a bath temperature T= 0.35 K in magnetic fields
up to 15 T. To achieve the conditions of FM instability at
a filling factor ν = 2, it was required to have an oblique
orientation of the magnetic field to the normal of the sample.

In this case, the ratio between the values of the Zeeman and
cyclotron energies changed. For each of the samples, this ori-
entation of the magnetic field was chosen based on the known
phase diagram of the FM transition in the coordinates of the
electron density versus the tilt angle [3]. For the investigated
heterostructures, the slope ranged from 12◦ to 42◦. Optical ex-
periments were performed using a tunable Ti-Sp laser doubled
in frequency with a wavelength in the range 366–367 nm near
the direct optical ZnO gap. The magnetic field evolution of
the photoluminescence signal from 2D electrons was studied
to determine Landau quantization conditions, corresponding
to integer filling factors, and to track the signatures of the
FM phases or PM phases in the QHE state with ν = 2. The
inaccuracy in determining the magnetic field corresponding
to a phase transition point at ν = 2 was below δB ∼ 0.05 T.
The dispersion of collective excitations was measured by the
method of resonant ILS with a tunable transferred momentum.
For photoexcitation of the electronic system and recording
the scattered light signal, two quartz multimode optical fibers
were used, oriented at different angles to the sample sur-
face. The tilt angles of the magnetic field and quartz fibers
were controlled separately, using the rotational stage shown in
Fig. 1(a). The transferred momentum was set by the difference
between the projections of the incident and scattered photons
on the 2DES plane and reached values in the range 0.4×
to 3.0 × 105 cm−1. The lower boundary of this range was
associated with the influence of stray laser light. The upper
limit of the range was limited by trigonometry at close to the
tangent orientation of the fibers to the surface. The optical
fibers’ numerical aperture was NA=0.11, which led to an
easily calculated uncertainty of the transferred momentum. To
achieve maximum accuracy in measuring the energy of collec-
tive excitations, we used a spectrometer in combination with a
CCD camera providing a spectral resolution of 0.03 meV, with
further refinement of the position of the peaks by the method
of statistical averaging with N ∼ 20 − 30 of raw spectra taken
into account. The total error in determining the position of the
peaks reached 3-4 μeV.

III. MEASUREMENT OF SPIN EXCITON DISPERSION

The SE is the simplest magnetoexciton for FM QHE states.
Thank to Larmor’s theorem, its energy at small momenta is a
priori known—it is equal to the single-particle Zeeman split-
ting. It is also a long-living excitation, so its natural linewidth
lies in the GHz range and looks extremely fine in optical
spectra. Thus, Raman peak at energies close to Ez in FM states
can be easily identified as SE. The tricky thing is to discern a
subtle momentum dispersion for the parameters in ZnO. In
the case of the FM state ν = 1, the long-wavelength variance
of SE energies was on the level of tens of microelectronvolts
[14]. So, the seemingly cognate case of ν = 2 ferromagnet
requires no less accurate measurements. As shown in Ref.
[14], the statistical processing of an array of similar Raman
spectra makes it possible to surpass the peak position accuracy
beyond the spectrometer resolution. Analogously in the actual
study, we analyzed ensembles of SE Raman spectra, taken at
different laser wavelengths, to determine Raman shifts most
accurately. Then we studied the momentum dispersion of ex-
citations while changing the transferred momentum. An idea
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FIG. 1. (a) The schematic picture of the rotational stage, used
for the Raman experiment with variable transferred momentum and
in tilted magnetic field. (b) The cascade of Raman spectra of spin
exciton at ferromagnetic ν = 2 and different values of the in-plane
momentum (indicated next to curves). The flags are set on the centers
of mass of the peaks. The calculated Zeeman energy position is
shown by arrows. (c) The same sequence but for the paramagnetic
state with ν = 1.93. Here the SE dispersion is negligible. (d) The
processed momentum dispersion of SEs from panels (b) and (c).
The single-particle Zeeman terms are subtracted from the energies.
The dashed lines serve as a guide for the eyes. The inset shows a
single-particle representation of SEs for FM and PM phases.

of the SE dispersion magnitude can be obtained from the
set of spectral data shown in Fig. 1(b) for the sample with
ns = 2.85 × 1011 cm−2 at FM phase ν = 2. Contrary to the

case of a quantum Hall ferromagnet with ν = 1, the energy at
FM phase ν = 2 decreases with momentum.

Undoubtedly, the behavior of SE is determined by the spin
configuration of the ground state and the corresponding ex-
change contributions. It can be explicitly seen by controlling
the magnetic field parameter and entering the PM phase ν = 2
to explore an abrupt modification of SE energy. Measurements
at strict PM ν = 2 are impossible, but a deviation to ν = 2 − δ

to introduce a subtle asymmetry in occupation of spin sub-
levels enables to measure a PM SE. It reappears in the Raman
spectra, although with a significantly smaller scattering cross
section [Fig. 1(c)]. The SE-dispersion data at FM and PM
phases are plotted in Fig. 1(d): in the range of accessible mo-
menta, FM SE has a pronounced negative dispersion, whereas
the PM SE is practically dispersionless in the same range
of wave vectors. So, the compensation of exchange energy
contributions in the spin-symmetric PM phase near ν = 2
completely cancels the many-particle contribution to the SE
energy. The flattening of the dispersion follows even from a
simple consideration in the HFA model [5] and can be given
straightforwardly: E2−δ

SE (k) = EZ + δJ (qlB)2. Therefore, for
filling factors ν = 2 − δ, we obtain just the bare value of a
Zeeman energy.

The FM phase of ν = 2 is qualitatively different since half
the electrons have inverted spin projections and the exchange
contributions are pronounced. Unlike magnons in conven-
tional ferromagnets or those in quantum Hall ferromagnets
at ν = 1, the dispersion of our SE is negative and is not
described by a quadratic law. Consequently, the parameter of
spin stiffness is devoid of strict sense. Nevertheless, studies on
several samples with different electron densities show that the
dispersion steepness grows substantially with electron density
(see Fig. 2). Not all the data sets imply straight line approxi-
mations, and the eye-guide lines were drawn in a splinelike
manner. It will be shown below that dispersions of SEs at
ν = 2 are indeed of complicated functional form and, as a
rule, contain inflection points. The detailed knowledge of
these features was not pursued in the current experiment. A
much more important finding is that SE dispersion is neg-
ative everywhere—even for the lowest density 2D system
ns = 1.75 × 1011 cm−2, where FM transition occurs naturally,
already at normal B orientation.

IV. INTERACTING SPIN EXCITONS AT
FERROMAGNETIC STATE ν = 2

Below we consider the two approaches to the problem of
spin excitations at ν = 2—the exact diagonalization of the
energy spectrum for a finite number of electrons at few lowest
Landau levels and a statically screened HFA. First, we will
show numerically that the observed negative slope of the SE
dispersion at ν = 2FM at small momenta is a prerequisite of
a magnetoroton minimum. Then, using the screened HFA,
the negative dispersion of SEs will be explained in terms of
the four hybridized lowest spin-flip modes, involving states at
zeroth, first, and second LLs.

To describe such excitations, above all, it is necessary to
start from the ground state with full spin polarization, which
was experimentally confirmed in Refs. [2,3,16] and described
as a FM arrangement of electrons on a few lowest LLs. Due
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FIG. 2. Plots of SE dispersions at the ferromagnetic phase of
ν = 2 in the five studied samples. The energies are given minus the
Zeeman term. The magnetic fields and tilt angles are indicated on the
graphs. The abscissa is given in dimensionless wave vector qlB for
corresponding normal magnetic fields. The lines are guides for the
eyes.

to the essential LL-mixing effect for the parameters of con-
sidered 2DESs (rs > 5.5), the ground state has an essentially
correlated structure and should be calculated numerically. In
the present paper, it was sufficient to consider interacting elec-
trons in the basis of states on three lowest Landau levels. The
exact diagonalization procedure was performed separately for
the FM ground state and several excited states with different
total spin values. The discreteness of the numerical problem
was restricted by the number of flux quanta (or LL capacity)
NS from 9 to 10 and the twice larger number of electrons at
ν = 2 in the rectangular torus geometry, subject to periodical
boundary conditions [20]. So, the momenta of the neutral
excited states in the magnetic Brillouin zone are of the order
q�B ∼ √

2π/NS. The Coulomb matrix elements used for the
calculations are taken from Ref. [21]. The influence of the
higher unaccounted LLs was also introduced to the numeri-
cal procedure via the screening factor εs(q) in the Coulomb
potential (see below). The single-particle 2DES parameters,
essential for calculations, were taken from other experimental
studies [22,23] and were the following: Lande factor g∗=1.95,

cyclotron mass mc = 0.3m0, dielectric constant is εZnO = 8.5.
We also took into account the influence of the finite thickness
of 2DES in the growth direction, introducing the geometric
form-factor F (q) to the Coulomb potential.

Since the calculated ground and excited states of ν = 2
FM are impossible to illustrate and analyze, we better try
to simplify their structure to the comprehensible sketch with
filled and empty LLs with electron transitions between them.
In this representation, there exist just four single-mode and
simplest spin-flip transitions [shown in diagrams I–IV of
Fig. 3(a)]. However, there are also a huge number of compos-
ite multiexciton transitions, like diagrams V, VI, etc. For the
actual parameters of the experimental samples, the LL-mixing
parameter at ν = 2 exceeded the value 5.5. Therefore, it is
natural to assume that the variety of multiexciton compo-
nents in the structure of both the ground and excited states
is enormous. Despite this complexity, the resulting solution
of the problem for sure contains at least one spin-flip mode,
the energy of which is strictly equal to the Zeeman gap at
q = 0, according to Larmors theorem [24]. We will call it,
of course, the SE or sometimes SE1, since, as will be shown
below, the mode is not independent and mixes strongly with
others closest in energy spin-flip modes.

Exact diagonalization calculations intrinsically take into
account all the electron correlations within three lowest LLs,
and the eigen spin-flip modes involve all mixed transitions.
The calculated SE dispersion for the sample with ns = 2.85 ×
1011 cm−2 is shown by open symbols in Fig. 3(b) along with
experimental points in the range of wave vectors from 0 to
qlB = 1.7. Despite the rough discreteness of the calculated
data associated with the small capacity of LLs Ns = 9 and
10, it is clear that the slopes of the calculated data are in
good agreement with the experimental trend. In addition, the
calculations do show a noticeable magnetoroton minimum in
the range of momenta roughly qlB ∼ 0.5 − 1.0. The parame-
ters of calculated dispersions depend on the electron density.
However, we do not see much sense in analyzing the func-
tional laws of the long-wavelength parts due to the insufficient
smoothness of data sampling. Instead, we will switch to the al-
ternative theoretical approach and try to interpret the negative
dispersions qualitatively in terms of the HFA.

It should be noted right away that the FM phase of ν = 2 is
not necessarily the result of exchange-driven Stoner transition.
As established earlier in a series of magnetotransport stud-
ies of 2DESs in semiconductor heterostructures with much
weaker interaction [25–29], the phase transition takes place
for Ising ferromagnets in tilted magnetic fields. The primary
condition is that Zeeman splitting represents a multiple of the
cyclotron energy. In the case of small rs values, the energy
spectrum of Ising ferromagnets can be duly described in terms
of perturbation theory and hence HFA [5] is applicable for the
collective excitations. The idea of the following consideration
is to develop an analytic procedure for calculation of SEs
in the ν = 2 FM state and then to smoothly extrapolate the
results to the case rs � 1, with the difference that electron
LLs are transformed to some effective LLs for Fermi-liquid
quasiparticles, which interact via screened Coulomb potential
[30]. This approach is nothing but qualitative description, but
it has proved to be appropriate in recent studies of strongly
interacting QHE systems [13,16,21]. However, the explicit
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FIG. 3. (a) Left: The single-particle representation of the sim-
plest spin-flip transitions at the ferromagnetic phase at ν = 2. Filled
spin Landau levels are drawn by bold lines. Single-mode transi-
tions (I–IV) are explicitly accounted in the HFA calculations below.
Double-mode states V and VI with the same set of quantum numbers
are examples of unaccounted terms. Right: The illustration of screen-
ing processes, caused by virtual inter-LL transitions, contributing
to the RPA (random phase approximation) static dielectric function
εs(q) (see the text). (b) The comparison of SE momentum-dispersion
at ν = 2 FM for the sample with ns = 2.85 × 1011 cm−2 obtained
in experiment (solid symbols), exact diagonalization (open symbols)
and screened HFA. (c) Dispersion curves of the two lowest SEs at
ν = 2 FM for four different electron densities.

Landau quantization for Fermi-liquid quasiparticles at rs � 1
was indeed seen by magnetophotoluminescence [31,32].

The weakening of Coulomb interaction of quasiparticles
occurs due to the polarizability of 2DES caused by virtual
transitions between LLs. The 2D-Fourier component of the
Coulomb potential in this approach is divided by a static
dielectric function: V (q) = 2πe2

εq
1

εs (q) . The latter can be calcu-
lated in the random phase approximation [21]:

εs(q) = 1 − 2πe2

εq
χ0

nn(q, ω → 0+).

Here, χ0
nn(q, ω) is the retarded density response function,

which takes the following form for a noninteracting 2DES in
a magnetic field:

χ0
nn(q) = 1

2π l2
B

∑
σ

∑
k,m

|Fk,m(q)|2 νm,σ − νk,σ

(m − k)h̄ωc
, (1)

where νm,σ is the filling factor of a LL m with a spin index σ .
The estimates of εs(q) can be made for the unperturbed filling
factors νm,σ . If one introduces this suppressive factor to the
Coulomb interaction of charged quasiparticles, the effective rs

values get strongly reduced and the application of the single-
mode approximation becomes justified. For the FM ground
state ν = 2, the basis of four simplest spin-flip transitions has
been treated to find eigenvalues and eigenvectors of resulting
spin-flip modes.

Here, at ν = 2 FM, the ground state of the system is
equally represented by two kinds of quasiparticles—with dif-
ferent orbital quantum numbers LL0 and LL1 and the same
spin projection. Therefore, essential mixing will occur be-
tween the set of spin-flip transitions within the two lowest
LLs, as depicted by diagrams I–IV in Fig. 3(a). The many-
particle energy terms and corresponding matrix elements have
been calculated in the spirit of well-known HFA [5,19], giving
the first-order energy corrections at small effective rs values.
The four magnetoexcitons can be given in notation of exci-
tonic operators,

(I ) = Q+
00

, (II ) = Q+
11

, (III ) = Q+
10

, (IV ) = Q+
01

, (2)

with matrix elements given in Ref. [19].
The diagonalization of this 4×4 matrix results in the four

eigenmodes. The lowest one definitely has the Zeeman energy
at q�B = 0. HFA calculations for this SE1 mode are com-
pared with experimental data and the exact diagonalization
results [Fig. 3(b)]. The magnetoroton minimum in HFA cal-
culations is roughly three times more shallow. The numerical
discrepancy is rather expected since too many issues are un-
determined in the HFA consideration. First, it is the adequacy
of the screening function εs(q), dramatically influencing the
answer, but also significant are the omitted multiexcitonic
contributions within the lowest two LLs. Nevertheless, the
origin of anomalous negative dispersion of SE1 gets evident
from this qualitative result—it is the result of a dramatic
repulsion between two modes, SE1 and SE2. To illustrate
this, the calculated dispersions are shown in Fig. 3(c) for
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four different electron densities. The energy scale for each
electron density has been normalized to its Zeeman energy
EZ at ν = 2 to explore the relative depth of the magnetoroton
minimum.

The advantage of this simplified single-mode representa-
tion is that we can identify the two interacting modes—their
structure can be obtained as an eigenvector in the excitonic
basis (I)–(IV). At q�B = 0, SE1 is just a cophase combina-
tion of the simplest spin transitions (I) and (II), and SE2
is a pure transition (III). Exciton-mixing terms emerge at
nonzero momenta, the modes SE1 and SE2 couple and in the
vicinity of magnetoroton minimum the SE1 mode is already
a linear combination of three transitions (I)–(III) with the
third component dominating. In the short-wave limit, SE1 is
entirely represented by (III). The calculated composition of
the modes depends on momentum and electron density. It is
also noteworthy that higher transitions, such as (IV), influence
the structure of low-energy SE1 in a minor way—its fraction
never exceeds ∼4%.

It can be seen that the steepness of the negative fragment
of the SE1 dispersion strongly depends on the proximity of
mode SE2 [the corresponding symbols in Fig. 3(c) are given
in pairs], and is associated with the mutual repulsion of the
two modes. The repulsion becomes stronger as the energies
are closer at q = 0. For the case of proximity at q = 0, the
initial slope of dispersion is nearly linear (red symbols) with a
deep magnetoroton minimum, but for the case of the smallest
shown electron density (blue symbols), the SE1 dispersion
increases monotonically. The disappearance of the calcu-
lated magnetoroton minimum occurs in the range 1.5–2 ×
1011cm−2, close to the critical density ns = 1.8 × 1011cm−2

for spontaneous FM transition at ν = 2, found experimentally
for ZnO [2,16]. This finding suggests that the existence of the
magnetoroton minimum in SE1 dispersion is crucial for the
possibility of the phase transition FM-PM at ν = 2 as well
as the roton minimum in CSFM excitation of a PM phase
is needed for the reverse transition [16]. The tilting of the
magnetic field causes just change in a Zeeman contribution
to the energies of spin excitations. Therefore, it stabilizes the
FM phase and destroys the PM phase.

Although the experimental data for SE1-mode in this study
are extensive, its counterpart SE2 has still been behind the
scenes. The problem seems to be in the vanishingly small
Raman cross-section for the SE2 at ν = 2 FM state. This
mode may have some symmetry restrictions for Raman po-
larizability because of an anti-phase combination of spin-flip
transitions. To overcome this and to confirm the existence of
SE2, we induced an anticrossing between these two modes by
varying the filling factor parameter. Both lines should become
visible when they are brought to anticrossing. In Fig. 4, the
energies of the two lowest excitations are plotted as a function
of the magnetic field for one of the samples. The experimental
parameters are indicated on the plot. The tilt angle is chosen
above the critical value of the FM transition to have a stable
FM phase in some vicinity of ν = 2. From the plot, one can
see that SE1 is the only excitation visible around ν = 2. While
the other higher energy excitation is descending abruptly from
above on both sides of ν = 2 at �B ∼ 0.5 T. Their evident
anticrossing proves the spin-nature of the second mode, which
is highly likely SE2.

FIG. 4. The plot of measured energies of the two interacting
modes SE1 and SE2, probed by Raman scattering nearby ferromag-
netic state at ν = 2. Note the increased magnetic field tilt angle
� = 41◦ provides stable FM phase not just at ν = 2, but also in
vicinity.

V. CLUMPING OF SPIN-EXCITONS

The presence of magnetoroton minima for the lowest-
energy spin-flip excitations in both phases of ν = 2 is a
prerequisite for the FM transition. However, in both cases
the depths of these roton minima in the transition point are
quite insufficient for the single spin-flip transition to soften
completely. As was shown in the case of the PM phase, the
softening first occurs for multi-CSFM complexes, which gain
in energy. Here in this paper we need to further elaborate
properties of magnetoroton SE1 modes to accomplish the
mechanism of the reverse phase transition. We only have
to prove that these excitations attract and tend to clump in
complexes. For this the exact diagonalization was performed
for the states with change in total spin �Sz = +2, i.e., double
spin-flip processes. Fig. 5 displays the result of calculation for
the electron density ns = 3.6 × 1011cm−2 and the tilt angle
� = 39◦. The plot contains dispersion-data for the two lowest
modes SE1, SE2, and for the double spin-flip transition (red
asterisks). Most interesting is the double spin-flip energy in
the point q�B = 0 – its energy is significantly less not only
than double Zeeman energy, but also than the double energy
of magnetorotons, as indicated by a parallelogram scheme.
It is strong evidence that there exist processes consisting of
two clumped (or twin) SEs, which are energetically more
favorable than two separate SE1s. These double-mode excited
states can be generally described as a convolution of the two
SE-modes:

|twin − SE (�k) >=
∫

f (q)|SE1(�k + �q) > |SE1(−�q) > d2q.

The most favorable calculated state is that with �k = 0, that
is clumping of the two modes with opposite momenta. It is
clear, that the largest contribution to the sum will emanate
from SE1 components with the highest density of states, i.e.,
in the magnetoroton minimum. Therefore, the twin-SE mode
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FIG. 5. Calculated dispersion laws for the two lowest hybrid
modes SE1 and SE2 and the dispersion of the twin-SE mode in the
FM phase ν = 2. The diagram shows the double-exciton diagram of
the twin-SE as the two clumped magnetoroton SEs with opposite
momenta.

can be viewed as the two clumped magnetorotons (see Fig. 5).
Finally, the energy gain for that excitation relative to the dou-
ble magnetoroton energy proves that these SE1 modes interact
attractively and can form stable multi-SE1 complexes causing
phase instability.

VI. MACROSCOPIC ENSEMBLES OF SPIN EXCITONS

The integer spin of SE1, their high density of states in the
magneto-roton minimum and attractive interaction open the
opportunity to form macroscopic ensembles or even conden-
sates. In the current experiment, we do not probe the lifetimes
of SEs, but in a close analogy with their PM counterparts
CSFMs at ν = 2, the spin-flip excitations in the magnetoro-
ton minimum may have extraordinarily long lifetimes, in the
range of milliseconds [8] or even seconds [12]. In the previous
sections, the experimental conditions for Raman scattering on
SEs have been chosen simply for probing them. These con-
ditions concerned both laser wavelength and its intensity. For
resonant Raman scattering, the laser wavelength is chosen in
the range of direct interband transitions for the 2D system, but
the oscillator strength of these transitions and the resulting en-
hancement of a Raman process depend on the selection rules
and the occupation of states in the conduction band. Working
with a laser wavelength in the spectral range of PL transitions
for resident 2D electrons has an advantage of stronger Raman
enhancement but a disadvantage of multiple parasitic spectral
lines of photoluminescence. These experimental conditions
have been chosen here for more effective pumping of SEs at
ν = 2FM. The expected result of the resonant pumping is not
just enhancement of spectral light, but possibly activating a
nonlinear response of the system. It manifested in a very un-
expected way—the anti-Stokes Raman peak of SE1 appeared
in the spectrum. Figure 6(a) shows the spectrum of the sample
with ns = 3.6 × 1011cm−2 at ν = 2FM and the resonant laser

FIG. 6. (a) The resonant Raman spectrum of the lowest SE mode,
showing an anomalously strong signal of anti-Stokes component.
The experimental details are given in the graph. (b) The log-log
power-intensity dependence of both the Stokes and anti-Stokes com-
ponents of SE. The fitted slope values are signed next to the data
plots.

excitation. The ratio of anti-Stokes and Stokes components is
roughly 1:5, which is fascinating, since the thermodynamic
ratio between them should be about e−ESE1/kT ≈ 10−15. This
enormous anti-Stokes enhancement is definitely due to the
accumulation of SE1s in the system and transferring it to an
essentially nonequilibrium state. The macroscopic accumula-
tion of SE1s in the system is also confirmed by studying the
power dependence of Raman lines. In Fig. 6(b), the two plots
show the growth laws of the Stokes (blue) and anti-Stokes
(red) components. The log-log scale enables us to accurately
establish the linear growth of the Stokes and quadratic growth
of the anti-Stokes signal. Since scattered intensity always has
a proportionality to the pump intensity, we conclude, that the
quantity of SE1s participating in the Anti-Stokes scattering
is also proportional to the pump intensity. So, they do accu-
mulate in the system. It is important that the maximum pump
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power used for this portion of experiment is not higher than
that for probing SEs in previous sections. Unfortunately, we
were unable to further increase the power to explore further
nonlinear events for SE1s. The experiment at enhanced pow-
ers is a subject for future experiments.

VII. DISCUSSION

The formation of the quantum Hall ferromagnet at ν = 2
and its thermodynamic properties have been experimentally
studied previously in ZnO by magnetotransport and optical
methods [2,33]. Some facts have been described in an em-
pirical model of Ising ferromagnets with crossing spin-LLs.
Nevertheless, the single-particle model of crossing LLs, per-
fectly applicable to other semiconductor systems, required a
modification in the case of strongly interacting electrons in
ZnO, namely, the orbital and spin splittings of LLs had to be
renormalized due to Fermi-liquid effects. The energy spec-
trum gets essentially many-particle around a critical density
ns = 1.8 × 1011 cm−2—there the tilting of the magnetic field
is no longer required to trigger the FM transition; the FM
phase is the only possibility for ν = 2.

The current study sheds light on the microscopic mech-
anism of such many-particle transformations of the energy
spectrum, which determines the stability of the phases. The
experimental finding of the negative dispersion of the lowest
energy SE was traced for the range of electron densities. The
dispersion gets steeper at higher densities. Despite the limited
accuracy of the used numerical simulations at rs � 1, the
same trend in SE dispersion has been confirmed numerically,
suggesting that exact diagonalization is adequately applicable
to the problem. It is a strong argument in favor of the calcu-
lated magnetoroton minimum.

The simplified approach to the spin-flip modes via stati-
cally screened HFA is far from being accurate, but it enabled
unravelling the SE mode structure. According to this calcu-
lation, the main contribution to the formation of the roton
minimum comes from the spin-flip component, returning elec-
trons from LL1 back to LL0. This transition is exactly reverse
to the lowest energy excitation of the PM phase CSFM. The
close analogy of the properties of the lowest energy spin
excitations in PM and FM phases suggests that mechanisms
of the two phase transitions are also very similar—nucleation
of multiexciton complexes softened in energy. It is not even
so important how exactly the functional form of dispersion
is arranged, but there is a minimum point, there is a high
density of states, there is a mutual attraction between mag-
netorotons, and, apparently, there are long lifetimes of such
spin magnetorotons. The latter appear due to the significant
slowing down of the relaxation processes, the difficulty of
simultaneously fulfilling the laws of energy, momentum, and
spin conservation during the decay from the roton minimum.
This circumstance made it possible to create in GaAs quan-
tum wells at PM ν = 2 phase the macroscopic ensembles of
CSFMs with a high degree of spatial coherence. Furthermore,
in the MgZnO/ZnO heterostructures, considered here in the
FM phase, a hint of macro-filled states has also been obtained
as a nonlinear anomalous growth of the anti-Stokes com-
ponent SE well beyond the thermodynamically equilibrium

distribution [34]. This line of research is up and coming, and
further interest is in the study of such macro-filled states, the
achievement for their spatial coherence, and the formation of
SE condensates.

The depth of the roton minimum in the dispersion of the
lowest spin excitations is directly related to the thermody-
namic properties of the ferromagnet itself. It is known that
FM state ν = 2 is destroyed at significantly lower tempera-
tures [3] than the QH ferromagnet ν = 1, where the critical
temperature is equal to the Zeeman energy [35]. Moreover, it
is known that the destruction of a FM order occurs through the
formation of domains of the opposite phase, and the critical
temperature of such a process increases with the concentration
of electrons. In this paper, we did not analyze the thermody-
namic properties. However, it should be noted that, since the
mechanism of nucleation of the opposite phase is attributed
to the presence of a magnetoroton minimum in the SE dis-
persion, the temperature destruction of the spin order should
also be associated with the energy of the lowest excitation,
composed of magnetorotons. This energy increases with the
density of electrons, and at the same time it is quite below the
Zeeman energy.

Besides the negative sign and magnetoroton peculiarities,
the measured momentum dispersion of the lowest energy SEs
at ν = 2FM carries information of the scale of the many-
particle energy for electrons on LLs. One may conclude this
by close values of the many-particle energies in Fig. 2 with
analogous energy contributions to SEs at ν = 1. These data
once again indicate the strong renormalization of the ex-
change and correlation energies for QH states with rs � 1
from the scale e2/ε�B to h̄ωc, which grows linearly with
electron density at a fixed filling factor [13,14]. These issues
concern not just the energies of collective excitations but
also the renormalized mass of Fermi-liquid quasiparticles in
these systems, their Landau quantization, previously probed
by magneto-PL [31], also the renormalized spin-splittings of
LLs extracted from the sequence of Ising ferromagnets at
different integer filling factors. All these facts witness that
many-particle energy scale for 2D electrons at rs � 1 re-
duces and gets proportional to the electron density instead of
its square root. Or, alternatively, the energy spectrum more
resembles the quantized levels for weakly interacting Fermi-
liquid quasiparticles.

VIII. CONCLUSION

In conclusion, we discovered an anomalous behavior of
SEs in the quantum Hall ferromagnet at ν = 2 with a
strong Coulomb interaction and the Wigner-Seitz parameter
rs from 5.5 to 9. To that end, Raman scattering experiments
were performed on MgZnO/ZnO high-quality heterostruc-
tures, containing 2DES with different densities. Hence, the
momentum-dispersions of SEs were explicitly measured. It
was found that the SE has a conspicuous negative dis-
persion in the long-wavelength limit. The steepness of the
dispersion increases with electron density. This behavior was
explained as a repulsion of the two lowest spin-flip modes.
The dispersions have been analyzed by both numerical sim-
ulations in the frameworks of exact diagonalization of the
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energy spectrum for a finite number of electrons and within
the statically screened HFA. The calculations agree well
with the experimental data and reveal the formation of the
magnetoroton minimum at qlB ∼ 1. In addition, the calcu-
lations show the energy gain for two or more clumped SEs
from the magnetoroton minima. This is a prerequisite for
the phase transition back to the PM phase. Last but not
least, we experimentally observed an anomalous enhance-
ment of the anti-Stokes Raman component of SEs, which
is evidence of their macroscopic accumulation in the sys-

tem. This is promising, since these excitations carry integer
spin.
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