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Dynamics of the electrically induced insulator-to-metal transition in rare-earth nickelates
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Rare-earth nickelates feature an insulator-to-metal transition (IMT) that can be electrically triggered. We study
the dynamics of this electrically induced transition by comparing the time-dependent transport properties of two
distinct members of the ReNiO3 family: NdNiO3 and SmNiO3. We report stark differences in the nucleation and
growth of the metallic phase, which evolve more rapidly for NdNiO3. With the aid of simulations, we identify
the amplitude of the resistivity change across the IMT as the key parameter controlling the switching speed.
Our results are in accordance with recent experiments in the VOx family, contributing to a unified vision of the
field-induced IMT dynamics across different families of correlated oxides.
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I. INTRODUCTION

Certain materials, such as VO2, V2O3, NbO2, NiS2−xSex,
or GaTa4Se8 [1–8], feature insulator-to-metal transitions
(IMTs) that can be electrically triggered using a simple two-
electrode configuration. Upon application of a high enough
voltage, they undergo a transition from insulator to metal,
returning to the insulating phase when the voltage is removed.
This yields a volatile resistive switching that has recently
attracted a lot of attention both for its fundamental interest
and for its potential application in emerging technologies such
as neuromorphic computing or optoelectronics [9–19]. While
the underlying physics of this transition has been intensely re-
searched over the last decade, key aspects of it remain poorly
understood. One of them is the transition dynamics, i.e., how
do metallic domains nucleate and grow when a voltage is
applied, and what are the parameters that govern their evolu-
tion? A recent work has provided a glimpse into this process
by capturing the voltage-triggered IMT both with space and
time resolution [20]. It shows that switching is initiated by
the nucleation of small metallic hotspots that focus current,
starting a runaway effect that leads to the percolation of a
filament connecting the electrodes [7,21–23]. The resistance
change across the IMT is suggested as the most important
parameter controlling the metallic phase growth rate.

The study, however, was limited to VO2, V2O3, and V3O5,
which are Mott insulators with strong d-d correlations [24].
It is unclear whether those results can be extended to other
systems featuring an IMT of different origin. One such system
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is the rare-earth nickelates (ReNiO3 where Re can be most of
the lanthanide rare earth elements) [25–27]. In contrast with
the vanadates, ReNiO3 are charge-transfer oxides with strong
hybridization between the Ni d and O p orbitals [28,29],
resulting in more itinerant valence electrons and lower onsite
Coulomb repulsion [30,31]. The transition into the insulating
state is accompanied by a bond disproportionation of the NiO6

octahedra [32,33]. Electron-lattice coupling seems to play a
fundamental role [34,35], and some works have interpreted
this IMT as a magnetically assisted Peierls instability [36].

Despite the wide attention the ReNiO3 IMT has received
in recent years, the electrically triggered IMT has barely been
explored, with only two works that we are aware of [37,38]. In
this paper, we study the switching dynamics of NdNiO3 and
SmNiO3 by analyzing their time-dependent transport prop-
erties. We find that, in NdNiO3, metallization nucleates and
grows at a much faster rate and has a stronger voltage de-
pendence than in SmNiO3. With the help of resistor network
simulations, we interpret these results considering only Joule
heating and the resistivity ratio between the insulating and
metallic states: a higher ratio focuses current into smaller
regions and accelerates the metallization process. Our results
resemble and support recent findings in the vanadate family
[20]—despite the big differences in microscopic details be-
tween both oxide families—and contributes to a generalized
view of the switching dynamics based on simple mesoscopic
arguments.

II. SAMPLES AND DIRECT CURRENT MEASUREMENTS

ReNiO3 compounds do not have a cubic perovskite struc-
ture. Instead, NiO6 octahedra are slightly rotated with respect
to their neighbors, resulting in Ni-O-Ni bond angles <180 °
[27]. This distortion is smaller and the bond angle greater
(closer to 180 °) the larger the rare earth radius. A smaller
distortion increases orbital overlap and bandwidth, reducing
the IMT temperature [26,27,39]. The transition temperature is
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lowest for Re = Pr, gradually increasing for Re = Nd, Sm,
Eu, Gd, Dy, Ho, etc. For PrNiO3 and NdNiO3, the IMT is
sharp, first order [40–42], and concomitant with a magnetic
transition from an antiferromagnetic insulator into a paramag-
netic metal. For the other ReNiO3 compounds, the transition
is smoother, resembling a second-order transition and with no
magnetic ordering at the IMT (although antiferromagnetism
appears at lower temperatures) [27]. In this paper, we in-
vestigated one oxide from each of the two types described
above: NdNiO3 and SmNiO3. Both oxide films were grown
on (001)-oriented LaAlO3 substrates using off-axis magnetron
sputtering in an Ar:O2 (3.5:1) mixture at a pressure of 180
mTorr. The substrate temperature was 460 °C. The films were
∼30 nm and grown epitaxially, as can be seen, using x-ray
diffraction (Fig. S1 in the Supplemental Material [43]; see also
[44]). Figure 1(a) shows resistivity vs temperature for both
films. NdNiO3 shows a sharp hysteretic transition at ∼100 K,
with a resistivity change of two orders of magnitude. SmNiO3

has a much smoother transition at ∼375 K, with one order
of magnitude resistivity change. The differences in IMT can
be better appreciated in Fig. S2 in the Supplemental Material
[43], where the NdNiO3 transition is shifted by 250 K.

To electrically trigger the IMT, Pt electrodes were pat-
terned on top of the nickelate films using a combination
of e-beam and optical lithography. Electrode separation was
300–400 nm, as can be seen in Fig. 1(b). Figures 1(c) and 1(e)
show the direct current (dc) voltage vs current characteristics
of NdNiO3 and SmNiO3 nanodevices for different temper-
atures. Volatile resistive switching, caused by a transition
into the metallic state, is readily visible for all temperatures
shown. For SmNiO3, temperatures <200 K required voltages
∼10 V that produced nonvolatile resistive switching, likely
due to ion migration, as previously reported [45–50]. We must
underline that the focus of this paper is the volatile resistive
switching caused by the IMT, not nonvolatile effects due to
ion migration and other types of electroforming [16,45–50].
There are stark differences in the switching properties of both
oxides. NdNiO3 features a sudden, discontinuous jump above
a threshold voltage (VTh), together with a marked hysteresis
in the V-I curves. In contrast, SmNiO3 displays a continuous
evolution from a high to a low resistance state. Rather than
a clear threshold switching, a negative differential resistance
(NDR) can be observed when a voltage VNDR is reached. In
both cases, switching becomes sharper as the temperature is
lowered, with SmNiO3 even showing small jumps and hys-
teretic behavior.

III. TIME-DEPENDENT CHARACTERIZATION

We characterized the time-dependent response of our de-
vices to an applied voltage. We used a function generator to
create a long square voltage pulse that was applied to one
of the electrodes of the sample, while the other electrode
was connected to a 50 � impedance channel of a Tektronix
MSO064 oscilloscope. Thus, the oscilloscope gave a direct
readout of the current going through the device as a function
of time. The top panel in Fig. 2(a) shows current vs time in
a NdNiO3 nanodevice at 4.2 K, when different voltages are
applied at t = 0. For low voltages, resistance remains high and
current low, meaning the IMT is not triggered. However, the
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FIG. 1. (a) Resistivity vs temperature for NdNiO3 (blue) and
SmNiO3 (red) measured in unpatterned thin films using the van der
Pauw method. (b) Scanning electron microscopy image of one of
the NdNiO3 nanodevices. (c) Direct current (dc) voltage vs current
characteristics in NdNiO3. (d) Threshold voltage (VTh) vs tempera-
ture for NdNiO3. (e) dc voltage vs current characteristics in SmNiO3.
(f) Negative differential resistance voltage (VNDR) for SmNiO3.

response of the sample drastically changes when a threshold
voltage is crossed: while for 5.50 V, the sample remains insu-
lating for over 1 ms, for 5.55 V, a transition into the metallic
state is triggered after just a few nanoseconds. The figure
inset provides a closeup view of the first nanosecond after the
voltage is applied, showing switching times as fast as 2–3 ns,
close to the experimental rise time of our setup.

The bottom panel of Fig. 2(a) corresponds to the same
device but at a temperature of 60 K, showing a rather different
behavior. Instead of a sudden change, the response of the
sample evolves more gradually as the amplitude of the applied
voltage is increased. For low voltages, the IMT is not induced,
but the threshold is less clear. For 3.7 and 3.8 V, a transition
into the metallic phase is triggered but only after a certain
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FIG. 2. Current vs time when voltage pulses of different ampli-
tude are applied at t = 0 for (a) NdNiO3 at 4.2 K (top panel) and
60 K (bottom panel), (b) SmNiO3 at 300 K. Inset to (a): Magnified
plot of the first nanoseconds after the voltage is applied in NdNiO3.
T = 4.2 K. At first glance, NdNiO3 at 60 K and SmNiO3 at 300 K
might look very similar, but as the time axis shows, switching is ∼10
times faster for NdNiO3.

incubation time τInc has passed. This τInc is shorter the higher
the applied voltage. Voltage dependence is even smoother for
SmNiO3 devices, as shown in Fig. 2(b). In this case, not only
does τInc evolve very gradually with voltage, but the transition
from insulator to metal is itself less well defined. In the current
vs time curves, a positive slope within the insulating state is
visible, making the IMT more blurred. It is also important to
note that switching dynamics are much slower for SmNiO3

than NdNiO3.
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FIG. 3. Incubation time (τInc) vs pulse voltage for (a) NdNiO3

and (b) SmNiO3. Several temperatures are shown in each case. The
vertical dashed lines in panel (a) correspond to the VTh plotted in
Fig. 1(d).

Figure 3 summarizes the above observations by showing
τInc vs voltage for several temperatures for both samples. The
τInc axis is in logarithmic scale. The plot shows that switch-
ing dynamics depend drastically on the applied voltage, i.e.,
small voltage changes lead to large variations in the sample
response. From Fig. 3, several important points can be under-
lined: (i) switching is much faster for NdNiO3, (ii) voltage
dependence is stronger for NdNiO3, and (iii) voltage depen-
dence is stronger at lower temperatures. The latter can be
better appreciated for SmNiO3 in Fig. S3 in the Supplemental
Material [43], where current vs time curves at 340 and 260 K
are compared. The contrast in dynamic response resembles
the differences in the dc V-I characteristics shown in Fig. 1:
NdNiO3 has a sharp resistance drop above a well-defined VTh,
while SmNiO3 does not show a clear threshold but a rather
continuous change. For both samples, voltage-current curves
become more abrupt as the temperature is lowered.

We also studied the volatile character of this resistive
switching. We did so by measuring how fast the insulating
state recovers after the applied voltage is removed (Fig. S4
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in the Supplemental Material [43]). We find that most of
the sample relaxes to the insulating state within a few mi-
croseconds. This relaxation is faster the lower the temperature,
the opposite of what would be expected if oxygen vacancies
played a major role in the switching process [51]. This means
that the recovery time is likely set by the cool down and the
phase relaxation dynamics (further discussion in the Supple-
mental Material [43]). The effect of electrode geometry was
also explored, finding that larger separations lead to higher
switching voltages and slower dynamics (see discussion and
Fig. S5 in the Supplemental Material [43]).

IV. DISCUSSION AND RESISTOR NETWORK
SIMULATIONS

These results can be understood considering the nucleation
and growth dynamics of the metallic phase. A recent work
has provided an experimental account of this process using a
combination of transport and reflectivity measurements [20].
It was shown that, starting from a homogeneously insulat-
ing system at t = 0, inhomogeneities appear as soon as the
voltage is applied. These inhomogeneities are hotspots with
lower resistivity that concentrate current, locally increasing
Joule heating. This lowers resistivity even more, creating a
positive feedback loop that eventually leads to the formation
of a metallic filament. This final filament configuration had
been previously revealed in steady-state experiments [7,21–
23]. The temperature resistivity change across the IMT is ex-
pected to be a crucial parameter controlling the feedback loop
and, hence, the switching speed. This is depicted in Fig. 4(a):
a larger ρIns/ρMet will concentrate more current into any hy-
pothetical hotspot, increasing local heating and consequently
accelerating the transition from insulator to metal.

To better visualize this, we performed numerical simula-
tions, modeling our devices as a two-dimensional network of
resistors in thermal contact with a substrate at temperature
T [3,6,20,52,53]. Each node in the network can be either
metallic or insulating (Fig. S6 in the Supplemental Material
[43]). The metallic resistivity is assumed constant (ρMet),
while the insulating resistivity has an Arrhenius temperature
dependence (with ρ = ρIns at T = TIMT). The state of each
cell is governed by a Landau type free energy functional that
mimics a first-order transition. At t = 0, a voltage is applied.
For each simulation step, the current and temperature distribu-
tions are calculated, and the state of each cell is updated with
a probability computed from the reevaluated energy barrier,
allowing us to explore the switching dynamics. More details
on the simulations can be found in the Supplemental Mate-
rial [43]. Figure 4(b) shows the two-dimensional temperature
and resistivity maps at the precise moment when a metallic
filament percolates between both electrodes, which can be
identified as a sudden and sharp drop in resistance. Three dif-
ferent temperatures are shown: 0.18, 0.35, and 0.88 TIMT. Note
that filaments form in the electrode corners since we do not
include intrinsic defects, and those are the points of maximum
electric field. A clear trend is visible: as the temperature is
lowered, the resistivity of the insulating state becomes higher,
confining nucleation of metallic domains to smaller areas and
markedly increasing Joule heating. A higher local temperature
would translate into faster metallization and switching times.

FIG. 4. (a) Schematic representation of current focusing in an
inhomogeneous system with an insulator-to-metal transition (IMT)
of magnitude ρIns/ρMet. Current is focused into smaller areas when
the ρIns/ρMet ratio is large. (b) Two-dimensional (2D) plots of the re-
sistivity (left columns) and temperature (right columns) distributions
obtained with resistor network simulations at the moment in which
percolation takes place. Resistivity is color-coded in a logarithmic
scale, while temperature is color-coded in linear scale. Note that
the resistivity scale is the same for all plots, but the temperature is
different for each panel to better appreciate the individual details in
each case. Three different base temperatures are shown: 0.18 TIMT

(top row), 0.35 TIMT (middle row), and 0.88 TIMT (bottom row). TIMT

is the IMT transition temperature. The ρIns/ρMet ratio is 102 (larger
and smaller ratios can be seen in the Supplemental Material [43]).

165141-4



DYNAMICS OF THE ELECTRICALLY INDUCED … PHYSICAL REVIEW B 104, 165141 (2021)

This trend is not only visible as the temperature is lowered
but also as ρIns/ρMet, the resistivity jump across the IMT, is
increased (Fig. S7 in the Supplemental Material [43]).

The simulation results explain the data in Fig. 3. For high
ρIns/ρMet, either the voltage is not high enough to induce
any metallization or, if it does, complete switching into the
metallic state is very fast. This all-or-nothing behavior is very
clear for NdNiO3 at 4.2 K, becoming more gradual as the
temperature is increased. SmNiO3 features a much smoother
IMT with lower ρIns/ρMet. As a result, current confinement
and switching speed are greatly reduced. Interestingly, a sim-
ilar trend is observed in the vanadates, where V2O3 has larger
resistivity change across the IMT than VO2 and much larger
than V3O5. As a result, V2O3 switches electrically faster than
VO2 and much faster than V3O5 [20].

A similar ρIns/ρMet trend in two very different oxide fami-
lies (vanadates and nickelates) suggests that the mechanism
proposed here could apply to all systems featuring IMTs.
Our model is based on very simple and general assumptions,
applicable to any material. Considering this, ReNiO3 with
smooth, second-order transitions, such as EuNiO3, GdNiO3,
or DyNiO3 should display slower switching and smoother I-V
properties than PrNiO3 or NdNiO3, which have sharp, first-
order IMTs. Similarly, switching dynamics should depend
strongly on any external parameter that influences the R vs
T of the material. In the ReNiO3 case, strain is known to play
a major role [39,54,55]. For instance, compressive strain has
been shown to lower the transition temperature and increase
ρIns/ρMet across the IMT in SmNiO3 [39]. This would lead
to faster switching dynamics and sharper I-V, resembling the
NdNiO3 results shown here. Conversely, our NdNiO3 films
are under a small compressive strain (−0.5%) imposed by
the LaAlO3 substrate, which lowers the IMT temperature and
increases ρIns/ρMet [54]. Based on our results, we expect un-
strained NdNiO3 to show slower switching dynamics, more
like the SmNiO3 behavior shown here.

This mechanism also explains the presence of small jumps
and hysteresis in the dc V-I properties of SmNiO3 at low
temperatures [Fig. 1(e)]: a larger ρIns/ρMet ratio favors run-
away effects, creating current/voltage discontinuities when
performing dc measurements. The observation of a hystere-
sis does not necessarily imply a first-order character in the
SmNiO3 IMT. A hysteresis may arise purely from an asymme-
try in the distribution of metallic/insulating domains when the
current is ramped up and down. The system is homogeneous
when the current is ramped up, but it has a metallic filament
that concentrates Joule heating when it is ramped down. This
makes it harder for insulating domains to nucleate, yielding a
hysteresis that becomes more apparent as temperature is de-
creased. A detailed description of the dynamics that give rise
to voltage discontinuities and hysteresis during the electrical
triggering of a second-order IMT can be found in the work of
Kumar et al. [10].

We must note that we have considered Joule heating as
the only underlying mechanism that induces the electrically
triggered IMT in our ReNiO3 devices. It is the most straight-
forward explanation and has already been shown to induce

the IMT in systems such as NbO2 or VO2 [5,56]. The in-
sulating state resistivity of ReNiO3 is three to four orders
of magnitude lower than that of VO2 [57], and the current
density (J ) just before our devices switch is in the order of
1010 to 1011 A/cm2, two orders of magnitude larger than what
has been reported for VO2 [3,58]. Considering that, in a ho-
mogeneous system—before filament formation—dissipation
is proportional to ρIns · J2, it is very likely that Joule heating
is indeed inducing the IMT in NdNiO3 and SmNiO3, as was
suggested before [37]. Another possible mechanism would
be a direct field effect triggering of the IMT due to carrier
injection and destabilization of the insulating state [59,60], as
has been observed in V2O3 [61,62]. However, V2O3 has an
insulating state resistivity five to seven orders of magnitude
higher than that of ReNiO3 [57], which largely precludes any
Joule heating effect. Given the comparatively low resistivities
of NdNiO3 and SmNiO3, it is a rather unlikely scenario.

V. CONCLUSIONS

In conclusion, we have studied the dynamics of the elec-
trically triggered IMT in NdNiO3 and SmNiO3. We did so by
analyzing the time-dependent transport properties of our de-
vices upon the application of a voltage pulse. We observed that
switching times (τInc) are much shorter for NdNiO3 than for
SmNiO3. We found that τInc depends strongly on the applied
voltage, that dependence being more dramatic for NdNiO3,
and for lower temperatures. Our results can be interpreted
considering the resistivity ratios between the insulating and
metallic states. We use resistor network simulations to show
that a higher ρIns/ρMet ratio results in a more confined dis-
tribution of metallic domains during nucleation, increasing
local Joule heating and accelerating the metallization process.
We compare two very different and representative members
of the rare-earth nickelates, offering a hint on what could be
expected for the rest of the ReNiO3 compounds. Our work
in this paper agrees very well with recent observations in
the vanadate family [20], suggesting that the dynamics of
the electrically triggered IMT can be explained using simple
mesoscopic arguments, independent from microscopic details
and applicable to very different systems that feature an IMT.
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