
PHYSICAL REVIEW B 104, 165139 (2021)

High-frequency magnetotransport in a viscous electron fluid under a Stern-Gerlach force
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We apply a hydrodynamic theory to study transverse magnetosonic resonances in a viscous two-dimensional
electron fluid under an in-plane Stern-Gerlach force (SGF), a perpendicular magnetic field with cyclotron
frequency ωc, and an alternating electric field with frequency ω. The SGF leads to a splitting in the dispersion
curve of the transverse magnetosound wave and hinders the long-wavelength plasmonic excitation. The effective
diagonal viscosity coefficient can be enhanced by about one order of magnitude due to the SGF. The variation of
absorption power Y with ωc exhibits a viscoelastic (VE) resonance at ωc = ω/2 and transverse magnetosound
resonances. The SGF can raise the heights of all resonant peaks and leave the peak positions almost completely
unchanged. The most substantial magnetosonic resonant peak, much weaker than the VE peak in the absence
of SGF, can be tuned by the SGF to be well above the VE peak. Our results indicate that the SGF can be used
to tune the VE resonance and transverse magnetosound resonances, which is relevant to the manipulation of
photoresistance and photovoltaic effects in viscous electron fluids.
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I. INTRODUCTION

In clean materials, electrons can form viscous flow in a
hydrodynamic regime at low temperatures when momentum-
conserving interparticle collisions are much more dominant
than any other collisions that cannot conserve momentum
[1]. A hydrodynamic regime can be formed when the mean
free path of electron-electron scattering (lee) is the shortest
one compared to those of electron-phonon and electron-
disorder collisions (l ), i.e., lee � l , where the motion of
viscous electrons becomes collective and can be described by
a hydrodynamic model [2–5]. Bright evidence of the hydrody-
namic regime of electron transport has been reported in novel
nanostructures [6–10], such as high-mobility quantum wells,
monovalence layered metal PdCoO2, and three-dimensional
Weyl semimetal WP2. The experimental reports of hydrody-
namic transport have been accompanied by intense interest of
theoretical studies [2–5].

Giant negative magnetoresistance in viscous electron fluids
has attracted much research interest, where the resistance de-
creased by several orders of magnitude in moderate magnetic
fields relative to the zero magnetic field, showing numer-
ous mysterious characteristics [6–10]. The giant negative
magnetoresistance effect has been discussed in the frame
of hydrodynamic models considering the dependence of the
electron viscosity coefficients on magnetic field [2] and on
a Stern-Gerlach force (SGF) [5]. A viscous electron flow in
the hydrodynamic regime was studied, and the sample resis-
tance was proportional to the diagonal viscosity coefficient
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provided that the electron-electron scattering dominates [2],
yielding the giant negative magnetoresistance. It was shown
that the presence of SGF in a spin-dependent viscous flow
could enhance the giant negative magnetoresistance effect,
manifesting in the fact that the effective diagonal viscosity of
the fluid was enhanced by about three orders of magnitude at
zero magnetic field [5].

High-frequency transport of a viscous two-dimensional
(2D) electron fluid in zero magnetic field flowing along an ex-
tended sample has been theoretically studied in Refs. [11,12].
Transverse zero sound was studied in a 2D strongly interact-
ing Fermi liquid [13,14]. Alekseev et al. [3,4,15] developed
a hydrodynamic theory for high-frequency magnetotransport
in a highly viscous fluid in GaAs/GaAlAs heterostructure,
where transverse magnetosonic waves and conventional mag-
netoplasmons were reported. The electron shear viscosity
coefficient has shown the so-called viscoelastic (VE) reso-
nance [3] when the alternating current (AC) frequency ω and
the cyclotron frequency ωc satisfy ω = 2ωc. It was pointed
out that [4] the transverse zero magnetosound can be excited
in a highly nonideal Fermi gas, which was guaranteed by
the fact that the shear viscosity coefficient was significantly
enhanced compared to that in an ideal Fermi system. The
hydrodynamic Navier-stokes equation can be derived from
the kinetic equation in a nonideal Fermi gas with strongly
interacting quasiparticles, which confirms the feasibility of the
hydrodynamic approach of transverse zero magnetosound in a
highly viscous 2D nonideal fluid [4].

However, the transverse zero magnetosound has not been
studied in a spin-dependent viscous electron flow in the
hydrodynamic regime. In this work, we predict excitations
of transverse zero magnetosounds in a spin-dependent vis-
cous two-dimensional electron gas (2DEG) modulated by an
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FIG. 1. Schematic illustration of a 2DEG sample with length L,
width W , and rough edges. The configurations of external fields in-
clude a constant perpendicular magnetic field B0, an AC electric field
along the x axis, and a constant magnetic field gradient ∇By along the
y axis. The hydrodynamic velocity ux (y, t ) shows a standing-wave-
like distribution.

in-plane SGF, a perpendicular magnetic field, and an AC elec-
tric field. A two-component hydrodynamic approach taking
into account the frequency and spin dependence of viscosity
is used to study the effect of in-plane SGF on the shear
viscosity coefficients. We show that the viscosity coefficients
are enhanced by about one order of magnitude due to the
SGF, which is useful for realizing the transverse magnetosonic
wave propagating in a viscous Fermi fluid. This provides a
possible route to excite transverse zero magnetosounds even
in an ideal Fermi gas, manifesting that the transverse magne-
tosonic resonances can be enhanced significantly by the SGF
to be much higher than the VE resonance.

II. MODEL AND FORMALISM

We consider a 2DEG in the (x, y) plane with width W along
the y direction and length L along the x direction, which is
subject to a constant magnetic field B0 along the z direction,
an AC electric field E0(t ) along the x direction, and a con-
stant magnetic field gradient [5,16] ∇By along the y direction.
The spin quantization direction is taken to be the y axis [5].
The geometry and fields under consideration are presented in
Fig. 1.

High-frequency dynamics of a spin-dependent viscous
electron fluid can be described by a two-component Fermi liq-
uid model with the spin-dependent particle density ns(r, t ) =
n0 + δns(r, t ) and the fluid velocity us(r, t ). Here r = (x, y)
is a position in the 2DEG, s = ±1 represents the spin-up and
spin-down subsystem, and n0 is the equilibrium density for
both spin-up and spin-down electrons under zero field. The to-
tal hydrodynamic density and velocity are given by n(r, t ) =
n+(r, t ) + n−(r, t ) and u(r, t ) = u+(r, t ) + u−(r, t ).

The linearized continuity and Navier-Stokes equations can
be derived by assuming a time dependence e−iωt for the total
and spin-dependent hydrodynamic velocities,

− iωδns + n0∇ · us = 0,

− iωus = ωcus × ez + e

2m
E(r, ω) − us

τ
+ ηxx1(ω)

2
∇2u

+ ηyx1(ω)

2
∇2u × ez + s

g∗μB

4m
∇By, (1)

where ∇ = ∂
∂x ex + ∂

∂y ey, e is the fundamental charge, m is
the effective electron mass, ωc = eB0/mc with c the light
speed, E(r, ω) is the complex amplitudes of the harmonics
of the electric field E(r, t ), and 1/τ is the rate of momentum
relaxation in bulk due to the electron scattering on disorder
and/or phonons [2]. The magnetic field gradient yields the
spin-dependent SGF s g∗μB

4
∂By

∂y , where g∗ is the effective g fac-
tor, and μB is the Bohr magneton. The effective shear viscosity
coefficients ηxx1(ω) and ηyx1(ω) depend on the SGF, magnetic
field (B0), and AC frequency (ω),

ηxx1(ω) = 1 − iωτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2
η

+
[

(1 − iωτ2)

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2

τ2g∗μB

2m

∂By

∂y

]2
τ

4
,

(2)

ηyx1(ω) = 2ωcτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2
η

+ (1 − iωτ2)(2ωcτ2)[
1 + (−ω2 + 4ω2

c

)
τ 2

2 − 2iωτ2
]2

×
(

τ2g∗μB

2m

∂By

∂y

)2
τ

4
. (3)

The expressions of ηxx1 and ηyx1 are derived in Appendix A.
Here η is the viscosity coefficient without B0 and SGF, and τ2

is the relaxation time of the second angular moment of the dis-
tribution function with respect to velocity, which are the same
as in Refs. [3,4]. In Ref. [15], Eq. (1) was consistently derived
from the kinetic equation for strongly interacting Fermi-liquid
quasiparticles, where the value of η becomes η = v2

Fητ2/4.
In this case the parameter vFη = 2

√
η/τ2 is quite larger than

its counterpart vF , where vF = h̄
√

4πn0/m (h̄ is the Plank
constant) is the Fermi velocity. Otherwise, η = v2

F τ2/4 in a
nearly ideal Fermi gas [2,3,5]. For a high-frequency flow with
characteristic frequencies ω,ωc � 1/τ2, the effective viscos-
ity coefficients lead to the VE resonance at ω = 2ωc. Note that
the hydrodynamic pressure term −∇P/m is neglected, and the
electron fluid is considered as incompressible (∇ · u = 0) as
in Refs. [2,3,5].

We derive the linearized continuity and Navier-Stokes
equations of total density perturbation and velocity by adding
and subtracting over the spin index in Eq. (1),

− iωδn + n0∇ · u = 0, (4)

−iωu = e

m
E(r, ω) + ωcu × ez − u

τ

+ ηxx1(ω)∇2u + ηyx1(ω)[∇2u × ez], (5)

where δn = δn(r, ω) and u = u(r, ω) are the complex ampli-
tudes of the perturbed particle density δn(r, t ) = n(r, t ) − n0

and the hydrodynamic velocity u(r, t ).
The hydrodynamic model [Eqs. (4) and (5)] has been val-

idated and applied when the interparticle scattering length ∝
τ2vF is the shortest one [2–5,17]. The hydrodynamic method
can be applicable under the condition that a fluid flow is driven
by a high-frequency external electric field with frequency ω
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fulfilling ω � 1/τ2, where the quasiequilibrium distribution
of electrons in the moving frame does not have enough time
to be formed. This condition has been indeed realized for
transverse zero sound in a strongly nonideal electron liquid
[4,15,17].

It is instructive to seek the wavelike solutions of Eqs. (4)
and (5) without the external electric field (E0 = 0), that is, the
plasmonic excitation. For a plane wave propagating along the
x axis with a complex frequency ω and real wave vector q,
the velocity and Hall electric field can be written as

ux(y, t ) = ux0 exp(−iωt + iqy),

Ey(y, t ) = Ey0 exp(−iωt + iqy).

Here we adopt the condition uy = usy ≡ 0. The Navier-Stokes
Eq. (5) yields a closed set of equations for the amplitudes ux0

and Ey0,

iωux0 − 1

τ
ux0 − ηxx1ux0q2 = 0,

e

m
Ey0 − ωcux0 + ηyx1ux0q2 = 0. (6)

The solution corresponds to the waves of transverse zero
sound, where u ⊥ q describes the transverse character of
the magnetosonic waves, due to ∇ · u = 0 and δn = 0 [see
Eq. (4)]. These kinds of waves are different from conventional
magnetoplasmons. The transverse character of the magne-
tosonic waves[4] are induced by perturbations of the shear
stress tensor and are analogous to transverse sound in amor-
phous solids [18].

In Eq. (6) the complex frequency ω depends on the real
wave vector q, ω = ωq − iϒq. The dispersion relation ωq and
damping coefficient ϒq of the transverse zero magnetosound
are determined from

i(ωq − iϒq) − 1/τ − ηxx1q2 = 0. (7)

This equation yields

ωq = Im(ηxx1)q2, (8)

ϒq =
[

1

τ
+ Re(ηxx1)q2

]/
[1 − q2 Im(η′

xx1)], (9)

where ηxx1(ω) and its derivative η′
xx1(ω) are calculated at

ω = ωq for small ϒq. Thus the dispersion of the transverse
magnetosonic wave is determined by the frequency-dependent
diagonal viscosity coefficient ηxx1. At high frequencies
(ωc, ωq � 1/τ2 > 1/τ ) and far from the VE resonance (|ωq −
2ωc| � 1/τ2), based on Eqs. (2), (8), and (9) one can approx-
imate the transcendental equation of dispersion relation and
damping coefficient as

(
ω2

q − 4ω2
c

)2 − ηq2

τ2

(
ω2

q − 4ω2
c

) + α
v2

Fηq2

2τ 2
2

= 0, (10)

ϒq =
(
4ω2

c − ω2
q

)2 − αω2
q

(
4ω2

c − ω2
q

)
2ω2

qτ2
(
4ω2

c − ω2
q + 4α/τ 2

2

) , (11)

where

α = F 2ττ2

v2
Fη

, F = g∗μB∂By

2m∂y
. (12)

The details for the derivation of Eqs. (10) and (11) are given
in Appendix B.

Then we study the linear response of the electron fluid in
a finite sample under a linearly polarized homogeneous AC
electric field E0(t ) = E0exe−iωt + c. c. The velocity and the
Hall electric field take the form ux(y, t ) = ux(y)e−iωt + c. c.
and Ey(y, t ) = Ey(y)e−iωt + c. c. with a real frequency ω. The
Navier-Stokes equation [Eq. (5)] leads to(

iω + ηxx1
d2

dy2 − 1
τ

0

−ωc − ηyx1
d2

dy2 1

)(
ux(y)

e
m Ey(y)

)
= −eE0

m

(
1
0

)
. (13)

The solution of these differential equations can be expressed
in terms of the characteristic wave vector

λ =
√

− iω

ηxx1
+ 1

τηxx1
. (14)

The velocity ux(y) is calculated under the boundary condition
for the rough sample edges u|y=±W/2 = 0, which is given by

ux(y) = 1

−iω + 1/τ

eE0

m

(
1 − cosh(λy)

cosh(λW/2)

)
. (15)

The first and second terms in this velocity distribution are the
bulk (Ohmic) and the viscosity-dependent term in the linear
response, respectively. Based on Eq. (15), the total electric
current

Ix = en
∫ W/2

−W/2
dyux (y)

can be expressed as

Ix = 1

−iω + 1/τ

e2n0E0W

m

(
1 − tanh(λW/2)

W λ/2

)
. (16)

The linear response of u(y, t ) also describes energy absorp-
tion and AC impedance from the AC external electric field
E0(t ). The absorption power is written as

Y = 2E0 Re Ix, (17)

which can be calculated from Eqs. (14) and (16). The AC
impedance is Z = E0/Ix.

III. RESULTS AND DISCUSSION

It was reported that a highly viscous fluid could be formed
in high-mobility GaAs 2DEG [2]. In InSb 2DEG, the viscosity
coefficients are even higher than those in GaAs 2DEG [5].
Our results are obtained for an InSb [5,19,20] 2DEG. The
parameters are chosen as n0 = 0.5×1010 cm−2, electron mo-
bility μ ≈ 105 cm2/V s, g∗ = 40, m = 0.018me, temperature
T = 1 K, and τ2/τ = 10−7. These parameters determine the
possible range of α as 0.1–1000 for [4,5] ∂By

∂y = 8×106 to

8×108 G cm−1. In order to show how transverse zero magne-
tosonic waves are excited, it is necessary to employ a spatially
nonuniform flow which is driven by a uniform AC electric
field E0(t ) = E0e−iωt ex and under no-slip boundary along the
y direction.

Plasmon dispersion. In Fig. 2, the dispersion relation of the
transverse magnetosound is shown in the absence (α = 0) or
presence (α = 10) of SGF. The frequency ω and wave vector
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FIG. 2. Dispersion relation of the transverse magnetosound wave
ωq at fixed ωcτ2 = 24.5. The frequency ω is in units of ωc and the
wave number q is in units of ωc/vFη. The solid and dashed lines show
the approximate dispersion given by Eq. (10), while the circles are
obtained from Eq. (8). The dispersion in the absence of SGF (α = 0)
is the same as in Ref. [4]. Two eigenvalues (ω1 and ω2) exist in the
presence of SGF (α = 10).

q are respectively in units of ωc and ωc/vFη. We take ωcτ2 =
24.5.

The dispersion in the absence of SGF (black circles in
Fig. 2) is the same as in Ref. [4], which partly validates our
calculations. The approximation results from Eq. (10) (black
solid line in Fig. 2) coincide with those obtained by directly
solving Eq. (8) numerically. This demonstrates the reliability
of the analytical estimation of the diagonal viscosity coeffi-
cient ηxx1 at high frequencies and far from the VE resonance.
At q = 0 the plasmon frequency ω = 2ωc is explained by the
own rotation of the shear stress tensor of the viscous fluid in
magnetic field [4].

As shown in Fig. 2, in the presence of SGF the approxi-
mate dispersion obtained from Eq. (10) still agrees well with
the numerically exact solution. From Eq. (10) one yields the
analytical dispersion expression for q � qth = √

32α/(ωcτ2),

ω1,2 = ωc

2
√

2

√
32 + q2 ∓ q

ωcτ2

√
−32α + q2ω2

cτ
2
2 . (18)

Note that the transverse magnetosound wave is absent at
q < qth in the presence of SGF, as shown in Fig. 2. The SGF
hinders plasmon excitation in the long-wavelength limit. This
observation is consistent with the following relation required
for realizing the transverse magnetosound wave [4]:

(2k + 1)
π

q(ωq, ωc)
= W. (19)

Here k is integer and q(ωq, ωc) � qth is the wave number of
the magnetosound wave obtained from Eq. (10). Equation (19)
claims that the sample width W should be an odd number of
the half wavelength �h = π/q(ωq, ωc) of the magnetosound
standing wave. Due to the nonslip condition u|y=±W/2 = 0,
the ratio W/�h should be integer. The magnetosound standing
wave has a finite contribution to the current Ix only when the
integer W/�h is odd.

Two eigenvalues (ω1 and ω2) exist in the presence of
SGF (α = 10 in Fig. 2) at q � qth. This corresponds to two

FIG. 3. The dissipative parts of the viscosity coefficients in units
of η = v2

Fητ2/4, (a) Re ηxx1 and (b) Im ηxx1, plotted as functions of
ωcτ2 and α at ωτ2 = 50.

branches of the transverse magnetosound wave. The branch
ω2 with a remarkable dispersion lies below the dispersion
curve for α = 0. The two curves (ω2 and ωq|α=0) tend to
coincide for large wave vectors. The branch ω1 decreases
from its maximum ω1th = 2

√
1 + α/ω2

cτ
2
2 to 2ωc as the wave

vector increases from qth. This new branch of transverse mag-
netosound wave is almost nondispersive.

Tuning the AC viscosity by SGF. The tunability of the dis-
persion relation by the SGF results from the effective diagonal
viscosity coefficient ηxx1 [see Eq. (8)]. Figure 3 shows the
effective diagonal viscosity coefficient ηxx1 (normalized by
η = v2

Fητ2/4) as functions of ωcτ2 and α for a fixed ωτ2 = 50.
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FIG. 4. Schematic illustration of the physical origin for the mod-
ification of effective viscosity coefficients (Re ηxx1 and Im ηxx1). The
electron fluids in two adjacent layers move with different velocities
ux (y1, t ) and ux (y2, t ). The viscosity is determined by the interlayer
penetration length [2] of electrons. Here e+ and e− represents spin-
up and spin-down electrons. (a) α = 0, B0 = 0; (b) α �= 0, B0 = 0;
(c) α = 0, B0 �= 0; (d) α �= 0, B0 �= 0.

At α = 0, Eq. (2) is reduced to that in Ref. [4]. The real part
of ηxx1 reaches its maximum 0.5 at the VE resonance point
ωcτ2 = ωτ2/2. At a finite α, Re ηxx1 is still peaked at ωcτ2 =
ωτ2/2 with full width at half maximum ωcτ2. Its maximum
is 0.5(1 + α/2), which increases with α [see Fig. 3(a)]. The
maximum at α = 10 is six times larger than that at α = 0. This
indicates that the SGF can enhance the nonlinear resonance
and thus alter transport properties of high-frequency viscous
flow. At the VE resonance, the imaginary part of ηxx1 is almost
unaffected by the SGF due to ωτ2 � 1. For ωcτ2 near the
VE resonance, the curve Im ηxx1 is almost antisymmetric. The
maximum of Im ηxx1 increases from 0.22 to 1.8 as α varies
from 0 to 10. The peak width of Im ηxx1 is about ωcτ2 in all
cases. These features could be understood from Eq. (2).

The SGF-induced modification of effective viscosity coef-
ficient (Re ηxx1 and Im ηxx1) could be explained by means of
Fig. 4. The viscosity arises from the the exchange of electrons
[2] between two adjacent layers of electron fluid moving with
different velocities ux(y1, t ) and ux(y2, t ). For α = 0 and B0 =
0 [Fig. 4(a)], the interlayer penetration length of electrons
is of the order l2 = vFητ2. As the transverse SGF turns on
[Fig. 4(b)], spin-up (-down) electrons from the lower (upper)
layer can penetrate on a larger distance into another one. As
a result, the viscosity friction determined by the penetration
length can be enhanced by the SGF. Under a perpendicular
magnetic field with cyclotron radius Rc = vFη/ωc < l2, the
penetration length is limited by the cyclotron radius [Fig. 4(c)]
and decreases with the magnetic field. Such a limitation could
be relaxed when the SGF is applied [Fig. 4(d)]. Therefore, the
viscosity reduced by the magnetic field can be enhanced by
the SGF, as demonstrated theoretically in Ref. [5] in the case
of direct current. In the presence of an AC electric field with
frequency ω, such an enhancement can be further amplified
around the VE resonance ωc = ω/2.

Control of alternating current and absorption power by
SGF. The SGF dependence of effective viscosity can be re-
flected in measurable quantities such as the alternating current
(Ix), absorption power (Y ), and AC impedance (Z). In Figs. 5

FIG. 5. (a) The imaginary part of the alternating current Im Ix in
units of Ix0 = e2n0W E0τ2/m plotted as a function of ωcτ2. (b) Vari-
ation of Im tanh(λW/2) as a function of ωcτ2. We set ωτ2 = 50,
τ2/τ = 10−7, W/l2 = 1.8, and α = 0, 0.4, 0.7, 0.95. The VE reso-
nance and the magnetosonic resonances are seen for all curves.

and 6 we plot the alternating current (Ix) and absorption power
(Y ) as a function of ωcτ2 under several values of α at fixed
ωτ2 = 50 and τ2/τ = 10−7. The width of the sample is taken
as W = 1.8l2, where l2 = vFητ2 is a characteristic length.
For this medium width, the plasmonic contribution can be
neglected.

FIG. 6. The absorption power Y in units of Y0 plotted as a
function of ωcτ2. We set ωτ2 = 50, τ2/τ = 10−7, W/l2 = 1.8, and
α = 0, 0.4, 0.7, 0.95.
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In all curves, one can observe an asymmetric resonant peak
at ωcτ2 = ωτ2/2. As shown in Figs. 5 and 6, the amplitude of
this VE resonance increases with α. Near the VE resonance
(|ω − 2ωc| � 1/τee), the wave vector λ defined in Eq. (14)
can be approximated as

λ ≈ 2
(
4ω2

c − ω2 − 2iω/τ2
)

√(
4ω2

c − ω2 − 2iω/τ2
)
v2

Fη − ωF 2τ

. (20)

Near the right side of the VE resonance, | Re λ| increases
drastically while | Im λ| is small. Accordingly, ux(y) decays
quickly from edges to the bulk, leading to an edge VE flow.
When ωc moves down from ω/2, | Im λ| increases quickly
while | Re λ| is small. The corresponding ux(y) profile shows
remarkable spatial oscillations (see Appendix C). For the
high-frequency linear response near the VE resonance, the
absorption power Y can be obtained from Eqs. (16) and (20)
under the approximation tanh(W λ/2) ∼ 1,

Y (ωc) ≈ Y0

2W/l2
Re

(√
i − (2ωc − ω)τ2 + α/2

i − (2ωc − ω)τ2

)
, (21)

Y0 = e2n0W E2
0 τ2/m. (22)

This equation results in an asymmetric VE resonant peak at

ωc = ω/2 with amplitude
√

(1 + √
1 + 0.25α2)/2Y0l2

2W . Con-
sequently, one can understand the enhancement of the VE
peak by the SGF.

In Figs. 5 and 6, one can also observe a series of res-
onant peaks for ωc < ω/2. Such resonances are named as
“transverse magnetosound resonances” or “magnetosonic res-
onances” [4]. They arise from the formation of standing waves
of transverse zero sound under the condition Eq. (19). The
application of SGF can greatly enhance the magnetosonic res-
onances but almost unchanged the peak positions. As shown
in Fig. 5(b), the oscillation amplitude of magnetosonic reso-
nances is mainly controlled by the factor Im tanh(λW/2).

Away from the VE resonance where 2ωc − ω � 1/τ2, one
can approximate the wave vector λ in Eq. (14) as

λ ≈ 2
∣∣4ω2

c − ω2
∣∣√(

4ω2
c − ω2

)
v2

Fη − iωF 2τ

≈
√∣∣ω2 − 4ω2

c

∣∣
vFη

(
2 + i

αω∣∣ω2 − 4ω2
c

∣∣τ2

)
. (23)

After some algebra, one gets

− Im tanh
λW

2
≈ sin X

cos X + cosh A
,

X = α
ω√∣∣ω2 − 4ω2

c

∣∣
W

l2
, (24)

A = 2τ2

√∣∣ω2 − 4ω2
c

∣∣W
l2

.

The first maximum of this function increases quickly with α.
The values of absorption power at the first peak of

magnetosonic resonances (YFPMS×103) and VE resonance

TABLE I. Absorption power at the first peak of magne-
tosonic resonances (YFPMS×103) and VE resonance (YVE×103) for
different α.

α = 0 0.4 0.7 0.8 0.9 0.95

YFPMS×103 0.25 0.45 0.83 1.2 2.2 4.1

YVE×103 0.85 0.95 1.05 1.05 1.05 1.05

(YVE×103) are shown for different α in Table I. The first
maximum of absorption power at α = 0.95 exceeds 16 times
that at α = 0 (see Fig. 6 and Table I). Such a SGF-induced
resonance enhancement is more pronounced than that for the
VE resonance. In the absence of SGF, the VE peak is much
higher than all magnetosonic resonant peaks. Under the SGF
with α = 0.95, the amplitude of the first magnetosonic reso-
nance is four times higher than that of the VE resonance, as
shown in Table I.

The VE resonances and magnetosonic resonances are dis-
tinct in the SGF dependence because they are affected in
different ways by the effective diagonal viscosity coefficient
ηxx1. Such a distinction is partly reflected in Eqs. (21) and
(24), which is also manifested in the profiles of hydrodynamic
velocity (shown in Appendix C). Since the SGF is along the
transverse direction, intuitively it has a stronger effect on the
transverse character of the magnetosonic waves than that on
the VE resonance. The transverse magnetosound waves are
related to perturbations of shear stress of a charged Fermi
liquid under a magnetic field. The perturbations can be en-
hanced greatly by the SGF. In comparison, the viscoelastic
resonance is due to the intrinsic dynamics [15] of shear stress
of charged fluids under a magnetic field. The presence of SGF
could modify it only slightly.

Width dependence of SGF-induced resonance enhance-
ment. The VE resonance and the transverse magnetosound
resonances manifest themselves in different ways which de-
pends on the normalized sample width W/l2. Figure 7 presents
the absorption power Y as a function of ωcτ2 at ωτ2 = 50 and
τ2/τ = 10−7 in the presence (α = 0.9) or absence (α = 0) of
the SGF. The values of sample width W is chosen to be the
same as in Ref. [4] in order to compare the results with and
without the SGF.

For 0.2 < W/l2, it is evident that VE resonances appear
at ωcτ2 = ωτ2/2 for both the two situations α = 0.9 and
α = 0. The width dependence of magnetosonic resonances
is determined from Eq. (19). From Fig. 7 one can see that
magnetosonic resonances occur for W/l2 � 3.2. The number
of resonant peaks decreases with W/l2. For the narrowest
samples W/l2 = 0.033, the magnetosonic resonance domi-
nates and shows a single peak. For all the considered width
values, the SGF raises the VE and magnetosonic peaks and
almost unchanged the peak positions. The amplification factor
depends on the width.

In narrow samples with W |λ| � 1, the velocity ux(y)
as well as the VE flow show a parabolic profile in the
whole sample region (not shown here). The linear cur-
rent response of this high-frequency Poiseuille flow is
derived from Eqs. (16) and (2) with the replacement
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FIG. 7. The absorption power Y in units of Y0 as a function of ωcτ2 at ωτ2 = 50 and τ2/τ = 10−7. We take α = 0.9 in (a)–(c) and α = 0
in (d)–(f). Three regimes of sample width W are considered: (a), (d) medium; (b), (e) narrow; and (c), (f) narrowest.

tanh(W λ/2) → W λ/2 − (W λ/2)3/3. One has

Ix = e2n0E0W 3

12m

[(
ω2 + 4ω2

c

)
τ 2

2 + iωτ 3
2

(−ω2 + 4ω2
c

)]2

ηω2τ 2
2

[(
ω2 + 4ω2

c

)
τ 2

2 + iωτ 3
2

(−ω2 + 4ω2
c

)] + ω4τ 6
2 F 2τ/4

. (25)

The SGF dependence of absorption power Y for narrow sam-
ples can be obtained directly from this equation. The single
Y peak in the AC Poiseuille flow is nearly symmetric due to
Eq. (25). In this case, the magnetosonic resonance is directly
related to the resonances in the viscosity coefficient ηxx1(ω)
and manifests itself in the sample absorption power.

Near the VE resonance (2ωcτ2, ωτ2 ∼ 1), the AC
impedance Z = E0/Ix obtained from Eq. (25) can be written
as

Z ≈ 12m

e2n0W 3

η[1 + i(2ωc − ω)τ2] + τ 2
2 F 2τ/4

[1 + i(2ωc − ω)τ2]2
. (26)

In the AC Poiseuille flow, the VE resonance is directly related
to the resonances in the viscosity coefficient ηxx1(ω) and man-
ifests itself in the sample impedance.

Effect of parameter τ2/τ . In high-quality GaAs 2DEGs,
the relaxation time τ2 extracted from the magnetoresistance

measurements [6,21,22] approaches 10−12 to 10−11 s at low
temperature ≈ 1 K. For the sample studied in Ref. [9], the
ratio τ2/τ ranges from [2] 0.01 to 0.1. The value τ2/τ = 10−7

is assumed for numerical calculations in Ref. [4]. In an InSb
2DEG with high mobility [23], the measured relaxation time
τ could reach ≈10−10 s. The ratio τ2/τ = 10−7 is difficult to
achieve for InSb 2DEG under current experimental progress.
It is thus necessary to discuss the effect of τ2/τ on the ro-
bustness of our results. For a fixed ωcτ2 = 24.5, the required
magnetic field B0 for the more realistic value of τ2 = 10−1τ ≈
10−11 s is about 2 kG, which diminishes as τ2 increases. Such
a magnetic field is easily reachable in experiments.

Figure 8 presents the absorption power Y as a function of
ωcτ2 without (α = 0) and with (α = 0.9) the SGF at three
different values of τ2/τ = 10−7, 10−2, 10−1. We take ωτ2 =
50 and W/l2 = 1.8. In the absence of SGF [Fig. 8(a)], the
absorption power Y changes slightly when τ2/τ increases
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FIG. 8. The absorption power Y in units of Y0 plotted as a
function of ωcτ2 for several values of τ2/τ . We set ωτ2 = 50 and
W/l2 = 1.8. (a) α = 0; (b) α = 0.9.

from 10−7 to 10−2. As τ2/τ varies from 10−2 to 10−1, peaks
of both VE and magnetosonic resonances move up and do
not change their positions. The VE peak is still much higher
than the magnetosonic resonant peaks. This can be understood
from the two factors in the expression Eq. (16) which deter-
mines the absorption power Y . When τ2/τ ≪ ωτ2, the first
factor Re τ2

−iωτ2+(τ2/τ ) varies almost linearly with τ2/τ , while
the second factor Im[1 − tanh(λW/2)/(λW/2)] is almost in-
dependent of τ2/τ .

As shown in Fig. 8(b), the VE resonance changes slightly
with τ2/τ even in the presence of SGF. Here the value F
is assumed to decrease with the increase of τ2/τ so that α

is fixed at 0.9. When τ2/τ increases from 10−7 to 10−2, F
will reduce by a factor ≈ 316. In this regime the change
of τ2/τ only has a weak influence on magnetosound res-
onances (especially for ωcτ2 > 10). Consequently, for the
realistic value τ2/τ = 10−2, under a much smaller SGF one
can achieve remarkable magnetosound resonance with peak
much higher than the VE resonance. As τ2/τ varies from
10−2 to 10−1, the first several peaks (satisfying ωcτ2 < 10)
of magnetosound resonances decrease obviously. In this case
the factor Im tanh(λW/2) changes greatly with τ2/τ for small
values of ωcτ2 and large α. It is encouraging to see that even at
τ2/τ = 10−1 the fist magnetosound resonance is still stronger
than the VE resonance in the presence of SGF.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we have used a hydrodynamic method to
study the AC transport of viscous electron flow in an InSb
2DEG under an in-plane SGF and a perpendicular magnetic
field. In the presence of SGF, the dispersion of the trans-
verse magnetosound waves has two branches and a finite
threshold wave vector. Under a linearly polarized external
electric field with frequency ω, the absorption power Y varies
with the cyclotron frequency ωc. It exhibits VE resonance
at ωc = ω/2 and (a series of) transverse magnetosound res-
onances. For both kinds of resonances, the SGF can raise the
peak heights and almost unchanged peak positions. The SGF-
induced enhancement of magnetosonic resonances is usually
more pronounced than that for the VE resonance and depends
on the sample width. The first magnetosonic resonant peak
can be tuned by the SGF to be well above the VE peak, which
is much lower than the VE peak in the absence of SGF. All of
these results arise from the SGF dependence of the effective
diagonal viscosity coefficient.

The VE resonance actually has been observed experi-
mentally in photoresistance and photovoltaic effect of GaAs
2DEG systems [24–26] and explained by a hydrodynamic
model [4]. However, the transverse magnetosound resonances
predicted in Ref. [4] have not been confirmed in experiments.
The magnetosound resonances disappear in wide samples and
are much weaker than the VE resonance for samples with a
medium width. For a medium sample width, we have demon-
strated that the SGF can enhance the first magnetosound
resonances to be much higher than the VE resonance. This
could be helpful for the experimental observation of mag-
netosound resonances. Our results provide a possible tuning
method for the VE resonance and transverse magnetosound
resonances, which might be relevant to control the peculiari-
ties in the photoresistance and photovoltaic effects in viscous
electron fluids.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Founda-
tion of China through Grants No. 11975174, No. 11774314,
No. 11775090, and No. 11775164, and the Fundamental Re-
search Funds for the Central Universities through Grants No.
2020IB023 and No. 2018IB011.

APPENDIX A: FREQUENCY-DEPENDENT VISCOSITY
UNDER STERN-GERLACH FORCE

We derive the frequency-dependent viscosity coefficients
in the presence of an in-plane Stern-Gerlach force, a perpen-
dicular magnetic field, and an AC electric field with a time
dependence e−iωt .

In the hydrodynamic model, the viscous terms could be
described by the viscous stress tensor of a single particle,
�i, j = m〈viv j〉, where v = (vx; vy) is the two-dimensional
velocity of an electron, i, j ∈ {x, y}, and the angular bracket is
average of the velocity at a fixed point r = (x; y). Following
the approach considered in Refs. [2–4], the momentum bal-
ance equation for the hydrodynamic velocity u = 〈v〉 without
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Stern-Gerlach force and magnetic field is written as

m
∂ui

∂t
= −∂�i j

∂x j
− mui

τ
+ eEi. (A1)

The viscous stress tensor �i j can be expressed as [27]

�i j = �0
i j = −mη

(
ui j − 1

2
δi jukk

)
, ui j = ∂ui

∂x j
+ ∂u j

∂xi
.

(A2)

Here η = v2
Fητ2/4 and τ2 is the second angular momentum

relaxation time. This expression of �i j is derived from the
Drude-like equation

∂�i j

∂t
= −�i j − �0

i j

τ2
. (A3)

The magnetic field and Stern-Gerlach force provide ad-
ditional terms in Eq. (A1) because they can change the
hydrodynamic velocity. The expressions for ∂〈vi〉

∂t and ∂〈viv j〉
∂t

become (
∂〈vi〉
∂t

)
mag

= ωcεzik〈vk〉,
(

∂〈viv j〉
∂t

)
mag

= ωc(εzik〈vkv j〉 + εz jk〈v jvk〉),

(
∂〈vi〉
∂t

)
spin

= sFi,

(
∂〈viv j〉

∂t

)
spin

= s(Fi〈v j〉 + Fj〈vi〉), (A4)

where Fi = g∗μB∂Bi

2m∂Xi
= F for i = y while 0 otherwise, εzxy =

1 = −εzyx, and εzxx = εzyy = 0. The terms in Eq. (A4) also
appear in Eq. (A3). The latter reads

∂�i j

∂t
= −�i j − �0

i j

τ2
+ sm(Fi〈v j〉 + Fj〈vi〉)

+ mωc(εzik〈vkv j〉 + εz jk〈vivk〉). (A5)

For the viscous flow with an AC frequency of ω, it is
convenient to express the time dependence of �i j as e−iωt .
From Eqs. (A2) and (A5) we obtain

(1 − iωτ2)�i j − τ2ωc(εzik�k j + εz jk�ik )

− sτ2m(Fi〈v j〉 + Fj〈vi〉) = −mηui j . (A6)

Here we used the relationship ukk = 0, which follows from ∇ ·
u = 0. The components of �i j fulfill the following relations:

(1 − iωτ2)�xx − τ2ωc(�yx + �xy) = −mηuxx,

(1 − iωτ2)�yy − τ2ωc(−�yx − �xy) = −mηuyy,

(1 − iωτ2)�xy − τ2ωc(�yy − �xx ) = −mηuxy + A,

(1 − iωτ2)�yx − τ2ωc(�yy − �xx ) = −mηuyx + A, (A7)

where A = sτ2mF 〈vx〉. These relations result in

�xx = − 1 − iωτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2
mηuxx

− 2ωcτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2
mηuxy

+ 2ωcτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2
A,

�xy = − 1 − iωτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2
mηuxy

+ 2ωcτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2
mηuxx

+ 1 − iωτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2
A, (A8)

where �xx = −�yy and �xy = �yx. We can rewrite Eq. (A8)
as

�xx = −mηxx(ω)uxx − mηxyuxy + smζy(ω)〈vx〉,
�xy = −mηxx(ω)uxy + mηxyuxy + smζx(ω)〈vx〉, (A9)

where

ηxx(ω) = 1 − iωτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2
η,

ηxy(ω) = 2ωcτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2
η,

ζx(ω) = 1 − iωτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2

τ2g∗μB

2m

∂By

∂y
,

ζy(ω) = 2ωcτ2

1 + (−ω2 + 4ω2
c

)
τ 2

2 − 2iωτ2

τ2g∗μB

2m

∂By

∂y
. (A10)

It is convenient to define two effective viscous coefficients
as

ηxx1(ω) = ηxx(ω) + τ

4
ζ 2

x (ω),

ηyx1(ω) = ηyx(ω) + τ

4
ζx(ω)ζy(ω). (A11)

Note that ηxx(ω) and ηyx(ω) are the same as in Refs. [3,4].

APPENDIX B: DERIVATION OF EQUATIONS (10) AND (11)

In this Appendix, we give the details for the derivation
of Eqs. (10) and (11). At high frequencies (ωc, ωq � 1/τ2 >

1/τ ) and far from the VE resonance (|ωq − 2ωc| � 1/τ2),
we approximate the factor [1 + (−ω2 + 4ω2

c )τ 2
2 − 2iωτ2]−1

in Eq. (2) as [(4ω2
c − ω2)τ 2

2 ]−1 and then separate the real and
imaginary part. The results are

Re ηxx1 = 1

4ω2
c − ω2

q

v2
Fη

4τ2
− ω2

q(
4ω2

c − ω2
q

)2

F 2τ

4
, (B1)

Im ηxx1 = − ωq

4ω2
c − ω2

q

v2
Fη

4
− 2ωq(

4ω2
c − ω2

q

)2

F 2τ

4τ2
, (B2)

Im η′
xx1 = −v2

Fη

4

[
4ω2

c + ω2
q(

4ω2
c − ω2

q

)2 + 2
(
4ω2

c + 3ω2
q

)
α(

4ω2
c − ω2

q

)3
τ 2

2

]
. (B3)

Here, the term O(ω−4) is neglected; α and F defined in
Eq. (12) are

α = F 2ττ2

v2
Fη

, F = g∗μB∂By

2m∂y
. (B4)

165139-9



YA ZHANG, FENG ZHAI, AND WEI JIANG PHYSICAL REVIEW B 104, 165139 (2021)

By substituting Eq. (B2) into Eq. (8), we obtain

ωq = −v2
Fηq2

4
ωq

[
1

4ω2
c − ω2

q

+ 2α(
4ω2

c − ω2
q

)2
τ 2

2

]
, (B5)

which is equivalent to Eq. (10) and can be rewritten as

q2 = 4

v2
Fη

(
4ω2

c − ω2
q

)2[(
ω2

q − 4ω2
c

) − 2α/τ 2
2

] . (B6)

This equation together with the expressions (B1) and (B3)
leads to

q2 Re ηxx1 = αω2
q − (

4ω2
c − ω2

q

)
(
4ω2

c − ω2
q

)
τ2 + 2α/τ 2

2

, (B7)

q2 Im η′
xx1 = 16ω4

c − ω4 + 2α
(
4ω2

c + 3ω2
q

)
/τ 2

2[(
4ω2

c − ω2
q

) + 2α/τ 2
2

](
4ω2

c − ω2
q

) . (B8)

By substituting these two equations into the expression of ϒq

in Eq. (9), we get

ϒq =
[

1

τ
+ Re(ηxx1)q2

]/
[1 − q2 Im(η′

xx1)]

= αω2
q − (

4ω2
c − ω2

q

)
(
4ω2

c − ω2
q

)
τ2 + 2α/τ2

×
[(

4ω2
c − ω2

q

)
τ2 + 2α/τ2

](
4ω2

c − ω2
q

)
2ω2

qτ2
(
ω2

q − 4ω2
c − 4α/τ 2

2

)
=

(
4ω2

c − ω2
q

)2 − αω2
q

(
4ω2

c − ω2
q

)
2ω2

qτ2
(
4ω2

c − ω2
q + 4α/τ 2

2

) . (B9)

This is Eq. (11).

APPENDIX C: PROFILES OF HYDRODYNAMIC
VELOCITY

In this Appendix, we compare the profile of hydrodynamic
velocity under the VE resonance and that for a magnetosound
resonance. In Fig. 9 the spatial variation of velocity ux(y) is
plotted for a fixed width W = 1.8l2, frequency ω = 50/τ2,
and three values of ωcτ2 = 25, 7, and 2.5. In the absence of
SGF [Fig. 9(a)], it is seen that under VE resonance (ωcτ2 =
25 = ωτ2/2) the velocity ux(y) decays quickly toward the

FIG. 9. The distribution of the hydrodynamic velocity ux (y) in
units of eE0τ2/m as a function of 2y/W for several ωcτ2, in the
absence (α = 0) (a) and presence (α = 0.95) (b) of the SGF. Here,
W/l2 = 1.8 and ωτ2 = 50.

bulk from peaks near either edge of the sample. For mag-
netosound resonances (ωcτ2 � ωτ2/2), the velocity shows
obvious oscillations where the amplitude of peaks decays
gradually toward the bulk and is much higher than the peak
of VE resonance. When a SGF with α = 0.95 is applied
[Fig. 9(b)], the velocity peaks under magnetosound reso-
nances are enhanced drastically and show only a slight spatial
decay. In contrast, the velocity profile under VE resonance
shows only a minor change when α varies from 0 to 0.95.
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