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Low-energy effective theory and symmetry classification of flux phases on the kagome lattice
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Motivated by recent experiments on AV3Sb5 (A = K, Rb, Cs), the chiral flux phase has been proposed to
explain time-reversal symmetry breaking. To fully understand the physics behind the chiral flux phase, we
construct a low-energy effective theory based on the van Hove points around the Fermi surface. The possible
symmetry-breaking states and their classifications of the low-energy effective theory are completely studied,
especially the flux phases on the kagome lattice. In addition, we discuss the relations between the low-energy
symmetry breaking orders, the chiral flux, and charge bond orders. We find all possible 183 flux phases on
the kagome lattice within a 2*2 unit cell by brute-force approach and classify them by point-group symmetry.
Among the 183 phases, we find 3 classes in a 1*1 unit cell, 8 classes in a 1*2 unit cell, and 18 classes in a 2*2
unit cell, respectively. These results provide a full picture of the time-reversal symmetry breaking in kagome
lattices.
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I. INTRODUCTION

In condensed matter physics, there are many interesting
unconventional flux phases. For instance, the Haldane model
on the honeycomb lattice is the most well-known flux phase,
where opposite flux loops are formed in different sublat-
tice triangles respectively [1]. Meanwhile, flux phases are
also widely discussed in high-temperature cuprate supercon-
ductors after the seminal work by Affleck and Marston in
t-J models [2–4]. Generalizing this discussion, Varma pro-
posed a loop-current phase formed in the Cu-O triangles [5]
and Chakravarty et al. proposed the d-density wave state
with staggered flux in Cu square plaquettes [6]. Both states
break the time-reversal symmetry and are supposed to be
the candidates for the pseudogap in cuprates [5,7–9]. In
addition, flux phases in square lattices, hexagonal lattices,
and other systems have been widely discussed [10–17]. Al-
though there are plenty of theoretical proposals, whether flux
phases can be found in condensed matter is still an open
question.

Recently, the unconventional charge density wave (CDW)
order has been found in nonmagnetic AV3Sb5 (A = K, Rb, Cs)
[18,19] by scanning tunneling microscopy (STM) [20] and
anomalous Hall effect [21,22]. This CDW breaks the time-
reversal symmetry and is further supported by recent muon
spin spectroscopy measurements [20,23]. To explain this
time-reversal symmetry breaking phenomena, many interest-
ing theoretical proposals have been discussed in the kagome
lattice [24–27], especially the chiral flux phase (CFP) [24],
which carry unique nontrivial topological properties. How-
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ever, this previous CFP proposal [24] only includes one
particular flux pattern. Several important questions were left
behind, including why the flux pattern is selected, how many
flux phases are in the kagome lattice, and how these flux
phases are classified by symmetry.

In this paper we construct a low-energy effective theory
using the dominant scattering between van Hove (vH) points
around Fermi surfaces (FSs) to study the CFPs. We classify
the possible symmetry breaking states by point-group opera-
tions, including on-site charge orders, bond orders, and flux
phases. The relations between low-energy breaking orders to
the physical orders in real space are completely established,
especially the chiral flux phase, charge bond orders proposed
in previous works [24]. We calculate all kinds of flux config-
uration in real space within a 2*2 unit cell and classify them
by symmetry. Our result establishes a full physical picture of
the CFPs in AV3Sb5 (A = K, Rb, Cs).

Before any detailed discussion, we first go through the
symmetry group of the kagome lattice, which will be fre-
quently used in the following discussions. The point group
of the kagome lattice and AV3Sb5 is D6h. The D6h contains
three generators: the C6 rotation along the z axis, the inversion
operation I at the kagome hexagonal center, and the mirror
symmetry σv about the yz plane, as illustrated in Fig. 1(a).
Multiplying C6 rotation generates the C3 and C2 rotations.
Multiplying C6, C3, and C2 rotations with I generates S6, S3,
and σh. Multiplying C6, C3, and C2 rotations with σv generate
other σv and σd . Multiplying σv with I generates other C′

2s
and C′′

2 s. In addition, each unit cell of the kagome lattice
contains three sublattices, labeled as A, B, C, as shown in
Fig. 1(a). The unit cell forms a triangular lattice with trans-
lation vector a1 = (1, 0) and a2 = ( 1

2 ,
√

3
2 ). This translation

group is labeled as T (a1, a2).
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FIG. 1. (a) Kagome lattice point-group D6h and its operations:
C6 rotation (red), inversion I operation (green), mirror symmetry
σv about the yz plane (black), and C′

2 rotation along the x axis
(purple). The translation vectors are a1 and a2. And the sublattice
index is labeled as A, B, C in each unit cell. (b) Brillouin zone of the
kagome lattice and three dominated van Hove points M1 = (0, π√

3
),

M2 = ( π

2 , π

2
√

3
), and M3 = ( π

2 , − π

2
√

3
). The corresponding scatter

vectors are also labeled as Qa = {0, 2π√
3
}, Qb = {−π,− π√

3
}, and

Qc = {π,− π√
3
}. (c) Band structure for the kagome lattice. (d) Tun-

neling density of states (DoS) of the tight-binding model for (c),
which can be measured by the differential conductance (dI/dV ).

II. THE LOW-ENERGY EFFECTIVE THEORY
AND 3Q SCATTERING BETWEEN VH POINTS

As discussed in our previous work [24,28,29], the elec-
tronic properties, especially the CDW orders, of AV3Sb5

materials are dominated by the V d orbitals, which can be
captured by a minimum single orbital model [24,28,29]. To
capture the essential physics behind the AV3Sb5 charge den-
sity wave, a nearest neighbor tight-binding model on the
kagome lattice can be applied without losing generality. In the
basis of ck = (ck,A, ck,B, ck,C ), the Hamiltonian can be written
as H0 = ∑

k c†
kHkck , where

Hk =
⎡
⎣ −μ −2t cos(k1/2) −2t cos(k2/2)

−2t cos(k1/2) −μ −2t cos(k3/2)
−2t cos(k2/2) −2t cos(k3/2) −μ

⎤
⎦

(1)

and k1 = kx, k2 = 1
2 kx +

√
3

2 ky, and k3 = − 1
2 kx +

√
3

2 ky. μ is
the chemical potential and the hopping t is chosen to be 1 as
the energy unit. The band structure for the kagome model is
shown in Fig. 1(c) and the electron filling is tuned to the 5/4
vH filling (5/12 band filling), where the Fermi level crosses
the van Hove M points. Throughout this paper we use the
Brillouin zone (BZ) filling notation, which is equal to the band
filling divided by 3. Owing to the singular density of states
[as shown in Fig. 1(d)], the low-energy physics of AV3Sb5

should be dominated by the quasiparticles around the vH
points. As indicated in the Brillouin zone of the kagome lattice
shown in Fig. 1(b), there is three vH points at M1 = (0, 2π√

3
),

M2 = (π, π√
3

), and M3 = (π,− π√
3

), The symmetry breaking
states of AV3Sb5 are widely believed to come from the scatter-
ing between M points with momentum transfer Qa = {0, 2π√

3
},

Qb = {−π,− π√
3
}, and Qc = {π,− π√

3
}.

Hence, we can downfold the model and construct a low-
energy effective model based on the quasiparticles at the three
vH points as

ψM = (
ψM1 , ψM2 , ψM3

)T
. (2)

Similar approaches in triangular and honeycomb lattices are
discussed in Ref. [10]. And for the 5/4 filling kagome lattice,
the eigenstate of vH has the exact sublattice index owing to
symmetry. Specifically, ψM1 is exactly coming from sublattice
C, ψM2 is exactly coming from sublattice A, and ψM3 is exactly
coming from sublattice B.

From a symmetry point of view, the group of wave vectors
at M point is D2h and M1, M2, M3 form the star of M related by
the C6 rotation. For simplicity we choose five representative
elements {C6,C3, σv, σ

′
v, σ

′′
v } of D6h to classify the symme-

try operations of ψM . The three mirror operations σv, σ
′
v, σ

′′
v

along the three hexagonal axes are also indicated in Fig. 1(b).
The matrix elements of each operation in ψM basis are

C6 =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, C3 =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠,

σv =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠, σv′ =

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠,

σv′′ =
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠. (3)

In ψM basis, any symmetry breaking order parameters �̂α

can be written as

�̂α =
∑

i

�α,i�̂i, (4)

where the �̂i are the eight generators of SU(3) group in the
defining representation, which are also known as the Gell-
Mann matrices [10],

�1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, �2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

�3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, �4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

�5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, �6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

�7 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, �8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (5)
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TABLE I. The symmetry relations of �̂i under the operations in
D6h.

�1 �2 �4 �5 �6 �7 �3 �8

C6 �4 −�5 �6 −�7 �1 �2 − 1
2 �3 −

√
3

2 �8

√
3

2 �3 − 1
2 �8

C3 �6 �7 �1 −�2 �4 �5 − 1
2 �3 +

√
3

2 �8 −
√

3
2 �3 − 1

2 �8

σv �6 −�7 �4 −�5 �1 −�2
1
2 �3 −

√
3

2 �8 −
√

3
2 �3 − 1

2 �8

σ ′
v �1 −�2 �6 �7 �4 �5 −�3 �8

σ ′′
v �4 �5 �1 �2 �6 −�7

1
2 �3 +

√
3

2 �8

√
3

2 �3 − 1
2 �8

The symmetry properties of �̂i under the operations in D6h

with D(Ri )�iD(Ri )−1 = Di j� j , as summarized in Table I.
From Table I we can find that the �̂i can be divided into three
classes by operations in D6h. They are �̂b = {�1, �4, �6},
�̂φ = {�2, �5, �7}, �̂s = {�3, �8}.

Hence, the order parameters can be classified based on
the above transformation relations. For �̂b class, the matrix
element for each �̂b is real and gives rise to the interscattering
between M points. Since ψMi carries the sublattice index, the
�̂b corresponds to the bonding between sublattices. And the
order parameters can be further classified as

�̂b,1 = �b,1(�1 + �4 + �6), (6)

�̂b,2 = �b,2(�1 − �4), (7)

�̂b,3 = �b,3(�1 − �6), (8)

where the �̂b,1 forms the A1g representation of the point-group
D6h with breaking the translation symmetry. The �̂b,2 and
�̂b,3 forms the B1g representation of two different D2h groups.
These two different D2h groups are generated by three gener-
ators: C2 rotation along the z aixs, σ ′′

v or σv for different D2h

groups, respectively, and inversion operator I.
In the same spirit, the �̂φ class corresponds to flux phase

and the order parameters can be classified as

�̂φ,1 = �φ,1(�2 − �5 + �7), (9)

�̂φ,2 = �φ,2(�5 + �7), (10)

�̂φ,3 = �φ,3(�2 + �5). (11)

The �̂φ,1 forms the A1g representation of the magnetic point-
group D∗

6h. This magnetic point-group D∗
6h is normally written

as D∗
6h(C6h), where C6h is the invariant subgroup of D6h. The

D∗
6h is formed by keeping elements of D6h belonging to the

C6h and multiplying the remaining elements by time-reversal
operator T . Hence, the D∗

6h are generated by three genera-
tors: C6 rotation along the z axis, inversion operator I , and
the composite element σvT . The first two generators of D∗

6h
generate C6h. Later, we will show the low-energy theory of the
chiral flux phase is exactly �̂φ,1. The �̂φ,2 and �̂φ,3 belongs
to A1g representation of two different D2h groups which are
generated by three generators: C2 rotation along the z axis,
inversion operator I, and σ ′

v or σ ′′
v for different D2h groups,

respectively.

For the diagonal �̂s class, the order parameters describe
the on-site charge difference. �̂s does not involve the scatter-
ing between M points and hence does not need to break the
translation symmetry. The order parameters can be classified
as

�̂s,1 = �s,1

(√
3

2
�3 + 1

2
�8

)
, (12)

�̂s,2 = �s,2�8. (13)

The �̂s,1, �̂s,2 belong to the A1g representations of two differ-
ent D2h groups.

We can also extend the above discussion to more general
multiorbital cases. As discussed above, the group of wave
vectors at M point is D2h. D2h only contains a one-dimensional
(1D) irreducible representations. Hence, ψMi must belong to
one of D2h 1D irreducible representations. We can take ψM1 as
an example. Since ψM1 is the eigenstate of D2h element σv , the
eigenstate of σv can be either CCα or CAα ± CBβ , where the α

and β are the corresponding orbital index. These α, β orbitals
should be related to each other by σv . ψM2/3 eigenstates can be
found by C3 rotations.

If the ψM1 is still from C sublattice as CCα , the ψM2 must be
also formed by CAα′ and ψM3 is formed by CBα′′ , where α′ and
α′′ are orbitals related by C3 rotation from an α orbital. Hence,
the time-reversal breaking flux phase �̂φ is still corresponding
to the complex hopping between each sublattice involving the
orbital degree of freedom in the kagome multiorbital systems,
like C†

CαCAα′ . On the other hand, if the ψM1 is formed by
CAα ± CBβ , then ψM2 is formed by CBα′ ± CCβ ′ and ψM3 is
formed by CAα′′ ± CCβ ′′ . The time-reversal breaking flux phase
is still dominated by the complex hopping between each sub-
lattice with a partial part of the on-site orbital polarization
density wave, like (CAα ± CBβ )†(CBα′ ± CCβ ′ ). Besides these
cases, any linear combination of CCα and CAα ± CBβ is also
possible as an eigenstate of ψM1 , whose flux state is also
dominated by the complex hopping.

In short, by using the low-energy model based on the wave
functions at three van Hove M points, we discussed the pos-
sible symmetry breaking orders. The time-reversal symmetry
breaking state dominated by vH points in the kagome lattice
must correspond to the complex hopping flux phase between
sublattices for both single and multiorbital models. However,
the low-energy model only covers three FS points. The rela-
tions between low-energy models and the real space pattern
of the charge density waves, charge bonds orders, and chiral
flux phases are still undetermined. In the next section we will
construct the real space order parameters with the three �Q
vectors shown in Fig. 1(b), and reveal the relationship between
these order parameters and the low-energy models constructed
in this section [30].

III. THE RELATION BETWEEN THE LOW-ENERGY
EFFECTIVE MODEL AND THE 3Q PATTERN

IN REAL SPACE

Besides the low-energy effective model, the chiral flux
phase utilizing the real space 3Q configuration and kagome
sublattice degree of freedom was proposed to be the reason
for time-reversal symmetry breaking in AV3Sb5 [24]. The key

165136-3



FENG, ZHANG, JIANG, AND HU PHYSICAL REVIEW B 104, 165136 (2021)

1 2 1

1 2 1

3 4 3

(a)

1 2 1

1 2 1

3 4 3

1 2 1

1 2 1

3 4 3

1 2 1

1 2 1

3 4 3

1 2 1

1 2 1

3 4 3

1 2 1

1 2 1

3 4 3

(b) (c)

(d) (e) (f)

FIG. 2. Six vCDW configurations and their point groups, the size of the dots means the charge density of each site, and different colors
mean a different sublattice: (a) vCDW-a (C3h), (b) vCDW-b (D6h), (c) vCDW-c (C2v), (d) vCDW-d (C2v), (e) vCDW-e (C2v), and (f) vCDW-f
(C3h).

idea is to find a three component vector and each component
forms a density wave cos(Qi · r) using one of the three scat-
tering momentum Qi between vH points, inspired by previous
works in hexagonal lattice vH instabilities [31–39].

The first choice is using the charge density for each sublat-
tice as

n̂(Rα ) = (
n̂Aα

, n̂Bα
, n̂Cα

)
, (14)

where the Rα is the coordinate for the unit cell formed by
the sublattices A, B, C, here with a 2*2 unit cell, it can be
divided into four categories: 2na1 + 2ma2 + {0, a1, a2, a1 +
a2} for α = 1, 2, 3, 4, respectively, n, m are integers. The a1
and a2 are defined as before. Hence, the vector charge density
wave (vCDW) coupling to this is defined as

�vCDW(R) = λ[cos(Qa · R), cos(Qb · R), cos(Qc · R)], (15)

where Qa = {0, 2π√
3
}, Qb = {−π,− π√

3
}, and Qc = {π,− π√

3
},

as shown in Fig. 2(a). Besides this vCDW-a configuration
we proposed in the previous work, the other five vCDW
configurations (vCDW-b to vCDW-f) can be also found by
permutating the wave momentum Qi, as shown in Figs. 2(b)–
2(f). Among all the vCDW orders, the vCDW-b state has the
highest symmetry with the point-group D6h and breaking the
translation symmetry down to 2*2 order. Moreover, vCDW-b
is the lowest energy state among all vCDW orders shown in
Fig. 2 according to the ground state energy:

Eg = 〈g|Ĥ |g〉, (16)

where Ĥ is the mean-field Hamiltonian of the vCDW state,
and |g〉 is the corresponding ground state wave function of
the mean-field Hamiltonian Ĥ at 5/4 van Hove filling. For
example, the mean-field Hamiltonian of the vCDW-a is

Ĥ = H0 −
∑
Rα

�vCDW(Rα ) · n̂(Rα ). (17)

It is worth noting that the charge distribution of vCDW-b
state has the same configuration as the chiral flux phase in our
previous work. Since the chiral flux phase has the magnetic
D6h(C6h) group symmetry, the vCDW-b state can coexist with
the chiral flux phase and retain its symmetry. In addition,
the symmetry of the vCDW-a and vCDW-f are both C3h and
the other remaining three vCDW orders all belong to C2v , as
shown in Figs. 2(c)–2(e).

Another choice is to use the bonds between sublattices:

Ô(Rα ) = (
c†

Aα
cBα

, c†
Bα

cCα
, c†

Cα
cAα

)
. (18)

The charge bond order (CBO) with real order parameter is
defined as

�CBO(R) = λ[cos(Qa · R), cos(Qb · R), cos(Qc · R)] (19)

as shown in Fig. 3(a). Similarly, we can also find the other
five CBO configurations, as shown in Figs. 3(b)–3(f). The
symmetry group of the CBO-a state is D3h. The CBO-b,c,d
orders belong to the C2v group. And the CBO-e,f belong to
the C3h group. Among all six CBO configurations shown in
Fig. 3, the CBO-a has the highest symmetry and the lowest
energy, which can be gotten by the same method as in vCDW
states.

Interestingly, another two bond orders “anti-tri-hexagonal”
(ATH) and “tri-hexagonal” (TrH) in the kagome lattice have
been widely discussed [25,27,37,39–41], as shown in Fig. 4.
These two bond orders cover all the kagome lattice bonds,
which is beyond our above discussion. To include these, the
order parameters can be constructed as

Ô1(Rα ) = (
c†

Aα
cBα

, c†
Bα

cCα
, c†

Cα
cAα

)
,

Ô2(R′
β ) = (

c†
A′

β

cB′
β
, c†

B′
β

cC′
β
, c†

C′
β

cA′
β

)
, (20)

where Rα is the unit cell coordinate defined above and R′
β is

the new coordinate for the unit cell formed by the sublattices
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FIG. 3. Six CBO configurations and their point groups, the width of the bond means the relative hopping amplitude, and the color of these
bonds mean different hoppings between sublattices: (a) vCBO-a (D3h), (b) vCBO-b (C2v), (c) vCBO-c (C2v), (d) vCBO-d (C2v), (e) vCBO-e
(C3h), and (f) vCBO-f(C3h).

A′, B′, C′ shown in Fig. 4(a), and it can be also divided
into 2na1 + 2ma2 + {0, a1, a2, a1 + a2} for β = 1′, 2′, 3′, 4′,
respectively, n, m are integers. The Hamiltonian can be ex-
pressed as

HCBO = H0 −
∑
Rα

�CBO(Rα ) · Ô1(Rα )

−
∑
R′

β

�CBO(R′
β ) · Ô2(R′

β ), (21)

where �CBO(R′
β ) is using the same density-wave vectors as

in Eq. (17). Hence, the ATH and TrH also utilize the three Q
scattering mechanisms discussed above. The symmetry group
of ATH and TrH is D6h. And the low-energy effective model
of ATH and TrH correspond to �̂b,1, which form the A1g

representation of D6h (see the Supplemental Material (SM)
for details [30]). In addition to ATH and TrH, the “Star of

1 2 1

1 2 1

3 34

(a) (b)

1’ 2’2’

3’ 4’4’

C’
A’B’

C

BA

FIG. 4. (a) Anti-tri-hexagonal bond order configuration. In order
to cover all bonds, we also define another coordinate for the kagome
lattice, labeled as A′, B′, C′. To utilize the three Q pattern, the unit
cell name of the new coordinate is also shifted to 1′, 2′, 3′, 4′. The
red bonds mean the hopping in these bonds are a strengthened (b) tri-
hexagonal bond order configuration.

David” (SoD) state is another widely proposed configura-
tion [20,40,42], as shown in Fig. 10(c). Notice that the SoD
state looks quite similar to the ATH bond order, which also
belongs to D6h point group and �̂b,1 effective theory. The TrH
state is always the lowest energy state among all the charge
bond order states in our calculation. In the next section we
will also discuss the possible CBOs with C6 symmetry.

Finally, if the order parameters coupled to bonds are imag-
inary, the chiral flux phase can be found:

�CFP(R) = iλ[cos(Qa · R), cos(Qb · R), cos(Qc · R)]. (22)

Further adding other terms, the Hamiltonian for CFP can be
expressed as

HCFP = H0 −
∑
Rα

�CFP(Rα ) · Ô1(Rα )

−
∑
R′

β

�CFP(R′
β ) · Ô2(R′

β ). (23)

The low-energy effective theory of CFP corresponds to �̂φ,1,
which belongs to A1g representation of D∗

6h(C6h) magnetic
group as discussed in Sec. II. Besides this CFP state, we find
122 flux phases in the kagome lattice with a 2*2 configuration,
which will be discussed in the next section.

IV. ALL POSSIBLE FLUX PHASES IN THE KAGOME
LATTICE WITHIN A 2*2 UNIT CELL

The above discussion focuses on the low-energy scattering
between vH points, which leads to the promising states, chiral
flux phase. Are there other flux phases in the kagome lattice?
To answer this question, we should find a general principle.
Generally speaking, a current operator from site j to site i can
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(a)

φ

φ
−2φ

(c)(b)

FIG. 5. 1*1 flux configurations. (a) Nagaosa solution with −2φ flux at each hexagon and φ flux at each triangle. (b) Flow-b solution with
three charge sinks (blue dot) and three charge sources (black dot) at each hexagon. (c) Flow-b solution with a one charge sink (blue dot) and a
one charge source (black dot) at each hexagon. The dashed black arrow indicates the flow direction at each hexagon.

be found to be

Ĵi j = e

ih̄
{ti jC

†
i Cj − t∗

i jC
†
j Ci}, (24)

where ti j is the hopping parameter from site j to site i. There-
fore, the expectation value of the current operator can only be
finite when ti j contains an imaginary part, which corresponds
to the flux state. For any current state, the charge continuity
equation ∂ρ

∂t + ∇ · J = 0 must be satisfied, where ρ is the
charge density. Therefore, to find all possible flux solutions,
there is only one principle: the currents must conserve at each
lattice site without generating any charge sink or source. To
simplify our discussion, we also assume that the amplitudes
of the complex hopping terms at all bonds must be the same.
Generally speaking, the physical system always favors the
high symmetry state. The equal number of arrows going in and
out is enough for general cases, such as the Haldane model [1],
the loop-current model [5], and the d-density wave model [6].

Following the above constraints, we find 183 flux phases in
the kagome lattice within the 2*2 unit cell. Specifically, there
are 10 flux phases in the 1*1 unit cell, 122 phases in the 2*2
unit cell, and the remaining 17×3 in the 1*2 unit cell, which
is discussed separately in the following subsections.

A. 1*1 configuration

The first flux phase in the kagome lattice is initially
proposed by Ohgushi, Murakami, and Nagaosa [43], which
mapped a spin itinerant system with nonzero spin chirality
to a flux phase in the kagome lattice. We name this phase as
the Nagaosa solution, as shown in Fig. 5(a). At each kagome
triangle there is one flux φ owing to the complex hopping
along the triangle loop. Another flux with −2φ penetrates
each kagome hexagonal plaquette. The quantum anomalous
Hall effect is also obtained in this Nagaosa solution [43]. By

TABLE II. Three classes of flux phase in a 1*1 unit cell. The
number of configurations at each class is also listed in parentheses.

Symmetry Class name

D∗
6h(C6h ) Nagaosa (2)

D∗2
6h (D3h ) Flow-a (2)

D∗
2h(C2v ) Flow-b (6)

reversing the current direction, a second Nagaosa solution can
also be obtained.

We can also understand the Nagaosa solution from another
point of view. As shown in Fig. 5, the kagome lattice contains
three kinds of bond directions. For the Nagaosa solution, the
current direction alternates in each bond direction. Therefore,
if the currents all flow in the same direction, the other 1*1 flux
configurations can be found. Among these 23 configurations,
we also find two classes named flow-a solution and flow-b so-
lution, respectively. For flow-a solution, there are three charge
sinks and three charge sources at each hexagon, as shown in
Fig. 5(b). Owing to charge conservation, the sinks become
sources at the neighboring hexagon. Flow-a class contains
two configurations. On the other hand, there is one sink and
one source at each hexagonal plaquette diagonal direction for
flow-b solution, as shown in Fig. 5(c). The net flow direction
at each hexagon is also labeled as a dashed black arrow.
Since there are also three diagonal directions, the flow-b class
contains 2×3 configurations.

In all of these three classes, Nagaosa solution and flow-
a solution only break time-reversal symmetry and preserve
all the point-group symmetry of the kagome lattice. Their
symmetry can be described by magnetic group D∗

6h. Since
the invariant subgroup of D6h can be either C6h or D3h,
there are two kinds of magnetic groups. The symmetry
of Nagaosa solution can be described by group D∗

6h(C6h),
while the symmetry of flow-a solution can be described by

TABLE III. 18 classes of flux phase in a 2*2 unit cell and their
symmetry groups. The number of configurations at each class is also
listed in parentheses.

Symmetry Class name

D∗
6h(C6h ) D6a (2), D6b (2), D6c (2)

D∗2
6h (D3h ) D′

6a (2)

D∗
3h(C3h ) D3a (4), D3b (4), D3c (4)

D∗
2h(C2h ) D2a (6)

C∗
2v C2a (6), C2b (12), C2c (12), C2d (12),

C2e (12), C2 f (12), C2g (6), C2h(6)

C2v C′
2 (6)

C2 C′′
2 (12)
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1 2 1

1 2 1

3 4 3

(a)

φ

φ

φ

φ

φ φ

φ φ

−2φ

−2φ

1 2 1

1 2 1

3 4 3

(b)

1 2 1

1 2 1

3 4 3

(c)

1 2 1

1 2 1

3 4 3

(d)

D6a D6b

D6c D’6a

FIG. 6. 2*2 flux configurations. (a) D6a class with −2φ flux
forming a triangle lattice and φ flux forming a honeycomb lattice.
(b) D6b class with one positive flux hexagon and three negative flux
hexagons. (c) D6c class with flipping the two diagonal triangle fluxes
of three hexagons. (d) D′

6a class with three opposite flux triangle
loops at each hexagon. The inversion center of each class is also
highlighted by black dots.

D∗2
6h (D3h). Additionally, the flow-b solution breaks both time-

reversal symmetry and point-group symmetry, which belongs
to D∗

2h(C2v ) magnetic group (Table II).

B. 2*2 configuration

The symmetry breaking orders with a 2*2 unit cell are
the most important configurations we focus on. We search

all possible configurations by the brute-force approach and
project out the configurations violating the charge conserva-
tion rule. We find 122 flux phases with a 2*2 unit cell. Among
the 122 configurations, there are 18 classes, as summarized in
Table III and shown in Figs. 6–8. D6a state is found to be the
lowest energy state among all these flux states.

Similar to the previous discussion, there are four classes
that only break the time-reversal symmetry. Since the invariant
subgroup of D6h can be either C6h or D3h, these four classes
can belong to different magnetic group D∗

6h(C6h) or D∗2
6h (D3h),

as listed in Table III. For the D∗
6h(C6h) group, we find three

classes D6a, D6b, and D6c, as shown in Figs. 6(a)–6(c). The
D6a is the CFP state we proposed in the previous work [24],
where two φ fluxes form a honeycomb lattice with another
−2φ form a triangle lattice. D6a class only contains two con-
figurations related to time reversal.

D6b class can be viewed as flipping one hexagon flux of
the four four hexagon plaquettes by enlarging the Nagaosa
configuration to a 2*2 unit cell, as shown in Fig. 6(b). The
remaining D6c class is found by flipping the two diagonal
triangle fluxes of the three hexagons in a 2*2 unit cell, as
shown in Fig. 6(c). The low-energy effective model for D6b

and D6c also correspond to �2 − �5 + �7 (see the SM Sec. 1
for details [30]). For D∗2

6h (D3h) group, we flip three triangle
fluxes of each hexagon plaquette, as shown in Fig. 6(d). Both
D6b,c and D′

6a only contains two configurations related by time
reversal.

Besides the above classes, other classes break both
time-reversal symmetry and point-group symmetry. We find
D∗

3h(C3h), D∗
2h(C2h), C∗

2v , C2v , and C2 groups. There are three
classes belonging to D∗

3h(C3h) as shown in Figs. 7(a)–7(c). The
category with eight classes is C∗

2v , as shown in Figs. 8(a)–8(h).
As for D∗

2h(C2h), C2v , C2, there is only one class in each
category, as shown in Figs. 7(d), 7(e), and 7(f), respectively.
The numbers of configurations for each class are summarized
in Table III.

1 2 1

1 2 1

3 4 3

(a)

1 2 1

1 2 1

3 4 3

(b)

1 2 1

1 2 1

3 4 3

(d)

D3a D3b

C’2

1 2 1

1 2 1

3 4 3

(c)

D3c

1 2 1

1 2 1

3 4 3

(e)

D2a

1 2 1

1 2 1

3 4 3

(f)

C’’2

FIG. 7. 2*2 flux configuration: (a) D3a class, (b) D3b class, (c) D3c class, (d) D2a class, (e) C′
2 class, and (f) C′′

2 class.
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1 2 1

1 2 1

3 4 3

(b)

1 2 1

1 2 1

3 4 3

(c)

1 2 1

1 2 1

3 4 3

(f)

1 2 1

1 2 1

3 4 3

(g)

C2b C2c

C2f C2h

1 2 1

1 2 1

3 4 3

(d)

C2d

1 2 1

1 2 1

3 4 3

(h)

C2g

1 2 1

1 2 1

3 4 3

(a)

C2a

1 2 1

1 2 1

3 4 3

(e)

C2e

FIG. 8. 2*2 flux configurations: (a) C2a class, (b) C2b class, (c) C2c class, (d) C2d class, (e) C2e class, (f) C2 f class, (g) C2g class, and (h) C2h

class.

Note that the above flux constructing method is based on
real space without considering the low-energy 3Q scattering
at 5/4 filling. Therefore, most of them are not relevant to
AV3Sb5. For example, the C2g, C2h, C2′ , and C2′′ configurations
are gapless at vH filling.

C. 1*2 configuration

To complete our discussion on flux phases, we also list all
the 1*2 configurations. There are 17 flux phases in a 1 by
2 unit cell, which only contain eight classes (Table IV), as

shown in Fig. 9. Since there are three translation directions in
the kagome lattice, there are also other 2*17 flux phases by
breaking translation symmetry in the other two directions.

These eight classes can be divided into three categories by
symmetry, all of them break both time-reversal symmetry and
point-group symmetry. Similar to magnetic group D∗

6h, the
invariant subgroup of the magnetic group D∗

2h can be either
C2h or C2v . Thus, there are two kinds of magnetic groups. The
classes shown in Figs. 9(a) and 9(b) belong to D∗1

2h(C2h), while
the class shown in Fig. 9(c) belongs to D∗2

2h(C2v ). The other
five classes belong to C∗

2v (C2) as shown in Figs. 9(d)–9(h).

(a) (b)

(e) (f)

D2a D2b

C2b C2d

(c)

D’2a

(g)

C2c

(d)

(h)

C2a

C2e

FIG. 9. 1*2 flux configurations: (a) D2a class, (b) D2b class, (c) D′
2a class, (d) C2a class, (e) C2b class, (f) C2c class, (g) C2d class, and (h) C2e

class.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 10. CBO configurations with D6h symmetry: (a) D6a or ATH, (b) ID6a or TrH, (c) D6b or SoD, (d) ID6b or ISoD, and (e) D6c. (f) ID6c.

D. C6 symmetric CDW and CBO

Besides the above flux states, finding other charge density
wave and charge bond order states is also an interesting task.
Compared to flux states, CDW could have a 212 possible con-
figurations and CBO could have a 224 possible configurations
within a 2*2 unit cell, which seems to be an impossible work.
However, we can use symmetry constraint to focus on high
symmetry configurations. Utilizing the C6 rotation symmetry
constraint, we search all possible C6 symmetric CDWs and
CBOs. For CDW state we only find two states with a positive
or negative charge vCDW-b configuration. For CBO states we
find six CBOs with D6h point-group symmetry and four CBOs
with C6h point-group symmetry, as shown in Figs. 10 and 11.

(a) (c)

(d)(b)

FIG. 11. CBO configurations with C6h symmetry: (a) C6a,
(b) IC6a, (c) C6b, and (d) IC6b.

In Fig. 10 the up panel states are labeled as D6a, D6b, and
D6c while the down panel states are inverse configurations
of the up panel labeled as ID6a, ID6b, and ID6c. The D6a

state is ATH, the ID6a is TrH, and the D6b is SoD as defined
above. Notice that ID6b is the “inverse Star of David” (ISoD)
rather than ID6a. Similarly, we also label the C6h symme-
try configurations as C6a, C6b and IC6a, IC6b, as shown in
Fig. 11.

V. DISCUSSION AND SUMMARY

In summary, the time-reversal symmetry breaking CDW
found in AV3Sb5 provides a new platform to investigate cor-
relation and topology. By analyzing the dominated van Hove
points around the Fermi surface and corresponding symmetry
properties, the low-energy effective theory for the kagome
lattice at vH filling can be constructed. All symmetry breaking
states of this vH low-energy effective theory can be found and
classified according to the point group. The relations between
low-energy symmetry breaking states to the physical orders in
real space can be fully established. The above study based on
a single orbital model on the kagome lattice can be straight-
forwardly generalized to multiorbital cases. The dominated
time-reversal breaking channel is always the flux phase. The
full flux configurations that satisfy the charge conservation
rule include 183 flux phases in the kagome lattice within a
2*2 unit cell. Especially, we list all 3, 18, and 8 classes which

TABLE IV. Eight classes of flux phase in the 1*2 unit cell. The
number of configurations at each class is also listed in parentheses.

Symmetry Class name

D∗1
2h (C2h ) D2a (1), D2b (1),

D∗2
2h (C2v ) D′

2a (1)

C∗
2v (C2) C2a (2), C2b (2), C2c (2), C2d (4), C2e (4)
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are independent in symmetry belonging to 1*1, 2*2, and 1*2
unit cells in Tables II, III, and IV, respectively. The symmetry
classifications and relations to low-energy effective theory of
these flux phases are obtained. All these findings give rise to
complete analysis and new understandings of flux phases in
the kagome lattice.

Note that, when finalizing this work, several theo-
retical works starting from low-energy effective theory
appeared [26,27]. Reference [26] analyzed the real and imag-
inary CDW at vH singularity on the hexagonal lattices from
a phenomenological Ginzburg-Landau theory. Reference [27]
studied the electronic instabilities of the kagome lattice using

a parquet renormalization group and corresponding Landau
theory.
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