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Charge disproportionation and Hund’s insulating behavior in a five-orbital
Hubbard model applicable to d4 perovskites
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We explore the transition to a charge-disproportionated insulating phase in a five-orbital cubic tight-binding
model applicable to transition-metal perovskites with a formal d4 occupation of the transition-metal cation, such
as ferrates or manganites. We use dynamical mean-field theory to obtain the phase diagram as a function of
the average local Coulomb repulsion U and the Hund’s coupling J . The main structure of the phase diagram
follows from the zero bandwidth (atomic) limit and represents the competition between high-spin and low-
spin homogeneous and an inhomogeneous charge-disproportionated state. This results in two distinct insulating
phases: the standard homogeneous Mott insulator and the inhomogeneous charge-disproportionated insulator,
recently also termed Hund’s insulator. We characterize the unconventional nature of this Hund’s insulating
state. Our results are consistent with previous studies of two- and three-orbital models applicable to isolated t2g

and eg subshells, respectively, with the added complexity of the low-spin/high-spin transition. We also test the
applicability of an effective two-orbital (eg-only) model with disordered S = 3/2 t2g core spins. Our results show
that the overall features of the phase diagram in the high-spin region are well described by this simplified two-
orbital model, but also that the spectral features exhibit pronounced differences compared to the full five-orbital
description.
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I. INTRODUCTION

Many of the fascinating properties of transition-metal ox-
ides can be understood as a result of the strong Coulomb
interaction, experienced by electrons in the rather localized d
orbitals, in combination with their mixed ionic-covalent char-
acter, which is due to hybridization between the transition-
metal d orbitals and the p orbitals of the surrounding oxygen
ligands. The resulting electronic structure is then often in
the border regime between itinerant and localized, where the
electrons experience strong correlations that can give rise to
a number of intriguing properties, such as metal-insulator
transitions [1].

Such correlation effects and the emergence of a Mott-
insulating state are usually associated with a large value of the
Hubbard parameter U , which describes the repulsion between
electrons located on the same site in the seminal Hubbard
model [2,3]. However, in multiband Hubbard models, strong
correlations, i.e., pronounced deviations from the behavior of
(effectively) noninteracting particles, can also be caused by
the Hund’s coupling J , even if the corresponding system is
not particularly close to a Mott-insulating phase [4]. Such
materials have recently been termed Hund’s metals [5–7].

Furthermore, a strong Hund’s coupling can even lead
to the formation of an inhomogeneous, charge-ordered or
charge-disproportionated, insulating phase, distinct from the
usual (homogeneous) Mott insulator. The existence of such
a charge-disproportionated insulator (CDI) has been demon-
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strated both for a two-orbital and a three-orbital Hubbard
model [8–10], which are applicable to materials with par-
tially filled eg and t2g subshells. Similar physics have also
been discussed in the context of valence-skipping metals
and insulators resulting from a negative effective Coulomb
interaction [11].

The CDI phase has also been termed Hund’s insulator
[9,10,12], to emphasize the crucial role of the Hund’s inter-
action for stabilizing the insulating state and to distinguish
it from the usual (homogeneous) Mott insulator. We use
the terms CDI and Hund’s insulating phase interchangeably
throughout this article, but we also note that earlier papers
have used the term Hund’s insulator in slightly different con-
texts, e.g., to describe situations with half-filled shells where
the Hund’s coupling J cooperates with the Hubbard U and the
value of U alone is not sufficient to reach an insulating state
[13] or in specific cases where Hund’s coupling leads to the
stabilization of a topological insulating phase [14].

The parameter regime where a CDI or Hund’s insulator
is observed corresponds to an electronic structure where the
Coulomb interaction is strongly screened, which leads to a
moderate value of the Hubbard parameter U , whereas the
Hund’s parameter J is less affected by the screening. This
regime is expected to occur in transition-metal oxides with
a pronounced charge transfer character, i.e., strong hybridiza-
tion between the transition-metal d and oxygen p bands. This
can generally be expected to occur towards the end of the
3d transition-metal series or for systems with high oxidation
numbers of the transition-metal cation.

The formation of a charge-disproportionated insulating
phase has been observed, e.g., in the series of rare-earth nicke-
lates, RNiO3 [8,15–20]. Here, the Ni cations are in a formal d7
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electron configuration, which then disproportionates accord-
ing to 2d7 → d6 + d8 (or, equivalently, 2d8L → d8L2 + d8,
where L denotes a ligand hole in the surrounding oxygen
network [21,22]). In this case, the t2g subshell is always
completely filled with six electrons, and the remaining Ni-d
electron occupies the eg subshell. It has been shown that the
underlying physics can be well described within a minimal
two-orbital eg Hubbard model with an average quarter filling
[8]. Furthermore, the charge disproportionation lowers the
symmetry of the crystal structure and couples strongly with
a lattice distortion corresponding to a breathing mode of the
octahedral network with R+

1 symmetry, resulting in a three-
dimensional checkerboardlike pattern of alternating small and
large oxygen octahedra surrounding the nominal d6 and d8 Ni
sites, respectively.

Similar behavior has also been observed for the alkaline
earth ferrate CaFeO3 [23–27] and in PbCrO3 [28,29]. The
case of PbCrO3 is potentially more complex due to the pres-
ence of the stereochemically active Pb2+ cation. However,
the nominal d2 configuration of the Cr4+ cation and the
suggested charge disproportionation according to 3Cr4+ →
2Cr3+ + Cr6+ is consistent with recent theoretical predictions
for the three-orbital Hubbard model [9]. On the other hand,
the Fe4+ cation in CaFeO3 is assumed to be in a nominal
d4 high-spin configuration [30], with partial filling of both
t2g and eg subshells, and thus requires a description using
the full five-orbital d manifold. Additionally, the competition
between high-spin and low-spin states might introduce further
complexity in the underlying physics.

Motivated by this, we study a full five-orbital Hubbard
model with d4 electron filling. We note that while our main
motivation is to study the possible emergence of a charge-
disproportionated state in a rather generic five-orbital TB
model, we fit the parameters of this model to the actual band
structure of CaFeO3 in order to work with realistic values for
bandwidth and crystal-field splittings. Thus, we consider the
physically relevant case with cubic symmetry by incorporat-
ing a crystal-field splitting between the threefold degenerate
lower-lying t2g states and the twofold degenerate higher-lying
eg states. We use dynamical mean-field theory (DMFT) to
calculate expectation values of this model around room tem-
perature. This allows us to identify all relevant phases as
a function of the local interaction parameters U and J , de-
scribing the average Coulomb repulsion and Hund’s coupling
within the d shell.

In particular, we establish the presence of a spontaneously
charge-disproportionated insulating phase in this five-orbital
model, in addition to the usual homogeneous Mott phase. The
overall structure of the phase diagram resembles analogous
results for the two- and three-orbital models, but with the
additional feature of low-/high-spin transitions. We analyze
the character of the insulating state, and we explore the effect
of a structurally induced energy difference between the eg

states on the two different sublattices as well as the effect
of a reduced eg bandwidth. Furthermore, we compare the
phase diagram obtained for the full five-orbital model, with
an effective two-orbital model, applicable to the high-spin
limit [31,32]. This simplified model is able to quantitatively
reproduce many features of the full five-orbital model, includ-
ing, e.g., the phase boundaries as a function of the interaction

parameters, but also exhibits pronounced differences in the
spectral properties.

II. MODEL AND METHODS

In this section, we first introduce the models that we are
studying: the complete five-orbital model for the full d shell
and the effective two-orbital eg model with localized t2g spins.
We then describe how the parameters of the models are fit-
ted to the band structure of CaFeO3 obtained from density
functional theory (DFT). Finally, we describe the details of
our DMFT calculations and introduce the observables used to
characterize the different phases.

A. The Hamiltonian

We study the following model, which consists of a single-
particle tight-binding (TB) part and a local interaction on each
site R,

H = HTB +
∑

R

H (R)
int . (1)

The TB part consists of intersite hopping terms as well as
an on-site crystal-field splitting, �eg−t2g , between the eg and
t2g orbitals. We include hopping between nearest neighbors
(NN) and next-nearest neighbors (NNN) on a cubic lattice,
representing the sites of the transition-metal cations in the
perovskite structure. The hopping amplitudes are assumed to
have the cubic symmetry corresponding to t2g and eg orbitals.
Thus, between nearest neighbors, there is only hopping be-
tween t2g orbitals of the same type and no hopping connecting
the eg and t2g orbitals. For simplicity, we neglect next-nearest-
neighbor hopping between different t2g and between t2g and eg

orbitals, and we assume the same fixed ratio tNNN/tNN between
the NNN and NN hopping amplitudes for both the eg and t2g

orbitals. For the eg orbitals, tNN and tNNN correspond to the
hopping between d3z2−r2 orbitals along z and along x + z or
y + z, respectively; see Ref. [33].

We also perform calculations where we introduce an in-
trinsic “site splitting” of the eg levels, by raising, respectively
lowering, the local on-site energy of the eg orbitals on adjacent
sites by ±�eg/2. This mimics the effect of the structural
R+

1 breathing mode distortion that typically accompanies the
charge disproportionation in perovskites (see, e.g., Ref. [34]).
As described in Sec. I, this distortion consists in a spatially
alternating expansion and compression of the oxygen octa-
hedra surrounding the transition-metal sites, resulting in a
three-dimensional checkerboardlike pattern of large and small
octahedra.

To describe the local electron-electron interaction within
the five-orbital d shell, we use the so-called Slater
parametrization in the density-density approximation (see,
e.g., Ref. [35]),

Hint = 1

2

∑

mm′,σ

Umm′nmσ nm′σ̄

+ 1

2

∑

m �=m′,σ

(Umm′ − Jmm′ )nmσ nm′σ . (2)
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This term is purely local and identical for each transition-
metal site [we therefore suppress the site index R in Eq. (2)].
Thereby, nmσ is the occupation number operator for orbital
m with spin σ (on site R) and σ̄ is short for −σ . The matrix
elements Umm′ and Jmm′ are parametrized in terms of the Slater
integrals F0, F2, and F4 in the usual form [35]. The Slater
integrals themselves are expressed in terms of the average
Coulomb repulsion U = F0 and Hund’s rule interaction J =
(F2 + F4)/14, using a fixed ratio F4/F2 = 0.63 [35].

B. The effective two-orbital approximation

We also compare the full five-orbital d-shell model to a
simplified effective two-orbital eg model, applicable to the
high-spin limit. In this model, the occupation of the t2g states
on each site is fixed to three electrons, giving rise to an
S = 3/2 core spin, and hopping in and out of these t2g states is
neglected [31,32]. The remaining electron is thus constrained
to the eg orbitals, but can still hop from site to site. Then, for
every site, the t2g core spin defines a local spin quantization
axis, and the spins of the eg electrons are defined relative to
this local axis, denoted by σ = ⇑/⇓.

The eg electrons interact with the t2g core spins through an
effective Hund’s rule interaction, which leads to a local spin
splitting of the eg orbitals,

H = −h
∑

m

(nm⇑ − nm⇓), (3)

where h is the effective magnetic field created by the t2g

core spin. The strength of this effective magnetic field can
be related to the parameters of the full interaction Hamilto-
nian, Eq. (2), in particular to the Hund’s interaction parameter
J , by considering the energy gain (penalty) of an eg spin
(anti)parallel to the t2g core spin, i.e., by considering the
energy difference between (t2g)3

↑(eg)1
↑ and (t2g)3

↑(eg)1
↓:

2h = 6

49
F2 + 25

147
F4 ≈ 1.97J. (4)

Furthermore, assuming a completely random, i.e., param-
agnetic, orientation of the t2g core spins on the different sites
results in a renormalization of the hopping amplitudes, also
enabling hopping between ⇑ and ⇓ states corresponding to
different sites. After averaging over all possible relative spin
orientations, this can be described by a matrix uR,R′

σ,σ ′ , which

does not affect the on-site Hamiltonian (uR,R
σ,σ ′ = δσ,σ ′) but

renormalizes and mixes the intersite hopping terms (uR,R′ �=R
σ,σ ′ =

2/3) according to [31,32]

tR,R′
m,m′ → tR,R′

m,m′u
R,R′
σ,σ ′ . (5)

To enable a consistent comparison with the full five-
orbital model, the interaction in the effective two-orbital
model is described using the eg subspace of the full inter-
action Hamiltonian, given by Eq. (2). This is equivalent to
the density-density approximation of the so-called Kanamori
Hamiltonian [3], but with the corresponding interaction pa-
rameters defined in terms of the Slater integrals (or in terms
of the average Coulomb repulsion U and the corresponding
Hund’s rule interaction J).

C. Fitting the parameters of the TB model

The purpose of this work is to study the physics of charge
disproportionation in a relatively generic cubic five-orbital
model. Nevertheless, we focus on realistic parameter regimes,
applicable to perovskite transition-metal oxides and closely
related materials. We therefore obtain parameters for the
single-particle part of the Hamiltonian, HTB, by comparison
with the full band structure of CaFeO3, calculated within
density functional theory (DFT).

We perform DFT calculations using the Vienna Ab initio
Simulation Package (VASP) [36,37] employing the PBEsol
exchange-correlation functional [38], both for the high-
temperature Pbnm structure, where all Fe sites are equivalent,
and for the charge-disproportionated P21/n crystal structure
observed below 290 K [27,39]. We use a 7 × 7 × 5 k-point
mesh for the 20-atom unit cell and a plane-wave energy cutoff
of 600 eV to ensure well-converged results.

We first relax unit-cell parameters as well as atomic po-
sitions within Pbnm symmetry. In order to stabilize the
high-spin state of the Fe cation, a Hubbard-corrected DFT+U
treatment and the presence of antiferromagnetic (AFM) order
is required. We find that moderate values of U = 4 eV and
J = 1 eV and A-type antiferromagnetic order (as a proxy for
the more complicated helical spin structure in CaFeO3 [40])
result in structural parameters that are in good agreement with
the experimental data (e.g., the calculated unit-cell volume is
210.34 Å3 ) [26,39]. We then re-relax the atomic positions
within non-spin-polarized DFT (to exclude any structural
effects or symmetry lowering stemming from the magnetic
order), but with lattice parameters fixed to the ones obtained
from the magnetic +U calculations. We note that a nonmag-
netic DFT calculation leads to a low-spin state of the Fe
cation, which would result in an unrealistically low unit-cell
volume.

To obtain a realistic estimate of the site splitting �eg , we
manually add a breathing mode of R+

1 = 0.2 Å, very similar
to the experimentally observed amplitude R+

1 = 0.18 Å [26],
while keeping all other structural parameters unchanged. A
full DFT+U study of CaFeO3 has been presented in Ref. [41].

The calculated band structure and corresponding densities
of states (DOS) in the relevant energy window around the
Fermi level are shown in Fig. 1. It can be seen that a group
of bands with dominant Fe character, located between 0.5 and
4 eV above the Fermi level, is separated from all other bands
at higher and lower energies. Further inspection confirms that
these are the Fe-eg bands. The bands between approximately
−1 and 0.5 eV also have mostly Fe character and correspond
to the Fe-t2g states. Towards lower energies, there is some
entanglement of these Fe-t2g bands with other bands with
dominant O-p character. Comparing the band structures ob-
tained with and without the structural R+

1 breathing mode,
one can see that its main effect is to introduce a splitting
throughout the middle of the eg bands, analogously to what
has been observed for nickelates [8,42]. In contrast, the Fe-t2g

bands are not much affected by the structural distortion.
We fit the parameters of our TB model such that the

corresponding band dispersion matches the bands obtained
from our DFT calculations. Thereby, the ratio between NNN
and NN hopping, tNNN/tNN, is obtained by fitting the well-
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FIG. 1. Plots of the band structure of CaFeO3 obtained using
DFT (black lines) and the fitted TB bands (blue lines), in (a) Pbnm
symmetry (R+

1 = 0.0 Å) and (b) P21/n symmetry (R+
1 = 0.2 Å). Zero

energy indicates the Fermi level. Additionally, the DFT total density
of states (DOS) and Fe-projected DOS are shown in the correspond-
ing right panels.

separated eg bands, whereas the t2g NN hopping is then mainly
adjusted to obtain the correct t2g bandwidth. Note that the
two cases with and without breathing mode are fitted with the
same hopping amplitudes, whereas the average eg-t2g splitting
�eg−t2g is slightly altered by the R+

1 breathing mode. The
resulting TB band structure is also shown in Fig. 1, and the
corresponding parameters are listed in Table I. It can be seen
that the TB model results in an excellent fit of the Fe-eg

bands, both in the Pbnm and P21/n cases. For the t2g bands,
the overall bandwidth is well described, while the dispersion
of the individual bands shows notable deviations. This could
be improved by introducing a separate tNNN/tNN for the t2g

hopping or other additional intra- and intersite TB parameters.
However, for simplicity, and since the specific form of the t2g

TABLE I. The parameters of our TB model, obtained by fitting
to the DFT band structures of CaFeO3 with and without the R+

1

breathing mode, together with the corresponding eg and t2g total band
widths, Weg and Wt2g , respectively.

R+
1 = 0.0 Å R+

1 = 0.2 Å

�eg−t2g (eV) 2.494 2.519

teg (eV) −0.511 −0.511

tt2g (eV) −0.220 −0.220

tNNN/tNN 0.065 0.065

�eg (eV) 0 0.436

Weg (eV) 3.069
Wt2g (eV) 1.761

bands is not relevant in the context of this work, we refrain
from introducing further parameters into our TB model.

D. DMFT calculations

We obtain the phase diagram of the model, given by
Eq. (1), as a function of the interaction parameters U and
J using dynamical mean-field theory (DMFT) [43]. Within
DMFT, the self-energy of the full lattice problem is approx-
imated by a frequency-dependent but local self-energy, which
is obtained by mapping each symmetry-inequivalent site on
an effective impurity problem, defined via a self-consistency
condition requiring that the impurity Green’s function is iden-
tical to the corresponding local Green’s function of the full
lattice problem.

The calculations are implemented using the TRIQS and
DFTTools libraries [44–46]. To solve the effective impurity
problem, we use a continuous-time quantum Monte Carlo
solver (CT-HYB), also implemented in the TRIQS library
[47], and an inverse temperature β = 1/(kBT ) = 40 eV−1,
corresponding to approximately room temperature. Green’s
functions are represented by 40 Legendre coefficients [48]
for the full five-orbital model (50 for the effective two-orbital
model), which results in good convergence and a smooth
behavior of the self-energy in imaginary frequency �(iωn).

We average over both spin channels and also over the eg

and t2g manifolds separately to ensure a paramagnetic solution
without orbital polarization in the two different subshells. Fur-
thermore, to allow for a charge-disproportionated solution, we
divide the sites of the simple cubic lattice into two interpene-
trating fcc lattices, (I) and (II), corresponding to the expected
three-dimensional checkerboardlike arrangement, and solve
the two resulting effective impurity problems separately.

From the local Green’s function Gmm′ (τ ) =
−〈T cm(τ )c†

m′ (0)〉, where T is the imaginary-time ordering
operator and c†

m(τ ) is the creation operator for an electron
in orbital m at the local site at imaginary time τ , we
obtain the total eg occupation per site, neg = nz2 + nx2−y2 ,
the (positively defined) occupation difference between
the two sublattices, δn = |∑m n(I)

m − ∑
m n(II)

m |, and
the averaged spectral weight around the Fermi level,
A(ω = 0) = −(β/π )Tr G(τ = β/2). Furthermore, we
obtain an estimate for the (orbital-dependent) quasiparticle
weight Zm = [1 − ∂Im�m (iω)

∂ (iω) |iω=0]−1 by fitting a fourth-order
polynomial to the imaginary part of the local self-energy,
Im�m(iωn), for the eight lowest positive Matsubara
frequencies iωn and extrapolate the slope at zero frequency
from this fit; cf. Appendix C in Ref. [49]. We use the
maximum-entropy method [50], implemented in the TRIQS
library [51], to obtain both k-averaged and k-resolved spectral
functions on the real frequency axis.

III. RESULTS

A. Atomic-limit predictions

Before presenting our results from the full DMFT calcu-
lations, we outline the general features of the expected phase
diagram by considering the “atomic limit” of Eq. (1), i.e., the
limit where all hopping amplitudes and thus the associated
bandwidths go to zero, and the ground-state configuration of
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FIG. 2. Schematic phase diagram for our TB model correspond-
ing to equivalent sublattices, �eg = 0. Thick black lines separate
regions with different electronic ground states in the atomic limit:
homogeneous HS d4, homogeneous LS d4, and inhomogeneous HS
d3 + d5, as indicated by the energy level diagrams. The colored re-
gions indicate the expected insulating regions, with the homogeneous
Mott phase in blue and the charge-disproportionated (CD) insulating
region in red. The white area represents the expected homogeneous
metallic state. The red-hatched area denotes a potential CD metallic
region based on simple bandwidth estimates (see main text). The
shifts of the phase boundaries resulting from a site splitting, �eg =
0.436 eV, and an 80% reduction of the eg band with Weg are indicated
by small black arrows, with the length of the arrow corresponding to
the actual shift.

the system is solely determined by the local part of the Hamil-
tonian, i.e., the interaction term Hint plus the local crystal-field
and eg site splitting.

We first compare the energies of the three most relevant
configurations: (i) homogeneous high spin (HS) d4; (ii) ho-
mogeneous low spin (LS) d4; and (iii) inhomogeneous HS
d5 + d3, also depicted by the schematic level diagrams in
Fig. 2, and identify the ground state as a function of interaction
parameters U and J . Details are described in the Appendix.
Figure 2 depicts the case without an explicit eg site splitting,
i.e., �eg = 0. Thick black lines separate the regions where
the three different cases (i)–(iii) are the ground-state config-
uration. The homogeneous LS configuration (ii) is generally
favorable for small J (J � �eg−t2g/2.83 ≈ 0.88 eV, except
for the small part separating the LS and inhomogeneous HS
regions, where the critical J is further decreased by decreasing
U ). The inhomogeneous charge-disproportionated (CD) state
(iii) is the ground state for larger J and U � 1.51J (except,
again, for the small part separating CD and homogeneous LS
regions, where the critical U is smaller). For large J and U ,
the homogeneous HS state (i) is obtained. We note that in the
Slater parametrization of the local interaction, a positive U
represents an average repulsive electron-electron interaction
(independent of J), which is why we consider the whole
region with U > 0 as potentially physically relevant.

A simple estimate for the boundary between metallic and
(Mott-) insulating regions can be obtained by comparing the
lowest intersite charge transfer excitation energy with the av-
erage electronic kinetic energy. For the homogeneous phases,
this kinetic energy can be approximated by the relevant

bandwidth (see, e.g., Ref. [4]), resulting in the blue-shaded
“Mott-insulating” region in Fig. 2 (see the Appendix for
details). Since the t2g bandwidth is smaller than the eg band-
width, the Mott phase extends to smaller U values in the LS
region than in the HS region.

For the CD region, a good estimate for the corresponding
effective bandwidth/kinetic energy is more difficult to obtain.
For the transition to the homogeneous metallic phase, it turns
out to be significantly smaller than Weg and essentially goes to
zero when �eg becomes large [8]. For simplicity, we therefore
denote the whole region below the CD transition line as “CDI”
in the atomic limit (red-shaded area in Fig. 2). Considering
only hopping among either nominal d5 or d3 sites defines
limits for the CDI region towards small U (see the Appendix).
Simple bandwidth estimates for the kinetic energy result in
the limits indicated by the red-striped regions in Fig. 2.

Introducing a nonzero eg site splitting �eg (corresponding
to a nonzero R+

1 distortion of the underlying crystal structure)
extends the CD region slightly by rigidly shifting the phase
boundaries towards the homogeneous HS and LS phases (see
the Appendix), as indicated by the small arrows in Fig. 2. This
also shifts the metal/insulator phase boundary within the ho-
mogeneous HS region towards higher U . In contrast, reducing
the eg bandwidth shifts the metal/insulator phase boundary in
the homogeneous HS phase in the opposite direction, while
not affecting any of the other main phase boundaries.

B. Phase diagram for equivalent sites

Next, we present the results of our full DMFT calculations
for the TB model with �eg = 0, i.e., for the case without a
site-dependent shift of the eg levels. Figure 3 depicts various
observables as a function of interaction parameters U and J .

The total eg occupation per site, neg , shown in Fig. 3(a),
indicates a sharp transition from LS (neg = 0) to HS (neg =
1) for J � 1 eV, essentially independent of U , in very good
agreement with the expectation obtained from the atomic limit
discussed in Sec. III A. Only for J = 0.75 eV and U � 2 eV
do we obtain a small intermediate-spin region where the eg

occupation lies between 0 and 1.
The most important result is visible in the occupation dif-

ference between the two sublattices, δn, shown in Fig. 3(b).
Here, in the region of small U but large J , i.e., in the re-
gion where the atomic limit predicts the inhomogeneous CD
ground state, we indeed obtain a nonzero value for δn, indicat-
ing that the system exhibits a spontaneously symmetry-broken
state with higher and lower eg occupation on the two sublat-
tices. Note that this CD region lies fully within the HS region
where the average eg occupation is equal to 1. Inspection of
the spectral weight at zero energy, A(0), shows that the charge
disproportionation coincides with a transition to an insulating
state, indicated by A(0) ≈ 0 [dark regions in Fig. 3(c)]. This
CD insulating region is separated from the Mott-insulating
regime, where δn = 0 and which occurs for large U , by a
metallic region. It can be seen that the boundary between
the Mott-insulating and the metallic regions (both in the HS
and LS regime) also matches very well with the atomic-limit
prediction from Sec. III A, indicated by the gray lines in Fig. 3.
On the CD side, the MIT occurs together with the emerging
charge disproportionation for δn � 1, somewhat below the
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FIG. 3. The characteristic properties for the phase diagram in the
basic TB model with equivalent sites: (a) average eg occupation neg ,
(b) occupation difference δn between the two sublattices, (c) aver-
aged spectral weight A(0), and (d) quasiparticle weight Z , estimated
from the slope of Im�(iω). Atomic-limit boundaries are indicated as
solid gray lines. In (d), the empty circles indicate data points where
the system is insulating and thus Z is ill defined.

homogeneous-inhomogeneous transition line predicted from
the atomic limit. However, we note that the distance of the
atomic-limit prediction and the actual charge disproportiona-
tion is significantly less than the eg bandwidth.

In Fig. 3(c), there is a significant change in spectral
weight, A(0), at the LS/HS transition in the metallic region.
Figure 4(a) shows the corresponding spectral functions (for
U = 1.5 eV), separated into t2g and eg contributions. It can be
seen that for J = 0.5 eV, the full spectral weight is generated
by the t2g contribution, while the eg states are still unoccu-
pied. Around J = 0.75 eV, the transition occurs, where both
eg and t2g states contribute to the spectral weight at zero
energy. Above this LS/HS transition, at J = 1 eV, the t2g

spectral function is gapped, and A(0) is entirely due to the
eg states, i.e., a situation that corresponds to an orbitally se-
lective Mott state. Here, the eg quasiparticle peak is lower and
broader compared to the t2g peak for J = 0.5 eV, which re-
sults in the lower spectral weight in the phase diagram for the
HS case.

Figure 3(d) shows the quasiparticle weight Z in the
metallic region, averaged over all orbitals with nonvanish-
ing spectral weight. Z is largest along the line separating
homogeneous/inhomogeneous ground states in the atomic
limit, and decreases towards both insulating phases. This is
consistent with analogous results for the three-orbital case in
Ref. [9], where this behavior was related to the competition

FIG. 4. (a) Evolution of the eg- and t2g-resolved spectral func-
tions and (b) corresponding imaginary parts of the self-energy on the
Matsubara axis, for the transition from low spin (top, J = 0.5 eV) to
intermediate spin (middle, J = 0.75 eV), to high spin (bottom, J =
1.0 eV) in the metallic region of the phase diagram (for U = 1.5 eV).
Also indicated are quasiparticle weights Z estimated by integrating
A(ω) over the shaded areas in (a) or obtained from the slope of
Im�(iω → 0) (with the corresponding fourth-order fits shown as
solid lines) in (b).

between the two different insulating phases, resulting in the
so-called Janus effect [4,52].

Figure 4(b) depicts the imaginary part of the self-energy
on the Matsubara axis across the LS/HS transition within the
metallic regime. As described in Sec. II D, the quasiparticle
weight Z is obtained by fitting the low-frequency behavior of
Im�(iω). The corresponding fits are shown in Fig. 4(b). It
can be seen that the self-energies exhibit rather strong devia-
tions from simple Fermi liquid behavior. A linear dependence
on iω can only be observed in a very small range close to
ω → 0, and there is a rather large nonvanishing imaginary
part for zero frequency. This could in part be due to the
relatively high temperature (β = 40 eV, corresponding to ap-
proximately room temperature) in our calculations. Thus, the
interpretation of [1 − ∂Im�/∂ (iω)]−1 as the effective quasi-
particle renormalization is somewhat approximate here. This
can also be inferred from the comparison with the “quasipar-
ticle weights” extracted by integrating over the central peak
of the corresponding spectral functions in Fig. 3. (Note that
the latter, of course, also just represents a very rough and
approximate measure of the quasiparticle renormalization.)

To obtain further insight into the different phases, we
also analyze the probabilities of the different atomic multi-
plet states, obtained from the DMFT quantum Monte Carlo
solver. These probabilities describe how likely it is for the
corresponding state to be visited during the simulation of
the effective impurity problem and allow one to distinguish
between different occupations and LS/HS configurations in a
more quantitative way than in the phase diagrams shown in
Fig. 3. To simplify the analysis, we sum up the probabilities
for Hilbert states with the same number of electrons, N , and
the same magnetic spin quantum number |ms| [53]. It turns
out that only states with N = 3, 4, and 5 have significant
probabilities; these together with the quasiparticle weight Z
are shown along a rectangular path through the phase diagram
in Fig. 5.
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FIG. 5. Multiplet analysis for the model with equivalent sites,
sampled along a rectangular path in the phase diagram, as described
in the main text. For the different segments of this path, either U or
J is kept constant, while the other parameter is varied as indicated
on the x axis. For the multiplet probabilities pN=3, pN=4, pN=5, the
solid lines correspond to the sum over all spin quantum numbers |ms|
and the dotted lines correspond to the sum over only the HS multi-
plets, i.e., those with maximal spins |ms| = N/2. All quantities are
averaged over the two sublattices. Blue, red, and white backgrounds
represent Mott-insulating, CDI, and metallic regions expected from
the atomic limit.

The first segment of this path corresponds to constant U =
1.5 eV and increasing J from 0.5 to 2.0 eV, i.e., starting from
the LS metallic, then to the HS metallic, and then into the CDI
phase. In the LS metallic phase for J = 0.5 eV, all multiplets
with N = 3, 4, and 5 are visited, but the probabilities of the
HS states (maximal |ms|) for N = 4 and 5 are close to zero.
In the transition region between LS and HS metallic phases
at J = 0.75 eV, the HS multiplets with |ms| = N/2 for N = 4
and N = 5 become more populated, while for J = 1 eV, the
HS states amount to nearly the total probabilities.

For increasing J , the probability for N = 4 decreases lin-
early, while the probabilities for N = 3 and N = 5 increase
accordingly. When the system enters the CDI phase (J >

1.5 eV), the probabilities on the two inequivalent sites be-
come different, but the averages over both sites, shown in
Fig. 5, continue their linear trend. In particular, even deep
inside the CDI phase, for J = 2 eV, the probability of N = 4
remains relatively large on both sites, indicating significant
fluctuations between multiplets with different N , even in the
insulating state. We note that the presence of such fluctuations
and the finite probability of the N = 4 multiplet are consistent
with the gradual increase of the occupation difference δn
within the CDI phase shown in Fig. 3.

Figure 6 shows the site-resolved eg spectral functions in
this regime (U = 1.5 eV and J � 1.5 eV). The spectral func-
tions for J > 1.5 eV exhibit a clear gap, consistent with the
zero spectral weight in Fig. 3, despite the system not being in
a pure local charge state, as follows from the multiplet prob-
abilities. This differs from a recent study using a slave-boson
method [9], where the Hund’s insulator in the two-orbital
model was characterized by a complete charge disproportion-
ation where only the nominal charge multiplets are populated.

FIG. 6. Site-resolved eg spectral functions for the transition from
HS metallic (top) to CDI phase (middle and bottom). A gap opens
for J � 1.75 eV. Site 1 is the more occupied one. However, both
sites exhibit spectral weight above as well as below the gap (albeit
with clearly different strength).

It also indicates that the transition to the CDI state cannot
be understood purely in terms of atomic-limit considerations
such as the ones in Sec. III A.

Increasing U from 1.5 to 6.0 eV for fixed J = 1.5 eV
(second segment in Fig. 5) results in a transition from the
CDI phase back to the HS metallic region and then moves
the system towards the Mott-insulating region. Here, the N =
4 probability increases again, while the N = 3 and N = 5
probabilities decrease accordingly, and become zero at the
boundary to the Mott insulator. Also, the quasiparticle weight
Z decreases continuously towards zero when approaching the
Mott phase, while it remains quite large even very close to
the CDI phase boundary. However, as discussed above, it is
unclear whether [1 − ∂Im�/∂ (iω)]−1 is really a good quan-
titative measure for the quasiparticle renormalization here.
Nevertheless, we note that a rather sharp drop of Z on ap-
proaching the Hund’s insulator (equivalent to our CDI phase)
has also been observed in Ref. [9] for a three-orbital model.

Finally, when crossing the HS/LS transition within the
Mott-insulating region, the HS N = 4 multiplet vanishes
abruptly, and then, when leaving the Mott phase towards the
LS metallic region, the N = 3 and 4 multiplets appear again,
together with a gradual increase of Z .

Thus, to preliminarily summarize the results in this section,
we emphasize that we establish the presence of a sponta-
neously charge-disproportionated insulating phase, for strong
J and intermediate values of U , in the cubic five-orbital
multiband Hubbard model with an average of four electrons
per site, analogous to results obtained for similar two- and
three-orbital models [8,9]. The CDI phase is characterized by
a gap opening at zero frequency, but still exhibits a strong
local mixing of multiplets with different number of electrons,
N . This is in contrast to the Mott-insulating phase, which can
be characterized by a unique local multiplet with N = 4. In
addition to the metallic and two distinct insulating phases, a
LS/HS transition occurs. This transition is very sharp inside
the Mott-insulating regime, but a small intermediate-spin re-
gion can be observed for small U in the metallic phase.
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FIG. 7. (a) Occupation difference δn between inequivalent sub-
lattices and (b) spectral weight A(0) for the case with an intrinsic site
splitting �eg , plotted as a function of the interaction parameters U
and J .

C. Introducing an intrinsic site splitting and effect
of reduced bandwidth

Next, we investigate the effect of an intrinsic energy dif-
ference between the eg levels on the two sublattices, which
is introduced, for example, by the structural distortion that
generally accompanies the charge disproportionation, i.e., the
R+

1 breathing mode of the oxygen octahedra surrounding the
transition-metal sites in the perovskite structure. We use a
splitting of �eg = 0.436 eV as obtained from our fit to the
band structure of CaFeO3 described in Sec. II C.

Figure 7 shows the spectral weight A(0) and occupation
difference δn for this case. It can be seen that the region
corresponding to the CDI phase is significantly increased
compared to the case with �eg = 0 in Fig. 3. The transition
to the insulating state now occurs already very close to the
homogeneous/inhomogeneous transition line estimated from
the atomic limit. Similar behavior has also been observed
for the two-band model [8]. Furthermore, due to the intrin-
sic energy difference, a small δn > 0 already develops in
the metallic phase. On the other hand, this small occupa-
tion difference is completely suppressed when approaching
the Mott-insulating phase, and the corresponding MIT occurs
again very close to the atomic-limit predictions based on the
eg bandwidth. Note that the corresponding lines in Fig. 7 are
shifted relative to those in Fig. 3 for �eg = 0, as indicated in
the schematic phase diagram in Fig. 2.

Due to the large extent of the CDI phase, there is now
a direct competition between the CDI and the homogeneous
LS metallic phase for small J . Nevertheless, also in this
case, the corresponding phase boundary appears to be rather
well described by the atomic-limit prediction (gray lines in
Fig. 7). Similar to the case with �eg = 0, we obtain a small
intermediate-spin region (without significant charge dispro-
portionation) for U � 2 eV and J = 0.75 eV (data not shown
in Fig. 7).

Finally, we also assess the effect of reducing the eg band-
width, while keeping the local crystal field and the intersite eg

splitting constant. To simplify the corresponding analysis, we
use the observation that within the HS region (J � 1 eV), the
gradient of all quantities depicted in the U -J phase diagrams
in Figs. 3 and 7 appears to be perpendicular to the two tran-

FIG. 8. Effect of an 80% reduction of the eg bandwidth on the
spectral weight A(0) for the case with nonzero intrinsic site splitting.
Only data for the HS region with neg > 0.5 are shown as a function of
the “effective” interaction U − 1.51J . The colored background and
the vertical blue line indicate the atomic-limit predictions for the two
distinct insulating phases, analogous to Fig. 2, with the white metallic
region in between.

sition lines bordering the metallic phase, i.e., perpendicular
to lines with U − 1.51J = const. In Fig. 8, we therefore plot
all available data points for the spectral weight A(0) within
the HS region of the phase diagram, both for full and reduced
bandwidth, as a function of the “effective” interaction param-
eter U − 1.51J (which corresponds to the difference in the
local interaction energies between d4 + d4 and d3 + d5).

Indeed, all data points plotted in this way essentially
condense to a single line. In agreement with the simple
atomic-limit prediction (indicated in Fig. 8 as a vertical line
or shaded regions), the transition to the Mott-insulating phase
is shifted towards smaller interaction parameters if the band-
width is reduced, while the transition to the CD phase is barely
affected by this change. However, the occupation difference
δn in the CD region (not shown) is slightly increased for the
case with reduced bandwidth. Furthermore, one can also see
that spectral weight disappears only very gradually towards
the CDI state, while it disappears rather abruptly at the Mott
transition.

We note that even though the reduction of the eg band-
width does not significantly affect the CDI phase boundary
in our calculations, the bandwidth could nevertheless affect
the coupling to the structural distortion and can thus be an
important control parameter of the system. In Ref. [20], it was
shown that in the two-orbital model, the bandwidth controls
the relevant electronic susceptibility and is therefore crucial
for stabilizing the CD through coupling to the structural
distortion.

D. Comparison with an effective two-orbital
model for equivalent sites

After establishing and analyzing the phase diagram of
the full five-orbital model, we now compare this model to
the simplified effective two-orbital description introduced in
Sec. II B. Since, by construction, the effective two-orbital
model assumes a HS configuration on each site, we only
compare the HS part of the phase diagram. Our objective
is to test how qualitatively and quantitatively accurate the
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FIG. 9. Comparison between the simplified effective two-orbital
model and the full five-orbital description in the HS region for the
case without an intrinsic site splitting, i.e., �eg = 0. (a) The occu-
pation difference δn between inequivalent sublattices and (b) the
spectral weight A(0) are shown as a function of the effective inter-
action parameter U − 1.51J . Shaded regions indicate the CD and
Mott-insulating regions predicted from the atomic limit (Sec. III A);
the white background indicates the metallic region.

computationally less demanding simplified model is. To en-
sure a meaningful comparison with the full five-orbital model,
the interaction parameters of the two-orbital model are always
chosen to be consistent with the corresponding parameters of
the full model, as described in Sec. II B. Furthermore, we only
present the case with �eg = 0, i.e., without an intrinsic eg site
splitting between the two sublattices. Our test calculations
(not shown) indicate that a site splitting does not alter the
quality of the comparison between the full five-orbital model
and the effective two-orbital case.

Figure 9 depicts the occupation difference δn and spec-
tral weight A(0) as a function of the effective interaction
U − 1.51J , both for the effective two-orbital model and the
full five-orbital model. Similar to the case presented in Fig. 8,
all points for the same data set, obtained for different com-
binations of U and J , essentially reduce to a single line,
demonstrating that U − 1.51J is indeed the relevant interac-
tion parameter characterizing the behavior of the model in the
HS regime.

Both models give very similar results, with only two small
quantitative differences. First, the transition to the CDI phase
occurs for slightly smaller effective interaction in the sim-
plified two-orbital model. Due to the large increase of δn at
the transition, this can lead to quantitative differences in the
charge disproportionation of up to 0.5 electrons, but only in
a very small region close to the phase transition. Second, the
spectral weight at zero energy in the metallic phase is slightly
reduced in the effective two-orbital model.

Thus, it appears that the basic observables, such as occu-
pations and the resulting phase boundaries, as well as the gap
opening at the Mott transition, obtained from the simplified
two-orbital model, agree well with the corresponding results
for the full five-orbital model. However, this is not true for
more complex spectral properties, as can be seen from the k-
resolved spectral functions shown in Fig. 10 (obtained through
analytic continuation of the self-energy).

For the full five-orbital model, the occupied and unoccu-
pied t2g bands appear as rather sharp features. For the case
with U = 2.0 eV and J = 1.0 eV, these bands are situated
at around −3 and 1 eV. The eg spectral weight is much
more incoherent, with significant lifetime broadening due to
many-body correlations. In the metallic state obtained for
J = 1.0 eV, some dispersion is still visible between ω = −1
and 1 eV. At higher energies, a broad incoherent spectral
background is present at around 2 eV.

In contrast, the k-resolved spectral functions obtained from
the effective two-orbital model exhibit much weaker many-
body effects. In the metallic regime for J = 1.0 eV, a sharp
band structure is visible, in particular around ω = 0. The
band dispersion is essentially identical to the one following
from the renormalized and spin-mixed hopping amplitudes,
also shown as blue lines for comparison in Fig. 10(b). The
Coulomb interaction between the eg electrons only leads to a
weak lifetime broadening of the individual bands and mostly
increases the splitting between local majority and minority
spin channels. Close to the CDI transition at J = 2 eV, the
local minority spin bands are shifted to even higher energies
and a gap starts opening at zero frequency, consistent with
the full five-orbital model. However, in the two-orbital model,
the bands around the gap seem to remain rather well defined,
while the band edges at approximately ±1 eV become rather
fuzzy, which does not happen in the five-orbital case.

The fact that the effective two-orbital model exhibits
much weaker many-body correlations than the full five-orbital
model is to be expected since the interaction with the t2g core
spins merely enters via the renormalized hopping amplitudes
and in the form of “classical” Zeeman fields. However, the
local self-energies also seem to exhibit some nontrivial differ-
ences, leading to pronounced lifetime broadening in different
energy regions. Nevertheless, these differences do not seem
to critically affect integrated quantities such as occupations or
the spectral weight around zero energy (see Fig. 9).

IV. CONCLUSIONS AND SUMMARY

In summary, we have established the existence of a
charge-disproportionated insulating phase (or Hund’s insu-
lator) within a generic cubic five-orbital full d-shell model
and an average filling of four electrons per site. Our results
are consistent with previous studies of two- and three-orbital
models [8,9], which all show the same overall phase dia-
gram with two distinct insulating phases, i.e., the standard
homogeneous Mott insulator for large U and a spontaneously
charge-disproportionated insulator for large J and moderate
U , separated by a metallic region.

For the present case of the cubic five-orbital model, ad-
ditional complexity arises from the presence of the LS/HS
transition. In particular for U < 2 eV and J � 1 eV, the
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FIG. 10. Comparison of k-resolved spectral functions between (a), (c) the full five-orbital model and (b), (d) the simplified effective
two-orbital model in (a), (b) the HS metallic state close to the HS/LS transition and (c), (d) the CD insulating state. The blue lines in (b) are the
bands obtained from the noninteracting part of the effective model, after taking into account the local spin splitting as well as the renormalized
and spin-mixed hopping matrices.

metallic LS state competes with the CDI state. We note that
this parameter regime is realistic for materials such as ferrates,
where the Coulomb repulsion between the d electrons can
be strongly screened due to the (potentially negative) charge
transfer character and the resulting strong hybridization with
the oxygen p bands. Furthermore, it can be expected that the
incorporation of intersite Coulomb interactions, neglected in
the present study to focus on the effect of the local Hund’s
coupling, will also favor the charge-disproportionated state
and thus further reduce the minimal J required to obtain the
CDI phase for a given U [54].

Our results also show that the CDI phase is strongly af-
fected by a small energy splitting of the eg levels between
the charge-disproportionated sublattices, introduced here to
mimic the effect of an additional structural distortion that
accompanies the CD. Again, this is analogous to previous
results obtained for the two-orbital case [8], and shows that
the CDI couples very strongly to such a structural distortion.
Thus, for quantitative studies of specific materials, it is crucial
to account for this coupling and treat the structural distortion
as a free variable [20].

An interesting aspect is also the unconventional nature of
the CDI state. While for the case of the homogeneous Mott
insulator, the critical U and J values for the MIT can be esti-
mated with rather good accuracy from the atomic limit, this is
not the case for the transition to the (spontaneous) CDI state.
Our results show that a gap in the spectral function opens even
though there are still significant fluctuations between different
local multiplets. This is also consistent with the gradual in-
crease of the charge disproportionation. Nevertheless, for the
case with a nonzero site splitting �eg , the homogeneous/CD
phase boundary is well approximated by the corresponding
atomic limit.

Finally, we have also compared the full five-orbital model
with a simplified effective two-orbital description applicable
to the HS limit. The simplified model gives results very similar
to the full model in the HS region, even though the transition
to the CDI state occurs at slightly lower effective interaction
U − 1.51J than in the full model. In spite of clear differences
in the k-resolved spectral functions, integrated quantities such
as occupations or the zero-energy spectral weight A(ω = 0)
agree very well between the two models. However, assuming
a realistic parameter regime for perovskite transition-metal
oxides such as CaFeO3 around J � 1 eV and U = 1–2 eV, our
calculated phase diagrams indicate that these materials could
be rather close to the LS/HS transition, and therefore might
require a treatment within the full model.

Our work shows that the formation of a charge-
disproportionated insulator, in a regime where the Hund’s
coupling outweighs the strongly screened Coulomb repulsion,
is a general feature of multiband Hubbard models at specific
filling levels. Based on this observation, our rather generic
cubic five-orbital model represents a good starting point and
can serve as reference for future studies of specific materials,
including, e.g., ferrates and manganites.
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APPENDIX: ATOMIC-LIMIT CALCULATIONS

The local interaction energies for all low-energy configu-
rations (both LS and HS) with 2 � N � 6 electrons per site,
corresponding to the interaction Hamiltonian in Eq. (2), are
listed in Table II. The corresponding energies can be ex-
pressed exactly in terms of the Slater integrals F0, F2, and
F4 (see, e.g., Ref. [35]), while for the expression in terms
of U and J , we use the definitions described in Sec. II A.
The full local energies E (LS/HS)

N in the atomic limit are then
easily obtained by adding multiples of the crystal-field energy
�eg−t2g ± �eg/2 according to the corresponding eg occupation
and the relevant sublattice.

The transition boundary between the homogeneous d4 HS
and LS states is then obtained by comparing the corresponding
energies,

0 = E (LS)
4 − E (HS)

4 = 6

49
F2 + 145

441
F4 − �eg−t2g

≈ 2.83J − �eg−t2g. (A1)

For the transition between the inhomogeneous CD region
and the homogeneous HS and LS regions, respectively, we
compare the corresponding energies per two sites,

0 = (
E (HS)

5 + E3
) − 2E (HS)

4

= F0 − 8

49
F2 − 1

49
F4 − �eg

≈ U − 1.51J − �eg (A2)

and

0 = (
E (HS)

5 + E3
) − 2E (LS)

4

= F0 − 20

49
F2 − 299

441
F4 + 2(�eg−t2g − �eg/2)

≈ U − 7.17J + 2�eg−t2g − �eg. (A3)

Here, of course, we assume that in the presence of an eg site
splitting, the HS d5 state is formed on the site with the lower
eg energy.

The border of the Mott-insulating regions within the ho-
mogeneous HS and LS phases is estimated by comparing

TABLE II. Interaction energies of the lowest HS/LS N electron
configuration (for 2 � N � 6), corresponding to the Hamiltonian in
Eq. (2), expressed both in terms of the Slater integrals F0, F2, F4, and
in terms of the interaction parameters U and J . Note that for N = 2
and N = 3, there is no ambiguity between HS and LS.

N = 2 F0 − 5/49F2 − 24/441F4 U − 1.171J
N = 3 3F0 − 15/49F2 − 72/441F4 3U − 3.513J
N = 4, LS 6F0 − 15/49F2 − 44/441F4 6U − 3.169J
N = 4, HS 6F0 − 21/49F2 − 189/441F4 6U − 6J
N = 5, LS 10F0 − 20/49F2 − 40/441F4 10U − 3.997J
N = 5, HS 10F0 − 35/49F2 − 315/441F4 10U − 10J
N = 6, LS 15F0 − 30/49F2 − 60/441F4 15U − 5.995J
N = 6, HS 15F0 − 35/49F2 − 315/441F4 15U − 10J

the energy of the lowest intersite charge transfer excitation
(2d4 → d5 + d3) with the relevant bandwidth. Note that for
the homogeneous HS region, this results in the same energy
terms as in Eq. (A2), E (HS)

5 + E3 − 2E (HS)
4 , but now this is set

equal to the eg bandwidth Weg . The same argument is also
applied to identify the metal-insulator boundary within the
homogeneous LS phase, where the electrons are restricted to
states within the t2g submanifold and therefore the intersite
charge transfer energy is compared to the t2g bandwidth Wt2g ,

Wt2g = (
E (LS)

5 + E3
) − 2E (LS)

4 = F0 − 5

49
F2 − 24

441
F4

≈ U − 1.17J. (A4)

Note that if the right side of Eq. (A4) is set to zero, this also
defines a potential transition to an inhomogeneous LS phase,
which is indeed more favorable than the HS CD state for J <

�eg−t2g/3. However, with �eg−t2g ≈ 2.5 eV, this requires J �
0.83 eV and, simultaneously, U � 1.17J � 0.98 eV. Since
we do not consider this parameter range in our DMFT cal-
culations, we neglect the corresponding phase also in the
schematic phase diagram in Fig. 2.

The estimation of the metal-insulator boundary within the
inhomogeneous CD region is less straightforward. As men-
tioned in Sec. III A, the effective kinetic energy required to
destabilize the CDI state towards the homogeneous metal
cannot be estimated from simple bandwidth considerations (at
least for �eg = 0). In addition, the CDI state can be desta-
bilized towards low-U values through an effective kinetic
hopping within only one specific sublattice. As pointed out in
Ref. [8], this involves indirect hopping processes, which again
complicates a simple bandwidth estimation of the correspond-
ing kinetic energy.

For the case with hopping only among the nominal d5 sites
(2d5 → d4 + d6), one obtains

(Wt2g + Weg )/2 �
(
E (HS)

6 + E (HS)
4

) − 2E (HS)
5

= F0 + 14

49
F2 + 126

441
F4

− (�eg−t2g − �eg/2)

= U + 4J − �eg−t2g + �eg/2. (A5)

Note that here we have used the average bandwidth as an
upper limit for the effective kinetic energy, which corresponds
to the red-hatched area around J ≈ 1 eV in Fig. 2. The true ef-
fective bandwidth corresponds to an indirect hopping between
d5 sites and is, therefore, expected to be significantly smaller,
and thus this transition barely plays a role in our considera-
tions. We can also identify (Wt2g + Weg )/2 + �eg−t2g ≡ Wfull−d,
leading to

Wfull−d − �eg/2 � U + 4J. (A6)

For the case with hopping only between nominal d3 sites,
and assuming that the involved d4 state is LS, one obtains
(again using the full t2g bandwidth as upper limit)

Wt2g �
(
E (LS)

4 + E2
) − 2E3 = F0 + 10

49
F2 + 76

441
F4

≈ U + 2.69J. (A7)
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This only predicts a metallic state in the region where the
hopping between d5 sites is already active, and is therefore
not relevant. However, if one also considers hopping through
a d4 HS state, and uses an average bandwidth as in Eq. (A5),
one obtains

(
Wt2g + Weg

)
/2 �

(
E (HS)

4 + E2
) − 2E3

= F0 + 4

49
F2 − 69

441
F4

+ (
�eg−t2g + �eg/2

)

≈ U − 0.15J + �eg−t2g + �eg/2. (A8)

This can, in principle, destabilize the CDI state for very low U
and very high J and is also indicated by the red-hatched area
in Fig. 2.

Finally, we note that none of the multiplet energies listed
above would be affected by the spin-flip and pair-hopping
terms that we ignore within the density-density approxima-
tion, given by Eq. (2). These additional terms would only
affect higher-energy multiplets, which are not crucial for a
correct description of the ground-state phase diagram, as they
do not affect the phase boundaries obtained from this atomic-
limit consideration. This provides a good a priori justification
for our use of the density-density approximation.
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