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Signatures of the charge density wave collective mode in the infrared optical response of VSe2
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We present a detailed study of the bulk electronic structure of high-quality VSe2 single crystals using
optical spectroscopy. Upon entering the charge density wave phase below the critical temperature of 112 K,
the optical conductivity of VSe2 undergoes a significant rearrangement. A Drude response present above the
critical temperature is suppressed while a new interband transition appears around 0.07 eV. From our analysis,
we estimate that part of the spectral weight of the Drude response is transferred to a collective mode of the
CDW phase. The remaining normal-state charge dynamics appears to become strongly damped by interactions
with the lattice as evidenced by a mass enhancement factor m∗/m ≈ 3. In addition to the changes taking place
in the electronic structure, we observe the emergence of infrared active phonons below the critical temperature
associated with the 4a × 4a lattice reconstruction.
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I. INTRODUCTION

Early studies of the transition-metal dichalcogenide
(TMDC) VSe2 focused on the charge density wave transition
[1–6]. The recently renewed interest in TMDCs as a plat-
form for two-dimensional (2D) materials research has also
rekindled the interest in VSe2 [7–12], and in particular in
monoatomic layers of VSe2 [13,14]. Nevertheless, the char-
acteristics of the CDW phase in the bulk compound, such as
the collective excitations and size of the CDW gap, remain
incomplete and controversial. For example, angle resolved
photoemission (ARPES) and scanning tunneling spectroscopy
(STM) experiments report gap sizes varying between 13–
130 meV [7,8,12,15,16]. Recently, some of us reported the
sensitivity of the CDW properties to defects and overall stoi-
chiometry [17]. It was demonstrated that depending on sample
growth conditions the defects and Se deficiencies proliferate,
while optimal growth conditions can be achieved to produce
stoichiometric, clean crystals with an enhanced critical transi-
tion temperature for the CDW phase. This development opens
the door to new studies of bulk electronic properties and
here we report the first infrared optical spectroscopy study
of the CDW transition of VSe2. In the following we present
the absolute reflectivity of high-quality VSe2 single crystals,
and discuss the evolution of the main features across the
CDW transition. Our optical data indicates that a significant
reorganization of the electronic structure takes place and we
discuss how this compares to earlier experiments that probe
the electronic structure.

*e.vanheumen@uva.nl

II. EXPERIMENT

The preparation and characterization of single crystals of
VSe2 are extensively reported in Ref. [17]. In summary, it
was reported that in order to obtain near ideal stoichiometry
and to minimise the presence of defects, samples were pre-
pared by chemical vapor transport at a growth temperature
of 550 ◦C. Electrical transport measurements show a residual
resistance ratio or RRR = 49 and a CDW transition temper-
ature, Tc = 112.7 K. The work reported here was carried out
on a single crystal with approximate dimensions of 2 × 3 mm
and an approximate thickness of 70 ± 30 μm. Reflectivity
measurements were performed over the energy range 6 meV
to 4 eV using a VERTEX 80v FTIR spectrometer as described
in Ref. [18]. To obtain the temperature-dependent reflectivity,
the measurements were designed to run through cooling and
warming cycles between 14 K and 300 K. In each cycle
we used heating or cooling rates of 3.33 K/min, while an
infrared spectrum was recorded every minute. Such temper-
ature cycles were repeated two to three times to increase the
signal-to-noise ratio and ensure reproducibility. In order to
obtain the absolute reflectivity, all measurements were re-
peated on references obtained by in situ evaporation of
reference materials (e.g., Au, Ag, or Al). To obtain the full
measured energy range we used various detectors, sources,
and beam splitters. The absolute reflectivity data were ana-
lyzed using REFFIT software to obtain the optical response
functions [19]. The procedure starts with the development of a
Drude-Lorentz model that accurately describes the measured
reflectivity data. This model is used together with the vari-
ational dielectric function method described in Ref. [19] to
effectively perform the Kramers-Kronig transformation of the
reflectivity data.
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FIG. 1. Reflectivity data of VSe2 at selected temperatures. The
inset presents the far-infrared range of the reflectivity, where optical
phonons and other CDW related features can be clearly observed.

III. RESULTS

Figure 1 presents the reflectivity of VSe2 over a broad
energy range, while the inset highlights the low-energy range.
From transport measurements [1,2,10,11,17] we know that
VSe2 is metallic in the normal state and although the tem-
perature dependence changes close to the CDW transition, the
resistivity remains metallic down to the lowest temperatures.
Our reflectivity data is also indicative of a metallic response,
as all data extrapolates to unity at zero frequency. In the
normal state we can use the Drude model for metals to ob-
tain a simple approximation for the low-frequency reflectivity,
also known as the Hagen-Rubens relation, to estimate the dc
conductivity.

In the normal state, the reflectivity data of VSe2 below
25 meV agrees well with the Hagen-Rubens approximation
(see Appendix A). In the CDW state, the experimental data
no longer follows a purely square-root frequency depen-
dence, while it still approximately extrapolates to unity. This
becomes even more prominent for T � 32 K, where the re-
flectivity becomes frequency independent below 10 meV. This
behavior resembles a reststrahlen band or optical band gap
similar to what is seen in superconductors below the critical
temperature (see, e.g., Ref. [20]). In s-wave superconductors
with a full gap opening around the Fermi surface, all opti-
cal transitions below the gap are suppressed. Consequently,
photons impinging on the surface with energy lower than 2�

are fully reflected. If this interpretation would be correct we
would estimate that the optical gap is of order 2� ≈ 10 meV,
which is still two times smaller than the lowest value reported
by scanning tunneling microscopy [12]. This value is also
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FIG. 2. (a) Real part of the optical conductivity on logarithmic
energy scale at selected temperatures. Dashed lines are extrapola-
tions to low energy derived from the Drude-Lorentz models. At room
temperature a clear Drude response dominates the low-energy range.
In contrast, the 16 K data appears to be gapped with a possible
remnant of a Drude peak below our experimental window. The short,
vertical dashed lines indicate the cutoff energies for the integrated
spectral weight curves presented in Fig. 3. (b) Similar, but with
temperatures spanning the range between the lowest measured tem-
perature and Tc.

rather small assuming a BCS-type relation between the gap
and Tc. Finally, we also observe a set of four sharp features,
which emerge below Tc and that are clearly visible in the 16 K
data presented in Fig. 1. These modes are undetected in the
normal state and gain prominence with decreasing tempera-
ture. We interpret these modes as optical phonons that become
infrared active in the CDW phase. The energies of these peaks
are temperature independent within our experimental resolu-
tion and are summarized in Table I in Appendix B.

Figure 2(a) presents the real part of the optical conduc-
tivity σ1(ω) obtained from the reflectivity data using the
variational dielectric function approach [19]. For the extrap-
olations outside our experimental window we have used the
Drude-Lorentz model as described in Appendix B. Based on
our modeling we observe at least five interband transitions,
centered around 0.07 eV, 0.6 eV, 1.1 eV, 2 eV, and 2.6 eV.
The lowest-energy transition is only observed in the CDW
phase, which could indicate that it emerges from new inter-
band transitions associated with band folding in the CDW
phase. We note that the transitions around 0.07 eV and 1 eV
show a strong temperature dependence, while the other tran-
sitions do not.

The evolution of the optical conductivity in the CDW
phase is presented in Fig. 2(b). Below 0.2 eV, the optical
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conductivity is dominated by a Drude peak at room temper-
ature, which becomes narrower as the temperature is reduced.
At temperatures below the CDW transition temperature, the
far-infrared optical response undergoes a strong suppression
and this removal of spectral weight goes hand in hand with
an enhancement of the optical transition centered around
0.07 eV. The modeling of the reflectivity indicates that part
of the spectral weight remains as a broad Drude response
with approximately half of the total low spectral weight below
50 meV. This broad Drude response is visible in Fig. 2(b)
as the flat conductivity indicated by dashed lines (below our
experimental window).

The Drude-Lorentz modeling further indicates that the re-
mainder of the spectral weight moves to a very sharp mode
with a lifetime broadening well below our experimental win-
dow, that is necessary to reproduce the reflectivity plateau
below 10 meV. An important aspect of CDW phases is that
the breaking of translational symmetry should give rise to a
Goldstone mode [20]. In the context of CDW phases, these are
better known as sliding modes, where the charge density wave
modulation moves freely against the periodicity of the under-
lying lattice. Such sliding modes contribute to the real part
of the optical conductivity at zero frequency. However, when
the periodicity of the CDW modulation is commensurate with
the lattice periodicity, the sliding modes gets pinned to the
underlying lattice and will require a finite energy to slide.
This pushes the contribution in the optical response to finite
frequency and this could be the source for the sharp mode in
our Drude-Lorentz model.

Importantly, these modes are optically active and their for-
mation can be observed from a careful analysis of the optical
sum rules [21]. An estimate of the sliding mode contribution is
obtained from an analysis of the optical spectral weight using
the f-sum rule. This rule states that the integral of the optical
conductivity, also known as spectral weight, is proportional
to the ratio of the charge density to the effective mass [22].
In Fig. 3(a) we present the temperature-dependent spectral
weight for suitably chosen cutoff frequencies of the optical
conductivity integral (indicated by vertical, dashed lines in
Fig. 2). Our choices are determined by the optical conductivity
data of Fig. 2: we present one integral with an energy cutoff at
0.05 eV (yellow) covering most of the Drude response, but
not the peak centered around 0.07 eV; one integral with a
cutoff energy of 0.24 eV (red) that includes this transition; and
finally one integral with a cutoff around 0.54 eV (green) that
includes the interband transitions at higher energy. We observe
that the spectral weight with low-energy cutoff (orange) drops
sharply below Tc. This can be explained as a sudden depletion
of spectral weight that sets in at Tc, which is linked to the
suppression of the Drude peak.

The red curve presented in Fig. 3(a) integrates the data
to 0.24 eV, which is the energy of the valley in the
low-temperature optical conductivity data. If the CDW tran-
sition simply involves a transfer of spectral weight from
intraband to interband response (for example, by opening a
gap around the entire Fermi surface), we expect that the spec-
tral weight is transferred to the prominent, optical transition
centered at 0.07 eV, which appears below Tc. We see that there
is still a noticeable change of slope taking place at Tc in the
red curve, indicating that spectral weight is transferred out-

30

20

10

S
pe

ct
ra

l W
ei

gh
t (

10
6

-1
cm

-2
)

300250200150100500

Temperature (K)

12

11

10

9

W
 (

10
 6

-1
cm

-2
)

3002001000

2

 W(0.54 eV-0.24 eV,T)
 extrapolation

(b) 34

33

32

31
3002001000

 W(1.3 eV-0.54 eV,T)

(c)

1

 W( =0.54 eV)
 W( =0.24 eV)
 W( =0.05 eV)
 0 p

2 arctan( / (T)), =0.24 eV

(a)

FIG. 3. (a) Integrated spectral weight of the optical conductivity
for selected cutoff energies. Shown are integrals from 0–0.05 eV (gap
energy scale), 0.24 eV (covering both the gap and coherence energy
range), and to 0.54 eV (including the first interband transition). The
dotted line presents the fit of the normal state spectral weight using
Eq. (2). Also indicated is the difference, �1, which is the missing
spectral weight in the CDW phase (see text for details). (b) Spectral
weight contained in the midinfrared peak between 0.24 eV and
0.54 eV. At Tc this peak gains spectral weight, �2, as can be seen
by comparing data to to the extrapolated normal state trend (indi-
cated by the dashed line). (c) Partial spectral weight integral for the
1 eV interband transition. No notable change in the spectral weight
temperature dependence is observed around Tc.

side this energy window. Finally, we plot the spectral weight
integrated up to 0.54 eV (shown in green), which includes the
interband transition that is already visible in the 300 K data.
Here, the change of slope at Tc is difficult to discern, but a
more careful analysis will show that the spectral weight is still
not fully recovered.

Apart from spectral weight transfer between intraband and
interband transitions, one also needs to consider that the col-
lective excitations of the CDW phase could respond to applied
electromagnetic fields. The energy scale where these modes
typically appear is well below our experimental window, so
we expect that some of the missing spectral weight is trans-
ferred to the energy range below our measured data (ω <

10 meV). To estimate the spectral weight of such a collective
excitation we make use of the Ferrell-Glover-Tinkham (FGT)
sum rule [23,24]. This sum rule states that the difference
between normal state spectral weight and CDW state spectral
weight is proportional to the spectral weight of the collective
mode, WCM :

WCM =
∫ �

0+
[σ1,N (ω, T ) − σ1,CDW(ω, T )] dω, (1)
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where σ1,N (ω, T ) is the normal-state optical conductivity and
σ1,CDW(ω, T ) the optical conductivity of the CDW state and
� is the cutoff energy. Note that the integral starts at a lower
cutoff energy 0+, indicating that the ω = 0 contribution is
not included. The difficulty with this sum rule is that the
conductivities have to be compared at the same temperature.
Since the low-temperature, normal-state optical conductivity
is not accessible, one typically has to resort to extrapolations
of the normal-state spectral weight.

Returning to Fig. 3, we observe a strong temperature de-
pendence in the normal-state spectral weight integrated up
to 0.24 eV. Different interpretations for the temperature de-
pendence of the integrated spectral weight with finite cutoff
energy have been considered in the context of the cuprate
high-Tc superconductors [25–27]. In Ref. [27] it is shown that
a relatively small cutoff energy of the spectral weight integral
(compared with the scattering rate γ ) and the sharpening of
the Drude response with decreasing temperature results in a
transfer of spectral weight from high to lower energies. The
size of this effect can be modeled starting from the simple
Drude model. We integrate the Drude conductivity to find:

∫ �

0
dω σ1,D(ω) = ε0 ω2

p arctan

(
�

γ (T )

)
, (2)

in which ε0 is the vacuum permittivity, ωp is the plasma
frequency (assumed to be temperature independent), γ (T )
is the temperature-dependent scattering rate, and � is the
cutoff energy [27]. From this it is straightforward to show
that for � � γ , the Drude weight is temperature indepen-
dent. However, when the cutoff energies are of order of the
scattering rate or smaller, Eq. (2) attains a temperature depen-
dence. Fermi liquid theory predicts γ (T ) = γ0 + β T + α T 2

[28] for the scattering rate where the three terms come from
impurity scattering, electron-phonon coupling, and electron-
electron interactions, respectively. Together with the plasma
frequency as free parameter, we can use this to fit the normal-
state temperature dependence and extrapolate the temperature
dependence of the normal-state spectral weight to zero tem-
perature. The result for cutoff energy � = 0.24 eV is shown
as the dotted line in Fig. 3. From this extrapolation and the
measured spectral weight we can estimate the difference at
16 K (indicated as �1). This gives an estimate of the missing
spectral weight, �W = 4 × 106 �−1cm−2.

One possibility is that this spectral weight goes to even
higher energy (into the range up to 0.5 eV). Unfortunately,
it is not possible to use the same extrapolation [based on
Eq. (2)] for higher cutoff energies, due to the presence of
additional interband transitions. Instead, we can estimate how
much spectral weight is transferred to the high-energy range
by calculating the spectral weight integral from a lower to an
upper bound, e.g., from 0.24 eV to 0.54 eV. The temperature
dependence of this integral, �W (0.54 –0.24 eV, T ) is shown
in Fig. 3(b) and shows that indeed some additional spectral
weight accumulates in this range as is evidenced by the sudden
upturn at Tc. We use a simple parabolic temperature depen-
dence to extrapolate the normal-state temperature dependence
and estimate the difference between the measured data and the
extrapolation, indicated by �2, as �2 = −2 × 106 �−1cm−2.
To exclude that the remaining spectral weight is transferred to

even higher energy, Figure 3(c) shows the integrated spectral
weight �W (1.3 –0.54 eV,T). In this energy range we do not
observe any CDW related changes. We are now in a position
to determine the missing spectral weight according to the FGT
sum rule, Eq. (2) as:

WCM = �1 + �2 = 2 × 106�−1cm−2. (3)

Summarizing, we find that a significant portion of the spectral
weight moves to the interband transition around 0.4 eV. This
leaves spectral weight missing at finite frequency, which most
likely contributes to a collective mode below our experimen-
tally accessible energy range.

An independent test of the presence of a collective mode
makes use of the real part of the dielectric function of VSe2,
or similarly of the imaginary part of the optical conductivity
(see Appendix D). The optical response of the collective mode
in the CDW phase is described as a δ-function contribution to
σ1,CDW(ω, T ) with strength A(T ) δ(ω − �0) where �0 is the
pinning energy of the collective mode and A(T ) is a measure
of the density of electrons contributing to the CDW phase
[20,21]. Both the presence of impurities and coupling to the
lattice could result in the pinning of the sliding mode, which
moves the δ function away from zero energy and leads to
broadening of the δ-function response. Typical pinning fre-
quencies and broadening factors are expected to be very small
compared to the energy scale in our experiment and for our
purposes we can consider this as a δ-function response. It is
well known that this singular response contributes to the real
part of the dielectric function through the Kramers-Kronig
relations according to:

ε1,CDW = −A(T )

ω2
. (4)

Equation (4) diverges when ω approaches zero energy, con-
trary to the Drude-Lorentz response. This specific signature
of the collective mode in the dielectric function can be used to
detect the collective mode contribution in the low-frequency
behavior of ε1. By multiplying ε1 by ω2, the Drude and
Lorentz terms converge to 0 when ω → 0, while the collective
mode response converges to A(T ) (see also Appendix D).
This is borne out by the data presented in Fig. 4, which show
that indeed −ω2ε1(ω, T ) extrapolates to zero at zero energy
in the normal state, while it extrapolates to a finite value at
16 K. The inset of Fig. 4 shows the temperature dependence
of −ω2 ε1 at ω0 = 10 meV. Below Tc this function starts to
deviate from zero and suggests the emergence of a collective
mode resembling Eq. (4) in the CDW phase.

More importantly, the weight of the collective mode,
A(T = 16 K) can be extracted by extrapolating to ω = 0. The
extrapolated range of values are indicated by a black error
bar in Fig. 4, offset from zero to finite frequency for clarity.
This gives an estimate of the spectral weight associated with
the collective mode of 4.4 ± 1.5 × 106 �−1cm−2 with a large
uncertainty as a result of our limited low-energy data range.
The value for the collective mode spectral weight has a range
covering our previous estimate, obtained from the spectral
weight analysis of the optical conductivity data. Finally, we
note that these values also agree with the weight in a collective
mode obtained through optimizing a Drude-Lorentz model
fitted to the reflectivity data (see Appendix B). The value
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obtained from the Drude-Lorentz model is indicated in Fig. 4
as a black square.

IV. DISCUSSION

We have found that the optical conductivity undergoes a
large reorganization of the low-energy, bulk electronic struc-
ture below the charge density wave transition. The Drude peak
is suppressed and this is accompanied by the emergence of
a collective mode below our experimental window and an
optical transition centered at 0.07 eV. Next to these observa-
tions, one feature remains difficult to reconcile with earlier
experiments: the almost complete suppression of the Drude
response. The simplest interpretation for this would be the
opening of a full gap around the Fermi surface. However, an-
gle resolved photoemission spectroscopy, electrical transport,
and theoretical studies of VSe2 show that only a small portion
of the Fermi surface is gapped in the low-temperature phase
[8,9,29].

We see three possible scenarios for this discrepancy: (i) the
matrix elements contributing to the conductivity anomalously
enhance the portion of the Fermi surface where a gap opens
in the CDW phase, (ii) a strong electron-phonon interaction in
the CDW state pushes spectral weight to finite frequency, e.g.,
a shake-off band or polaron formation, or (iii) the temperature
dependence is partially governed by band structure effects
unrelated to the formation of the CDW state. In the following,
we discuss each of these possibilities in turn.

Within the Kubo formalism, the optical response is gov-
erned by dipole matrix elements, 〈ψ f |v̂|ψi〉 that weigh the
contributions from different parts of the Fermi surface. It is
in principle possible that the optical response is anomalously
enhanced by the parts of the Fermi surface that are gapped
as the CDW phase evolves. From previous work we know
that the gap opens only on a small part of the Fermi surface
close to the new (folded) zone boundary [29]. An explicit
calculation of the matrix elements (see Appendix E) shows
that the dipole moment associated with the region where the
gap opens varies over k space, but is not significantly larger in
the regions where gaps open.

The second possibility to consider is that the free carrier
response is significantly modified by interactions. The spec-
tral weight in the free charge response is proportional to the
ratio of carrier density and effective mass according to ω2

p ∝
n/meff . It is possible that the formation of the CDW phase
is accompanied by a significant mass renormalization rather
than a large change in carrier density. Although it is hard
to completely rule out this scenario, we note that dynamical
mean-field theory calculations of the optical response predict
an enhancement of spectral weight below the critical temper-
ature for the case of strong electron-phonon coupling [30].
Taking the Drude-Lorentz model describing the reflectivity
data at face value, we can estimate that the mass enhance-
ment factor associated with the sliding mode is of the order
m∗/m ≈ 3. This value is obtained by taking the ratio of the
normal-state spectral weight of the first Drude mode at Tc to
the spectral weight in the collective mode [21].

The third possibility is a temperature-dependent band
structure effect unrelated to the CDW transition itself. Early
measurements of the Hall coefficient provide a first clue:
it displays a significant temperature dependence already in
the normal state indicating a strongly temperature-dependent
carrier density [1,2,31]. Upon entering the CDW phase this
trend is even further enhanced. Appendix A shows the Hall
resistivity measured on a similar crystal used in this study.
From the Hall coefficient it follows that the carrier density
decreases by an order of magnitude between 220 K (nH =
1.2 × 1022 cm−3) and 5 K (nH = 0.65 × 1021 cm−3). Given
that the partial gap opening at the Fermi surface cannot be
responsible for the large temperature-dependent change in
the Hall coefficient, we need an alternative explanation. One
explanation could be the gradual freezing out of carriers with
decreasing temperature associated with band edges close to
the Fermi level. Indeed, ARPES data shows a large pocket
grazing, but not crossing, the Fermi level around the � point
of the Brillouin zone [7–9]. At elevated temperatures, ther-
mal excitation of carriers will contribute to both the Hall
coefficient and the Drude weight. This contribution freezes
out when temperatures become smaller than the energy
difference between the band maximum and EF (so-called
Pauli blocking), resulting in a significant reduction of the
carrier density. This scenario could explain the strong reduc-
tion of the Drude response we observe in our experiments, as
well as the decrease in resistivity due to the removal of an
additional scattering channel.

Returning to the spectral weight analysis, we can esti-
mate the relative importance of each of these possibilities
explaining the absence of a visible Drude response. The
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spectral weight associated with the normal-state free charge
carrier response at Tc corresponds to approximately n f =
5.8–9.2 × 1021 cm−3. These numbers are determined by tak-
ing the plasma frequency of the narrow Drude mode reported
in Appendix B as a lower bound and the combined plasma
frequency of the two Drude terms as an upper bound. De-
pending on how we count the contribution of the two Drude
terms, the real value will be somewhere in between. This is
consistent with the Hall data, provided we take the lower side
of this range. At the lowest temperature in our experiments,
we find n f = 1.6 × 1021 cm−3 for the normal charge carriers
contributing to the optical conductivity. This also agrees with
the Hall coefficient data. One interpretation that is consistent
with our Drude-Lorentz model, is that there are additional
charge carriers (present at all temperatures) that contribute to
transport with a relatively large scattering rate. Such a large
scattering rate could well be a result of a relatively strong
interaction of these carriers with the lattice, as evidenced by
the mass enhancement factor estimated above. This Drude re-
sponse corresponds to the background conductivity indicated
with dashed lines in Fig. 2(b).

To summarize the preceding discussion, the large sup-
pression of the Drude response most likely results from a
convolution of the freezing out of carriers at low temperature
and interactions of the remaining electrons with the lattice.
In addition, we find strong evidence for the emergence of
a sliding mode linked to the formation of the CDW phase
in VSe2. The remaining feature in our reflectivity data, the
plateau in the reflectivity most likely results from this pinned
collective mode as we now explain. The reflectivity of a
fully gapped s-wave superconductor at zero temperature is
unity below the superconducting gap. At finite temperature,
thermal excitations result in a simultaneous normal-state and
superconducting response and this lowers the reflectivity. This
behavior is often modeled using a Drude-Lorentz model con-
sisting of a zero-frequency δ-function contribution, a Drude
function, and a Lorentz oscillator to mimic interband transi-
tions across the superconducting gap. A similar model holds
for the optical response of a CDW system.

Figure 5 shows this model (red curves) calculated with the
parameters presented in Table I. The reflectivity [Fig. 5(b)] is
very close to unity, but continuously deviates from unity for
any finite frequency. As this model is an oversimplified picture
of the true optical response of an s-wave superconductor, we
also show the response calculated using the numerical model
of Ref. [32] (implemented in the software package REFFIT

[19]). For this model (blue curves), we used the same Drude
response as before, but replace the δ-function contribution
with a condensate response with the same spectral weight
and calculated at a temperature corresponding to the 16 K
data (i.e., T/Tc ≈ 0.1). Although the difference in the optical
conductivity is significant, the changes in the reflectivity are
rather modest. The most prominent feature is the distinct
step that happens at the gap edge (where we have chosen
2� = 14 meV). Importantly, at these elevated temperatures,
one would still not expect the reflectivity to be exactly unity
inside our experimental window.

Next we show the conductivity and reflectivity for a
pinned, but undamped collective mode [δ(ω = 5 meV), black
curves] in addition to the Drude response. The associated
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FIG. 5. (a) Simulated optical conductivities with three possible
scenarios for the distribution of low-energy spectral weight between
a Drude response and a collective mode (see text for detailed discus-
sion). Also shown is a calculation using the BCS optical conductivity.
Note that the σ (ω)1(ω) for a free (red) and pinned (black) collective
mode are identical. The difference is only visible in σ1(ω). (b) Corre-
sponding reflectivity curves. The key difference we aim to highlight
is the deviation of the reflectivity from unity.

optical conductivity is indistinguishable from the red curve,
but the reflectivity shows a distinct difference compared
to the previous models. Above the collective mode, the
reflectivity increases to unity as a result of the singular
response in the dielectric function associated with the col-
lective mode. As a consequence of this a reststrahlen-type
band appears, and we believe this is what we observe in our
experiments.

Finally, we also show calculations for the same model,
but now with a damped collective mode response (green
curves), where we have chosen a damping of 2 meV. The
optical conductivity of this model would be consistent with
our optical conductivity data and spectral weight analysis, but
the calculated reflectivity is distinctly lower compared to our
experimental data at 16 K.

We conclude that our experimental data is most consistent
with a pinned but weakly damped collective mode. Within
our experimental uncertainty we can exclude a damped col-
lective mode with width larger than 1 meV, as this leads
to discrepancy with our measured reflectivity. However, we
cannot exclude that the collective mode is unpinned. The
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real part of the optical conductivity [blue curve, Fig. 5(a)]
right above the gap edge in our simulation changes due to
the piling up of spectral weight related to optical transitions
across the gap. Comparing this to the data presented in Fig. 2,
we note that there is no enhancement of spectral weight vis-
ible in the data around 11 meV. In Fig. 2 we see a strong
enhancement of spectral weight in the energy range above
40 meV and this would suggest that 2� ≈ 40–50 meV, much
larger than what one would guess based on the reflectivity
data.

Pinned or not, our data strongly indicates the presence
of a sliding mode contribution. These collective modes have
previously mostly been observed in quasi-one-dimensional
materials, such as NbSe3 [33], TaS3 [34], K0.3MoO3 [35],
(TaSe4)2I [36], and (TMTSF)2PF6 [36,37]. The observation
of these collective excitations is intrinsically more difficult
in higher-dimensional materials due to the large contribu-
tion from carriers that do not contribute to the CDW phase
formation (as is the case here), but pinned modes have
been observed in various transition-metal oxides and Bech-
gaard salts [38,39]. However, in TMDC materials there are
very few reports, except perhaps some indirect indications
of their existence (for example, Refs. [40–43]). One par-
ticular exception is work by Barker et al., who inferred
the existence of a CDW sliding mode in 2H-TaSe2 and
1T-TaS2 from a spectral weight transfer analysis [44]. How-
ever, more precise measurements with far-infrared data down
to 3 meV seem to rule out this interpretation [45,46].
The indirect observation of the sliding mode in VSe2 that
we report here is therefore unusual and we speculate that
this observation is made possible by the freezing out of
normal charge carriers. This makes VSe2 an interesting
subject for future sub-THz experiments to further explore
the dynamics of collective excitations in two-dimensional
materials.
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APPENDIX A: ADDITIONAL CHARACTERIZATION
INFORMATION

An extensive transport and x-ray photoelectron spec-
troscopy characterization of the crystals used in this study
has been reported in Ref. [17]. In Fig. 6(a) we present ad-
ditional measurements of the Hall coefficient, which allows
us to estimate the charge carrier contribution and the associ-
ated changes as function of temperature. Our data is overall
in agreement with previously published results [1,2]. We
note that the Hall coefficient decreases significantly more as
temperature decreases to a value RH = −9.6 × 10−3 cm3/C
at 5 K, compared to the previously reported RH = −3.1 ×
10−3 cm3/C [2] and RH = −2 × 10−3 cm3/C [1]. This may

(a)

(b)

FIG. 6. (a) Hall coefficient of a single crystal from the same
batch as the crystal used for this study. (b) Reflectivity data at
selected temperatures plotted as function of

√
ω together with ex-

trapolations obtained from fits using Eq. (A1). The reflectivity at
16 K deviates from the Hagen-Rubens behavior as can be seen by
the clear curvature in the entire energy range.

attest further to the high quality of the crystals used in this
study.

The Hagen-Rubens relation is used to examine the low-
frequency behavior of free electrons. It is derived from the
Drude model by making the approximation ω � 1/τ . This
gives (in CGS units):

R(ω) ≈ 1 −
√

2ω

πσ0
(ω � γ ) (A1)

in which γ is the scattering rate of the Drude response, and
σ0 is the dc conductivity. Even though VSe2 is metallic in
both the normal and CDW phase, the low-frequency elec-
tronic responses of these two phases is clearly different. The
reflectivity data above Tc agrees well with the Hagen-Rubens
relation, which is linear with respect to

√
ω and extrapolates

to unity at zero frequency [see Fig. 6(b)]. Below the critical
temperature, the data starts to deviate from the Hagen-Rubens
behavior in the sense that the extrapolation to zero frequency
becomes larger than unity (see for example the 72 K extrap-
olation) and at even lower temperatures develops curvature
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FIG. 7. Experimental reflectivity compared to the Drude-Lorentz
model fits calculated from the parameters listed in Table I using
Eq. (B1). The inset shows the low-energy fits.

down to the lowest measured frequency due to an interplay
between the remaining Drude response and the emerging col-
lective mode and low-energy optical transition.

APPENDIX B: DRUDE-LORENTZ MODELS AND FITS TO
THE REFLECTIVITY

Before using the variational dielectric function method
[19] to extract optical functions from reflectivity data, we use
a series of Drude-Lorentz models to fit the reflectivity at all
measured temperatures. These models are given by,

ε̂(ω) = 1 − ω2
p

ω(ω + i�)
−

∑
i

4π f 2
i

iω�i − (
�2

0,i − ω2
)

−
∑

ph

4π f 2
ph

iω�ph − (
�2

0,ph − ω2
) . (B1)

The first term corresponds to a Drude term, while the sum
over i indicates interband transition and the sum over ph cor-
responds to phonon modes. The parameters appearing here are
the plasma frequency and scattering rate (ωp and �), oscillator
strengths ( fi and fph), resonance frequencies (�0,i and �0,ph),
and widths (�i and �ph). We use this model to make a best
fit to our optical data at all measured temperatures. Here we
present the 16 K, 112 K, and 300 K data, fits (see Fig. 7)
and models (Table I). Note that the 16 K data only has one
Drude component and instead a δ(ω)-function contribution
representing the collective mode as discussed extensively in
the main text. The Drude-Lorentz model presented here is
used to extend the reflectivity data outside our measured
range. Parameters are optimized to describe the best fit to
data at a particular temperature as demonstrated in Fig. 7.
The low-energy parameters show a nonmonotonous temper-
ature variation, reflecting to some degree the spectral weight
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FIG. 8. (a) Comparison between resistivity data from Ref. [11]
and extrapolated conductivity data. For this comparison the data
from Ref. [11] are scaled to match room temperature dc optical
data. At low temperature, open symbols indicate the extrapolation
obtained from the BCS-type model from Ref. [32]. (b) Comparison
between the estimate of the sliding mode contribution (see Fig. 4 and
discussion) with and without broadening of the δ(ω) response.

transfer associated with the formation of the CDW phase. The
high-energy Lorentz parameters are fairly temperature inde-
pendent and can serve as accurate benchmark for the energy
position of interband transitions.

APPENDIX C: CONSISTENCY OF THE OPTICAL DATA
WITH TRANSPORT EXPERIMENTS

From the Hagen-Rubens analysis or the determination of
the optical conductivity, we can estimate the dc conductivity,
or alternatively the dc resistivity. To test the reliability of our
optical data, we compare these extrapolations to previously
published results. Different reports of transport experiments
show some degree of variation in the absolute values, but the
overall temperature dependence is very similar [1,2,10,11,17].
This is perhaps due to small differences in crystal quality, but
another likely factor is the uncertainty that is posed by esti-
mating thicknesses and contact distances on these small, thin
crystals. To test the agreement of our optical conductivity data
with transport experiments, we thus choose one previously re-
ported result, Ref. [11] and scale their transport data to match
with our extrapolated dc resistivity data at room temperature.
Figure 8 shows that in the normal state we obtain excellent
agreement between our conductivity data and transport data
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TABLE I. Drude-Lorentz models. The first two terms are Drude terms with plasma frequency, ωp, and scattering rate γD. At low
temperature, we need a δ-function contribution that we have indicted by “collective mode”. Terms labeled with Lorentz i describe interband
terms and have parameters ω0, fp, and γ , (eigenfrequency, oscillator strength, and scattering rate). In addition, we find ε∞ = 23.6. The last
rows summarize the phonon parameters at the lowest measured temperature. All parameters presented are in meV.

Temperature 300 K 112 K 16 K

ωp 3795.2 2168.0 1505.2
Drude

γD 203.3 313.7 57.0
ωp 1203.0 2830.6 -

Drude
γD 28.3 30.4 -

Collective mode A - - 1569.6
ω0 69.7 79.4 66.1

Lorentz 1 fp 536.0 1973.2 3340.2
γ 32.2 97.3 97.2
ω0 600.7 514.5 471.1

Lorentz 2 fp 5002.8 4021.4 3685.5
γ 1026.0 685.0 534.4
ω0 1143.8 1068.9 1037.1

Lorentz 3 fp 4400.2 5186.3 5530.3
γ 915.0 821.4 814.6
ω0 2003.6 2003.6 2003.6

Lorentz 4 fp 2354.5 2575.2 2662.6
γ 943.5 943.5 943.5
ω0 2564.6 2564.6 2564.6

Lorentz 5 fp 3208.1 3208.1 3208.1
γ 1262.8 1262.8 1262.8
ω0 - - 20.5

Phonon 1 fp 256.0
γ 1.0
ω0 - - 25.4

Phonon 2 fp 166.1
γ 0.4
ω0 - - 28.5

Phonon 3 fp 239.9
γ 1.2

As explained in the main text, we find that the low-
temperature conductivity has a sliding mode contribution. Our
Drude-Loretnz models include this contribution as a δ(ω)-
function contribution (see Table I). Such a description is,
however, only accurate at zero temperature, while at finite
temperature it gives the wrong zero-frequency extrapolation
for the dc conductivity. At any finite temperature, excitations
of the sliding mode will broaden the δ(ω)-function response.
The BCS-type model by Zimmermann [32], discussed in the
main text, allows us to estimate this finite temperature re-
sponse more accurately. The outcome is shown in Fig. 8(a)
as solid symbols. Using the correct temperature and spectral
weight for the sliding mode, we obtain excellent agreement
with the low-temperature transport data, provided that we
allow a small additional broadening of (less than 0.125 meV)
of the collective mode. Such impurity broadening is expected
to occur in imperfect crystals or for small domains of CDW
order. Importantly, the inclusion of impurity broadening does
not change the finite frequency response in our measurement

window. As an example, we show the comparison of the
sliding mode spectral weight as obtained from the dielectric
function with and without sliding mode broadening (see Fig. 4
and the discussion pertaining to that figure). This comparison
shows that for sufficiently weak impurity broadening, the
function −ω2ε1(ω) provides a reliable means to estimate the
sliding mode spectral weight.

APPENDIX D: IMAGINARY COMPONENT OF THE
OPTICAL CONDUCTIVITY

In the main text we present a method to determine the con-
tribution of the collective mode from the dielectric function.
An equivalent method makes use of the imaginary component
of the optical conductivity. These two functions are related
through:

σ2(ω) ∝ −ωε1(ω)

4π
. (D1)
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FIG. 9. (a) Imaginary component of the optical conductivity at
selected temperatures. (b) Additional temperatures to illustrate the
emergence of the ω−1 divergence associated with the collective
mode.

In the main text we show that ε1 = A/ω2. Together with
Eq. (D1), we therefore expect:

σ2(ω) ∝ A

ω
. (D2)

Figure 9 shows the imaginary component of the optical con-
ductivity at the same temperatures as those presented in Fig. 2
of the paper. Below TCDW, we indeed see the emergence of the
collective mode response as a ω−1 divergence.

APPENDIX E: MATRIX ELEMENTS

Previous work has shown that the weak-coupling charge
density-wave phase of VSe2 generates small suppressions of
spectral weight, in regions of the band structure close to the
Fermi level that are separated by one CDW wave vector [29].
This is corroborated by the minimal change in density of states
near EF as seen by scanning tunneling microscopy [12]. Based
on this, the small CDW gap that opens is expected to affect
only a few percent of the Fermi surface. Since the optical
conductivity is additive, the only way that the opening of such
a small gap could explain a strong suppression of the free

FIG. 10. Matrix elements at selected kz momenta on fixed color
scale with arbitrary units. The Fermi surface contours in the CDW
phase are overlaid to illustrate the sections of the Fermi surface that
contribute most.

carrier response would be if the optical matrix elements (as
defined in the Kubo-Greenwood formula) have a significant
maximum around the regions where gaps open.

To test whether this could be the case, we constructed a
tight-binding model by considering symmetry-allowed hop-
ping (in the Slater-Koster formalism [47]) between vanadium
dxy, dyz, and dxz orbitals and selenium px, py, and pz orbitals
in the 1T -VSe2 lattice, up to second-nearest neighbors. This
generates a 9 × 9 Hamiltonian, which is fitted to the ab ini-
tio band structure given in Ref. [29]. We then compute the
matrix elements, given by |〈�k|∇ki Ĥ |�k〉|2. Here, |�k〉 is the
eigenvector of the tight-binding Hamiltonian at momentum k,
and ∇ki Ĥ is the gradient of the Hamiltonian along ki (i =
{x, y, z}), where the latter is the momentum direction parallel
to the probed direction of conductivity. Since our experi-
ments probe the in-plane optical response, only the in-plane
directions (kx and ky) should be relevant. As demonstrated
by Fig. 10, the maximum variation of the matrix elements
in the kx-ky plane at the two values of kz where the largest
gaps are expected to open [29] is less than a factor of four.
Additionally, the maxima of the matrix elements lie away
from the regions of the Brillouin zone where gaps are expected
to open. We therefore conclude that there is no reason why the
optical conductivity would be mostly sensitive to the gapped
parts of the Fermi surface.

[1] M. Bayard and M. J. Sienko, Anomalous electrical and mag-
netic properties of vanadium diselenide, J. Solid State Chem.
19, 325 (1976).

[2] C. F. van Bruggen and C. Haas, Magnetic susceptibility
and electrical properties of VSe2 single crystals, Solid State
Commun. 20, 251 (1976).

165134-10

https://doi.org/10.1016/0022-4596(76)90184-5
https://doi.org/10.1016/0038-1098(76)90187-3


SIGNATURES OF THE CHARGE DENSITY WAVE … PHYSICAL REVIEW B 104, 165134 (2021)

[3] S. Sugai, K. Murase, S. Uchida, and S. Tanaka, Investigation
of the charge density waves in IT-VSe2 by Raman scattering, J.
Phys. Colloq. 42, C6-740 (1981).

[4] K. Tsutsumi, X-ray-diffraction study of the periodic lattice dis-
tortion associated with a charge-density wave in 1T-VSe2, Phys.
Rev. B 26, 5756 (1982).

[5] S. C. Bayliss and W. Y. Liang, Reflectivity and band structure
of 1T-VSe2, J. Phys. C: Solid State Phys. 17, 2193 (1984).

[6] R. Claessen, I. Schafer, and M. Skibowski, The unoccupied
electronic structure of 1T-VSe2, J. Phys.-Condens. Matter 2,
10045 (1990).

[7] K. Terashima, T. Sato, H. Komatsu, T. Takahashi, N. Maeda,
and K. Hayashi, Charge-density wave transition of 1T-VSe2

studied by angle-resolved photoemission spectroscopy, Phys.
Rev. B 68, 155108 (2003).

[8] T. Sato, K. Terashima, S. Souma, H. Matsui, T. Takahashi,
H. Yang, S. Wang, H. Ding, N. Maeda, and K. Hayashi,
Three-dimensional Fermi-surface nesting in 1T-VSe2 studied
by angle-resolved photoemission spectroscopy, J. Phys. Soc.
Jpn. 73, 3331 (2004).

[9] V. N. Strocov, M. Shi, M. Kobayashi, C. Monney, X. Wang,
J. Krempasky, T. Schmitt, L. Patthey, H. Berger, and P. Blaha,
Three-Dimensional Electron Realm in VSe2 by Soft-X-Ray
Photoelectron Spectroscopy: Origin of Charge-Density Waves,
Phys. Rev. Lett. 109, 086401 (2012).

[10] Á. Pásztor, A. Scarfato, C. Barreteau, E. Giannini, and C.
Renner, Dimensional crossover of the charge density wave tran-
sition in thin exfoliated VSe2, 2D Mater. 4, 41005 (2017).

[11] S. Barua, M. C. Hatnean, M. R. Lees, and G. Balakrishnan,
Signatures of the kondo effect in VSe2, Sci. Rep. 7, 10964
(2017).

[12] W. Jolie, T. Knispel, N. Ehlen, K. Nikonov, C. Busse, A.
Grüneis, and T. Michely, Charge density wave phase of VSe2

revisited, Phys. Rev. B 99, 115417 (2019).
[13] M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R.

Das, T. Eggers, H. R. Gutierrez, M.-H. Phan, and M. Batzill,
Strong room-temperature ferromagnetism in VSe2 monolayers
on van der Waals substrates, Nat. Nanotechnol. 13, 289 (2018).

[14] P. Chen, W. W. Pai, Y.-H. Chan, V. Madhavan, M. Y. Chou,
S.-K. Mo, A.-V. Fedorov, and T.-C. Chiang, Unique Gap Struc-
ture and Symmetry of the Charge Density Wave in Single-Layer
VSe2, Phys. Rev. Lett. 121, 196402 (2018).

[15] I. Ekvall, H. E. Brauer, E. Wahlström, and H. Olin, Locally
modified charge-density waves in Na intercalated VSe2 studied
by scanning tunneling microscopy and spectroscopy, Phys. Rev.
B 59, 7751 (1999).

[16] C. Wang, Spectroscopy of dichalcogenides and trichalcogenides
using scanning tunneling microscopy, J. Vac. Sci. Technol. B 9,
1048 (1991).

[17] C. J. Sayers, L. S. Farrar, S. J. Bending, M. Cattelan, A. J. H.
Jones, N. A. Fox, G. Kociok-Köhn, K. Koshmak, J. Laverock,
L. Pasquali, and E. Da Como, Correlation between crystal
purity and the charge density wave in 1T-VSe2, Phys. Rev.
Materials 4, 025002 (2020).

[18] A. Tytarenko, Y. Huang, A. De Visser, S. Johnston, and E. Van
Heumen, Direct observation of a Fermi liquid-like normal state
in an iron-pnictide superconductor, Sci. Rep. 5, 12421 (2015).

[19] A. B. Kuzmenko, Kramers-Kronig constrained variational anal-
ysis of optical spectra, Rev. Sci. Instrum. 76, 083108 (2005).

[20] G. Grüner, The dynamics of charge-density waves, Rev. Mod.
Phys. 60, 1129 (1988).

[21] P. A. Lee, T. M. Rice, and P. W. Anderson, Conductivity from
charge or spin density waves, Solid State Commun. 14, 703
(1974).

[22] D. van der Marel, Optical properties of correlated electrons, in
Quantum Materials: Experiments and Theory (Forschungszen-
trum Jülich, Jülich, 2016).

[23] M. Tinkham and R. A. Ferrell, Determination of the Supercon-
ducting Skin Depth from the Energy Gap and Sum Rule, Phys.
Rev. Lett. 2, 331 (1959).

[24] R. A. Ferrell and R. E. Glover, Conductivity of Superconduct-
ing Films: A Sum Rule, Phys. Rev. 109, 1398 (1958).

[25] L. Benfatto, J. P. Carbotte, and F. Marsiglio, Temperature de-
pendence of the conductivity sum rule in the normal state due
to inelastic scattering, Phys. Rev. B 74, 155115 (2006).

[26] A. E. Karakozov and E. G. Maksimov, Optical sum rule in
metals with a strong interaction, Solid State Commun. 139, 80
(2006).

[27] F. Marsiglio, E. van Heumen, and A. B. Kuzmenko, Impact of
a finite cut-off for the optical sum rule in the superconducting
state, Phys. Rev. B 77, 144510 (2008).

[28] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt,
Rinehart and Winston, New York, 1976).

[29] J. Henke, F. Flicker, J. Laverock, and J. van Wezel, Charge order
from structured coupling in VSe2, SciPost Phys. 9, 056 (2020).

[30] S. Ciuchi and S. Fratini, Signatures of polaronic charge order-
ing in optical and dc conductivity using dynamical mean field
theory, Phys. Rev. B 77, 205127 (2008).

[31] A. Toriumi and S. Tanaka, Galvanomagnetic properties of 1T-
VSe2, Phys. B: Condens. Matter 105, 141 (1981).

[32] W. Zimmermann, E. Brandt, M. Bauer, E. Seider, and L. Gen-
zel, Optical conductivity of BCS superconductors with arbitrary
purity, Physica C 183, 99 (1991).

[33] N. P. Ong and P. Monceau, Anomalous transport properties of a
linear-chain metal: NbSe3, Phys. Rev. B 16, 3443 (1977).

[34] G. Grüner, A. Zettl, W. G. Clark, and A. H. Thompson, Obser-
vation of narrow-band charge-density-wave noise in TaS3, Phys.
Rev. B 23, 6813 (1981).

[35] L. Degiorgi and G. Grüner, The electrodynamics of the charge
density wave condensate, Synth. Met. 56, 2688 (1993).

[36] L. Degiorgi and G. Grüner, Pinned and bound collective-mode
state in charge-density-wave condensates, Phys. Rev. B 44,
7820 (1991).

[37] S. Donovan, Y. Kim, L. Degiorgi, M. Dressel, G. Grüner, and
W. Wonneberger, Electrodynamics of the spin-density-wave
ground state: Optical experiments on (TMTSF)2PF6, Phys. Rev.
B 49, 3363 (1994).

[38] N. Kida and M. Tonouchi, Spectroscopic evidence for a charge-
density-wave condensate in a charge-ordered manganite: Ob-
servation of a collective excitation mode in Pr0.7Ca0.3MnO3 by
using THz time-domain spectroscopy, Phys. Rev. B 66, 024401
(2002).

[39] M. Dressel, N. Drichko, and S. Kaiser, Collective charge-order
excitations, Physica C 470, S589 (2010).

[40] I. Vaskivskyi, I. A. Mihailovic, S. Brazovskii, J. Gospodaric,
T. Mertelj, D. Svetin, P. Sutar, and D. Mihailovic, Fast elec-
tronic resistance switching involving hidden charge density
wave states, Nat. Commun. 7, 11442 (2016).

165134-11

https://doi.org/10.1051/jphyscol:19816217
https://doi.org/10.1103/PhysRevB.26.5756
https://doi.org/10.1088/0022-3719/17/12/017
https://doi.org/10.1088/0953-8984/2/50/009
https://doi.org/10.1103/PhysRevB.68.155108
https://doi.org/10.1143/JPSJ.73.3331
https://doi.org/10.1103/PhysRevLett.109.086401
https://doi.org/10.1088/2053-1583/aa86de
https://doi.org/10.1038/s41598-017-11247-4
https://doi.org/10.1103/PhysRevB.99.115417
https://doi.org/10.1038/s41565-018-0063-9
https://doi.org/10.1103/PhysRevLett.121.196402
https://doi.org/10.1103/PhysRevB.59.7751
https://doi.org/10.1116/1.585257
https://doi.org/10.1103/PhysRevMaterials.4.025002
https://doi.org/10.1038/srep12421
https://doi.org/10.1063/1.1979470
https://doi.org/10.1103/RevModPhys.60.1129
https://doi.org/10.1016/0038-1098(74)90868-0
https://doi.org/10.1103/PhysRevLett.2.331
https://doi.org/10.1103/PhysRev.109.1398
https://doi.org/10.1103/PhysRevB.74.155115
https://doi.org/10.1016/j.ssc.2005.12.044
https://doi.org/10.1103/PhysRevB.77.144510
https://doi.org/10.21468/SciPostPhys.9.4.056
https://doi.org/10.1103/PhysRevB.77.205127
https://doi.org/10.1016/0921-4534(91)90771-P
https://doi.org/10.1103/PhysRevB.16.3443
https://doi.org/10.1103/PhysRevB.23.6813
https://doi.org/10.1016/0379-6779(93)90019-S
https://doi.org/10.1103/PhysRevB.44.7820
https://doi.org/10.1103/PhysRevB.49.3363
https://doi.org/10.1103/PhysRevB.66.024401
https://doi.org/10.1016/j.physc.2009.10.116
https://doi.org/10.1038/ncomms11442


XUANBO FENG et al. PHYSICAL REVIEW B 104, 165134 (2021)

[41] Y. Ma, H. C. Diaz, J. Avila, C. Chen, V. Kalappattil, R. Das,
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