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Nesting instability of gapless U(1) spin liquids with spinon Fermi pockets in two dimensions
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Quantum spin liquids are exotic states of matter that may be realized in frustrated quantum magnets and
feature fractionalized excitations and emergent gauge fields. Here we consider a gapless U(1) spin liquid with
spinon Fermi pockets in two spatial dimensions. Such a state appears to be the most promising candidate to
describe the exotic field-induced behavior observed in numerical simulations of the antiferromagnetic Kitaev
honeycomb model. A similar such state may also be responsible for the recently reported quantum oscillations
of the thermal conductivity in the field-induced quantum paramagnetic phase of α-RuCl3. We consider the regime
close to a Lifshitz transition, at which the spinon Fermi pockets shrink to small circles around high-symmetry
points in the Brillouin zone. By employing renormalization group and mean-field arguments, we demonstrate
that interactions lead to a gap opening in the spinon spectrum at low temperatures, which can be understood as a
nesting instability of the spinon Fermi surface. This leads to proliferation of monopole operators of the emergent
U(1) gauge field and confinement of spinons. While signatures of fractionalization may be observable at finite
temperatures, the gapless U(1) spin liquid state with nested spinon Fermi pockets is ultimately unstable at low
temperatures towards a conventional long-range-ordered ground state, such as a valence bond solid. Implications
for Kitaev materials in external magnetic fields are discussed.
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I. INTRODUCTION

Fractionalization is a fascinating many-body phenomenon
that can occur in strongly correlated electron systems. An
important example is given by frustrated quantum magnets
with localized electrons [1,2]. Magnetic insulators with siz-
able charge gaps are usually described in terms of effective
spin models. In conventional systems, the low-energy degrees
of freedom are spin waves with magnons as the associ-
ated collective quasiparticle excitations. In strongly frustrated
quantum magnets, however, the spin degrees of freedom can
fractionalize into novel quasiparticles that interact via emer-
gent gauge fields. A paradigmatic theoretical example of this
intriguing phenomenon is the Kitaev honeycomb model [3].
This model features a nearest-neighbor Ising-type interaction
between spins-1/2 on the honeycomb lattice, with a direction-
dependent spin quantization axis. It is this bond dependence
of the exchange interaction that leads to spin frustration [4].

A number of materials in the strong-spin-orbit-coupled
regime have been proposed to realize a sizable Kitaev ex-
change [5]. Among these, the d5 honeycomb magnets A2IrO3

with A = Li, Na [6–17], their hydrogen intercalated modifica-
tion H3LiIr2O6 [18–20], and, in particular, α-RuCl3 [21–34],
have received significant attention. Recent works have also
suggested cobalt-based d7 honeycomb magnets, such as
A2Co2TeO6 and A3Co2SbO6 [35–40], or BaCo2(AsO4)2

[41,42], as promising candidates for the realization of the
Kitaev model. In the above examples, the geometry of edge-
sharing octahedra surrounding the magnetic ions lead to a
suppression of the nearest-neighbor Heisenberg interaction,
leaving behind a dominant Kitaev exchange that stems from

Hund’s coupling mediated through the excited levels [4,43].
While all these materials (with the exception of H3LiIr2O6

[18]) display magnetic order at the lowest temperatures, var-
ious experimental findings suggest that they are located in
proximity to a genuine spin-liquid phase [8,10,27,28,44].
Moreover, in α-RuCl3, the long-range order can be sup-
pressed by a moderate in-plane magnetic field of around
7 T, giving way to an exotic quantum paramagnetic state.
The nature of this state has been a matter of intense debate
[45–62]. Two of the most astonishing experimental findings
in this state are a half-integer thermal Hall effect [63–65],
suggesting the presence of gapless Majorana edge modes
[66,67], and characteristic quantum oscillations in the longi-
tudinal heat conductivity at low temperatures in a finite field
range below 11 T [68], indicative of a field-induced spin-
liquid state with a spinon Fermi surface. While the thermal
Hall effect vanishes for field directions along Ru-Ru bonds
[64], quantum oscillations can be observed for all measured
in-plane field directions [68]. This peculiar feature of the
experiments has recently been rationalized within a model of
small isolated spinon Fermi pockets [69]. In all of the above-
mentioned materials, the Kitaev interaction is believed to be
ferromagnetic [17,24,31,70]. More recently, materials with a
dominant antiferromagnetic Kitaev interaction have also been
suggested. This includes the f -electron based honeycomb
magnets A2PrO3 with A = Li, Na [71], as well as potential
higher-spin realizations, such as A3Ni2XO6 with X = Bi, Sb
[72].

In the absence of an external magnetic field, the Kitaev
model is exactly solvable. In the isotropic limit, in which
the strengths of the Kitaev couplings are equal on all bonds,
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the low-energy excitations are described by gapless Majorana
fermions in the background of a gapped and static Z2 gauge
field. The system realizes a gapless Z2 quantum spin liquid.
Applying a small external magnetic field to the system along
a direction that does not happen to be perpendicular to one of
the cubic spin quantization axes, gaps out the Majorana spec-
trum and gives rise to non-Abelian anyon excitations above a
topologically ordered ground state [3]. A finite magnetic field
leads to fluctuations of the Z2 gauge field, spoiling the exact
solubility of the model. The phase diagram of the model as a
function of magnetic field has recently been vividly debated
[45]. As can be observed already on the semiclassical level
[73,74], the model with antiferromagnetic coupling features,
in comparison with the ferromagnetic case, a significantly
larger field range that could accommodate nontrivial field-
induced phases: In the ferromagnetic model, a very small
field on the order of just a few percent of the Kitaev cou-
pling is sufficient to drive a transition towards the high-field
conventional paramagnet that is adiabatically connected to
the fully polarized state [75]. In the antiferromagnetic model,
this conventional paramagnet is stabilized only at much larger
field strengths [73,74]. For moderate fields, numerical studies
have found indications for a novel field-induced intermediate
phase, which is distinct from both the low-field topologically
ordered phase and the high-field conventional paramagnet
[76,77]. Finite-size analyses of exact diagonalization results
on clusters with up to 32 sites [61,78] and density matrix
renormalization group calculations on cylinders with a cir-
cumference of up to five unit cells [77,79–81] suggest that an
exotic quantum paramagnet is realized in this intermediate-
field regime. A recent study that approaches the question
from the limit of the Kitaev-Gamma ladder has come to a
similar conclusion [82]. Among the candidate states that are in
proximity to the Kitaev spin liquid, the ones that appear most
consistent with the numerical data for entanglement entropy
[79,80] and static spin structure factor [81] are gapless U(1)
spin liquids with a finite spinon Fermi surface that is divided
into small pockets located around high-symmetry points in
the Brillouin zone. For a large field range, the pockets exhibit
perfect [81] or approximate [79] nesting, and degenerate to
perfectly nested isolated Fermi points upon increasing the
field strength towards the high-field transition, beyond which
the conventional paramagnetic state is stabilized. In this sce-
nario the U(1) spin liquid can be understood as a parent state,
out of which the non-Abelian Kitaev spin liquid at low fields
emerges from pair condensation of spinons for sufficiently
strong attractive interactions between equally charged spinons
[78]. The spinon condensate breaks the local U(1) symmetry
down to a Z2 subgroup and gaps out the gauge field via the
Higgs mechanism [83]. The conventional paramagnetic state
at high fields arises from a Lifshitz transition at a critical
field strength hc, at which the Fermi pockets shrink to iso-
lated Fermi points located at high-symmetry wave vectors
in the Brillouin zone. For larger field strengths h > hc, the
spinon spectrum acquires a full gap, leading to proliferation of
monopoles of the compact U(1) gauge field and confinement
of spinons [84,85], and resulting in a trivially gapped phase.
An example with a particlelike pocket at the center of the
hexagonal Brillouin zone and two holelike pockets near its
corners is illustrated in Fig. 1. We note that while the Kitaev
interaction in α-RuCl3 is likely ferromagnetic [17,24,31,70],

FIG. 1. (a) Schematic spinon band structure of U(1) spin liquid
state with a particlelike pocket around the center � of the hexagonal
Brillouin zone and holelike pockets around its corners K and K′,
proposed as effective description of the field-induced exotic quan-
tum paramagnet occurring for intermediate field strengths h < hc

below the high-field transition in the antiferromagnetic Kitaev model
[79,80]. The Fermi level is indicated as dashed line. (b) Increasing
the field strength shifts the particlelike (holelike) band(s) up (down)
in energy, such that for h = hc, the bands just touch the Fermi level
at isolated points K, K′, and �. (c) In the high-field phase, the spinon
spectrum is gapped, leading to proliferation of monopoles of the
compact U(1) gauge field and confinement of spinons. This describes
the conventional paramagnet that is adiabatically connected to the
polarized state.

a dual version [86] of the putative field-induced U(1) spin
liquid can also appear in models relevant for this material,
with a sizable ferromagnetic Kitaev coupling and additional
Heisenberg and off-diagonal Gamma interactions [61].

In this work we investigate the stability of gapless U(1)
spin liquids with nested spinon Fermi pockets in two spatial
dimensions at low temperatures. In order to gain theoretical
control within a field-theoretical analysis, we focus on the
regime close to a Lifshitz transition, in the vicinity of which
the Fermi pockets are small, such as in Fig. 1(b). We show
that fluctuations of the gapless U(1) gauge field mediate a
repulsive interaction between equally charged spinons, lead-
ing to a suppression of spinon pairing. As a consequence,
weak attractive interactions are irrelevant in the renormal-
ization group (RG) sense and a pairing instability can only
occur at sufficiently strong attractive interactions. This as-
pect is similar to the situation in a U(1) spin liquid with an
extended and simply connected spinon Fermi surface [83].
However, in contrast to this latter situation, in the present case,
the nesting of the Fermi pockets, see Fig. 2, renders certain
repulsive spinon interactions RG relevant upon the inclusion

FIG. 2. (a) Nested spinon Fermi surface of U(1) spin liquid state
for h < hc with particlelike and holelike pockets around � and K,
K′ points in the hexagonal Brillouin zone, depicted as blue and red
circles, respectively. The nesting vector Qnesting = K is indicated as a
green arrow. (b) Upon approaching the Lifshitz transition at h = hc,
the spinon Fermi pockets shrink to isolated spinon Fermi points at �

and K, K′, depicted as blue and red dots, respectively.
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of gauge-field fluctuations. This leads to a full gap opening
in the spinon spectrum and an instability of the U(1) spin
liquid state at low temperatures. We argue that the resulting
new ground state is characterized by confinement of spinons
and realizes a conventional long-range-ordered state, such as a
valence bond solid (VBS) [87–90]. The scenario that we pro-
pose for U(1) spin liquids with nested spinon Fermi pockets
is similar to the situation of electronic quasiparticles in iron
pnictides and chalcogenides [91]. The normal state of this
class of effectively two-dimensional materials is characterized
by isolated Fermi pockets around high-symmetry points in the
square Brillouin zone, and features approximate nesting. In-
terpocket interactions can drive nematic, magnetic, and exotic
superconducting instabilities of the metallic state [92]. This
can be understood already in the idealized limit of perfect
nesting, in which the Fermi pockets shrink to isolated Fermi
points at which the electron and hole bands just touch the
Fermi level [93,94]. The particular type of instability depends
on microscopic parameters, such as doping level, sign and
relative strength of interactions, shape of Fermi pockets, as
well as temperature. In the present case of nested spinon Fermi
pockets, the main difference to the situation in the iron-based
materials is the emergence of the (2 + 1)-dimensional U(1)
gauge field, which, as we show, further enhances repulsive
interpocket interactions between equally charged Fermi ex-
citations and suppresses pairing instabilities.

The remainder of this work is organized as follows: In
Sec. II we introduce two minimal effective models describ-
ing U(1) spin liquid states with spinon Fermi pockets in the
limit of perfect nesting. Section III contains a discussion of
the RG flow of our models, revealing that gauge fluctuations
effectively give rise to repulsive interpocket interactions and
ultimately render the gapless spin liquid state unstable at low
temperatures. In Sec IV we argue that the low-temperature
phase is characterized by a gapped spinon spectrum. Prolif-
eration of monopole operators of the compact U(1) gauge
field leads to confinement of spinons and a conventional
long-range-ordered ground state, the properties of which are
analyzed in Sec. V. We present our conclusions, together with
some comments on effects beyond our minimal modeling and
a discussion of implications of our results for Kitaev mate-
rials in a magnetic field, in Sec. VI. The Appendix contains
technical details of the RG calculation.

II. EFFECTIVE MODELS

The spinons discussed in this work can be thought of as
fermionic degrees of freedom that arise from fractionalization
of spin-1/2 operators Si at lattice sites i. Formally they can be
understood from an Abrikosov decomposition [95]

Si = 1
2�

†
i σ�i , (1)

where �i = (�i↑, �i↓)� and �
†
i = (�†

i↑, �
†
i↓) are two-

component spinors representing the spinon degree of freedom
and σ is the vector of Pauli matrices. This construction obeys
the usual SU(2) spin algebra provided that the spinon fields
satisfy canonical anticommutation relations. In general, how-

ever, the construction introduces fictitious states in which the
particle number �

†
i �i at a given site i is zero or two, thereby

enlarging the local Hilbert space dimension from two to four.
These unphysical states can be excluded by applying the half-
filling constraint

�
†
i �i ≡ 1 (2)

at each lattice site i, which projects the four-dimensional
local Hilbert space to the two-dimensional singly occupied
subspace. The decomposition in Eq. (1) and the constraint in
Eq. (2) feature an explicit invariance under local U(1) gauge
transformations �i �→ eiλi�i. The full gauge redundancy is
actually SU(2) [96,97].

We assume a situation as in the Kitaev model in an ex-
ternal magnetic field, in which the degeneracy between up
and down components of � is lifted by strong spin-orbit
coupling and finite field. Within a mean-field picture, this
leads to four generically nondegenerate spinon bands on a
lattice with two-site unit cell, such as the honeycomb lattice
[98]. Which ones of these spinon bands cross the Fermi level,
and where in the Brillouin zone, depends on the symmetry
of the system and the microscopic parameters of the original
spin model. In this work we consider the situation in which
there are small nondegenerate particlelike and holelike spinon
Fermi pockets around isolated points in the Brillouin zone.
This implies that two of the four bands are fully gapped and
do not contribute to the low-energy physics. We furthermore
assume that Luttinger’s theorem [99] holds for the spinon
bands. The total area enclosed by the particlelike pockets
must then be equal to the total area enclosed by the holelike
pockets. In the following we will explicitly study two minimal
effective models describing such a situation. As a warm-up,
we consider a simple two-pocket model, which has been sug-
gested as an effective low-energy description for a quadruple
point separating the gapped non-Abelian and Abelian Z2 spin
liquids, the gapless U(1) spin liquid, and the high-field para-
magnetic phase in the anisotropic Kitaev honeycomb model
in an external magnetic field along the [111] direction [79].
We then investigate a three-pocket model with one particlelike
spinon band and two holelike spinon bands near the Fermi
level. Such a model was proposed as an effective low-energy
theory for the putative gapless U(1) spin liquid state in the
isotropic Kitaev model with equal antiferromagnetic coupling
strengths on all bonds in a [111] field [79,80]. A discussion of
more elaborate models, including the four-pocket model that
represents an alternative low-energy candidate theory for the
same situation [81], as well as of effects beyond the limit of
perfect nesting, will be postponed to Sec. VI.

A. Two-pocket model

The spinon Fermi surface in the two-pocket model consists
of one particlelike pocket and one holelike pocket in the
Brillouin zone. In the realization proposed for the anisotropic
Kitaev model [79], the particlelike pocket is located around
the zone center �, while the holelike pocket resides around
the midpoint M of one of the zone edges. A minimal de-
scription of such a situation is given by the continuum action
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S2 = ∫
d2xdτL2 with

L2 = ψ
†
0

[
∂τ − ieaτ − m1

m0
μ̃ + (−i∇ − ga)2

2m0

]
ψ0

+ψ
†
1

[
∂τ − ieaτ + μ̃ − (−i∇ − ga)2

2m1

]
ψ1

+ 1

4
fμν f μν + uψ

†
0 ψ0 ψ

†
1 ψ1 , (3)

where τ denotes imaginary time, and ψ0 and ψ1 are Grass-
mann fields describing spinon excitations in the particlelike
and holelike pockets, respectively. The parameters m0 and
m1 denote the corresponding effective band masses, which
we assume to be isotropic within each pocket for simplicity.
The spinons are minimally coupled to the components aτ

and a = (ax, ay) of the U(1) gauge field, with electric and
magnetic couplings e and g, respectively. In the above and the
following equations, the summation convention over repeated
space-time indices μ, ν ∈ {0, 1, 2} is assumed. Importantly,
the model lacks Lorentz invariance, such that the electric
scalar potential aτ and the magnetic vector potential a, are not
related by symmetry and the electric and magnetic gauge cou-
plings e and g are in general independent. The antisymmetric
real field strength tensor fμν is related to aτ and a in the usual
way,

( fμν ) =
⎛
⎝ 0 ∂τ ax−∂xaτ

c
∂τ ay−∂yaτ

c
∂xaτ −∂τ ax

c 0 ∂xay − ∂yax
∂yaτ −∂τ ay

c ∂yax − ∂xay 0

⎞
⎠, (4)

where c > 0 is the speed of the “artificial light" [100]. As
we demonstrate below, the coupling of gapless spinons to the
gapless gauge field generates a local four-fermion interaction
of the form ψ

†
0 ψ0 ψ

†
1 ψ1 , which has therefore been included

in Eq. (3) from the outset, with coupling parameter u. It
can be understood as a particlehole interpocket interaction
between the particle density ψ

†
0 ψ0 and the hole density ψ

†
1 ψ1 ,

with u > 0 (u < 0) corresponding to attraction (repulsion)
between oppositely charged particles and holes. The global
chemical potential is fixed to comply with the half-filling
constraint, Eq. (2). The parameter μ̃ can be understood as a
local chemical potential, allowing one to tune the sizes of the
spinon Fermi pockets present for μ̃ > 0 in the noninteracting
limit. The prefactor m1/m0 in the μ̃ term in the first line of
Eq. (3) ensures that particlelike and holelike pockets enclose
equal areas, as required by Luttinger’s theorem for half-filling.
Decreasing μ̃ shifts the particlelike band up in energy and
the holelike band down, leading to a simultaneous shrinking
of both pockets. For μ̃ = 0, the Fermi pockets degenerate
to isolated Fermi points. Eventually, for μ̃ < 0, the spinon
spectrum is fully gapped. In Eq. (3) we have assumed that the
U(1) gauge field is noncompact, a property that is emergent in
the case of a finite spinon Fermi surface [101], i.e., for μ̃ > 0.
However, when the spinon spectrum is gapped out, magnetic
monopoles of the gauge field start to proliferate and lead to
a gap in the gauge-field excitation spectrum and the confine-
ment of spinons [84,85,102]. This will be discussed in Sec. V.
The physics of magnetic monopoles in the case of μ̃ = 0
requires a more detailed discussion. First of all, we note that
previous works on monopoles in related (2+1)-dimensional

gauge field theories [101–108] suggest an intimate relation-
ship between the monopole scaling dimension and the spinon
density of states near the Fermi level: Typically, the larger the
density of states, the larger the scaling dimension of the lowest
monopole operator. This general rule of thumb is consistent
with the finding that monopoles are irrelevant in the case of a
finite Fermi surface [101] and relevant for a gapped spinon
spectrum [84,85]. The marginal case occurs for Dirac spin
liquids, in which case the single-particle density of states
vanishes linearly at the Fermi level. For a large number of
fermion flavors, all monopole operators are irrelevant [102],
while for a small number of flavors below a certain “critical"
flavor number, the lowest monopole operator becomes rele-
vant [103,104]. For μ̃ = 0 in our models, the single-particle
density of states remains finite at the Fermi level, and appear-
ing thus above the critical density of states, suggesting that the
irrelevance of monopoles for μ > 0 remains true in the limit
μ → 0, as long as the spinon spectrum remains gapless.

In the following sections we consider the regime of small
nonnegative μ̃, in which the finite extents of the Fermi pockets
can be neglected. This corresponds to the limit of perfect
nesting, which is sufficient to understand the behavior of
the system at energy scales small compared to the spinon
bandwidth, but above the scale set by μ̃ [93,94]. Importantly,
this energy window allows a fully controlled RG approach,
provided that the gauge field can effectively be considered
as noncompact. For small μ̃, the effective band dispersion
is ε(0)

q = +q2/(2m0) and ε(1)
q = −q2/(2m1), where q denotes

the deviation from the respective Fermi point in the Brillouin
zone. At tree level, frequencies and momenta hence scale as
ω ∝ qz with dynamical exponent z = 2. The power-counting
inverse-length dimensions of the fields are consequently

[ψ0] = [ψ1] = d

2
, [aτ ] = d + 2

2
, [a] = d

2
, (5)

and those of the couplings become

[e] = [g] = 2 − d

2
, [u] = 2 − d. (6)

Importantly, all three couplings are simultaneously marginal
in the physical dimension d = 2, enabling a controlled pertur-
bative analysis. Since z = 2 at tree level, the speed of artificial
light c has inverse length dimension [c] = 1, implying that
c is a relevant parameter and needs to be taken into account
at all orders in the loop expansion. One of the band masses,
say m0, can be absorbed by a rescaling of the fermion fields,
leaving behind a single dimensionless mass imbalance ratio
m1/m0. As an aside, we note that an alternative RG scheme
that fixes the dynamical exponent z = 1, such that c is a
marginal parameter, is in principle possible. Such a scheme,
however, would render the gauge couplings relevant at tree
level, inhibiting a controlled perturbative analysis. Within our
scheme, the Lagrangian (3) contains all marginal and relevant
terms compatible with the field content and the symmetries of
the model for small μ̃ � 0, and as such represents an appropri-
ate starting point for the RG analysis. For sizable μ̃ > 0, when
the spinon Fermi pockets are large, other interactions, not
present in Eq. (3), could become relevant and might change
the low-energy physics. This is discussed on a qualitative level
in Sec. VI.
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B. Three-pocket model

The isotropic Kitaev honeycomb model in a [111] mag-
netic field features a C∗

3 symmetry of 120◦ spin rotation about
the field axis, combined with a 120◦ lattice rotation about one
site of the honeycomb lattice [45]. A minimal Fermi-pocket
model consistent with this symmetry and the half-filling con-
straint, Eq. (2), comprises at least three Fermi pockets, such
as, e.g., a particlelike pocket around the center � of the
Brillouin zone and two holelike pockets around its corners
K and K′. Such a model was indeed suggested earlier as a
candidate effective theory for the intermediate state observed
in numerical studies of the antiferromagnetic Kitaev model in
a [111] magnetic field [79,80]. It is given by the continuum
action S3 = ∫

d2xdτL3 with

L3 = ψ
†
0

[
∂τ − ieaτ − 2m1

m0
μ̃ + (−i∇ − ga)2

2m0

]
ψ0

+ψ
†
1

[
∂τ − ieaτ + μ̃ − (−i∇ − ga)2

2m1

]
ψ1

+ψ
†
2

[
∂τ − ieaτ + μ̃ − (−i∇ − ga)2

2m1

]
ψ2

+ 1

4
fμν f μν + u(ψ†

0 ψ0 ψ
†
1 ψ1 + ψ

†
0 ψ0 ψ

†
2 ψ2 )

+ ũ ψ
†
1 ψ1 ψ

†
2 ψ2 , (7)

where ψ0 again describes spinon excitations near the parti-
clelike pocket around the � point, while ψ1 and ψ2 describe
spinon excitations near the holelike pockets around the K and
K′ points, respectively. Note that ψ1 and ψ2 are connected
by inversion symmetry on the honeycomb lattice, but ψ0 and
ψ1,2 are not symmetry related. As a consequence, in addition
to the particle-hole interpocket interaction parametrized by u,
an independent hole-hole interpocket interaction parametrized
by the coupling ũ is allowed by symmetry and included in
Eq. (7). Importantly, ũ > 0 (ũ < 0) corresponds to attraction
(repulsion) between equally charged holes. As in Eq. (3), the
parameter μ̃ allows one to tune the sizes of the Fermi pockets,
with the prefactor 2m1/m0 in the first line of Eq. (7) again
chosen to comply with Luttinger’s theorem for half-filling.
The 120◦ rotational symmetry on the honeycomb lattice dic-
tates that the effective band masses m1 and m0 are isotropic at
the � and K points, respectively. In the proposed realization
in the antiferromagnetic Kitaev model in a [111] magnetic
field [79,80], μ̃ can be understood as a tuning parameter for
the Lifshitz transition at hc, with μ̃ ∝ hc − h. For μ̃ > 0, the
particlelike band corresponding to ψ0 and the two holelike
bands corresponding to ψ1 and ψ2 cross the Fermi level in
circles centered around � and K, K′, respectively. This corre-
sponds to the proposed U(1) spin liquid state for h < hc, and is
illustrated in Figs. 1(a) and 2(a). For μ̃ = 0, the Fermi pockets
shrink to isolated Fermi points at � and K, K′, corresponding
to the proposed Lifshitz transition at h = hc, see Figs. 1(b)
and 2(b). For μ̃ < 0, the spinon spectrum is fully gapped
[Fig. 1(c)]. As monopoles of the compact U(1) gauge field
proliferate in this situation [84,85], the ground state in this
case is conventional and expected to be adiabatically con-
nected to the high-field polarized state [78].

In what follows, we again focus on the regime of small
nonnegative μ̃, in which a possible noncompactness of the
gauge field is expected to be irrelevant as long as the spinon
spectrum remains gapless [101], and the finite extents of the
Fermi pockets can be neglected. The scaling dimensions of
the gauge couplings e and g and the particle-hole interpocket
coupling u are then the same as in the two-pocket model,
Eq. (6), and similarly the hole-hole interpocket coupling ũ
has dimension [ũ] = 2 − d . Again, this allows a controlled
perturbative RG analysis.

III. RENORMALIZATION GROUP FLOW

In this section we perform a momentum-shell RG analysis
at one-loop order, allowing us to study the fate of the U(1)
spin liquid state with nested spinon Fermi pockets at low
temperatures.

A. Two-pocket model

We start by discussing the two-pocket model defined in
Eq. (3) for vanishing renormalized μ̃ = 0. We integrate out
the fast modes with momenta in the shell p ∈ (�/b,�), where
� is the ultraviolet cutoff, and all frequencies ω ∈ (−∞,∞).
Evaluating the self-energy and vertex diagrams depicted in
Figs. 3(a)–3(n) in Landau gauge leads to the flow equations
for mass ratio m1/m0, speed of light c, and gauge couplings e
and g as

de

d ln b
= 1

2
F (g/e, c)e3, (8)

dg

d ln b
= 1

2
F (g/e, c)e2g, (9)

dc

d ln b
= [1 − F (g/e, c)e2]c, (10)

d ( m1
m0

)

d ln b
= [F (g/e, c) − F (g/e, cm1/m0)]e2 m1

m0
, (11)

where we have rescaled (e, g) �→ √
2πm0(e, g) and c �→

�c/m0 in fixed d = 2 spatial dimensions. In the above flow
equations, F (g/e, c) is a second-order polynomial in the
gauge coupling ratio g/e and a rational function in the speed
of light c. For large c � 1, we have F (g/e, c) = 1 − g/e −
1
2 (g/e)2 + O(1/c). Similarly, for general finite c > 0, we have
F (g/e, c) > 0 [F (g/e, c) < 0] for (g/e)2 � 1 [(g/e)2 � 1].
Details of the renormalization procedure and a full expression
of the function F are given in the Appendix.

Several comments on the above flow equations are in order:
(1) The flow equations for e, g, c, and m1/m0 are indepen-
dent of the particle-hole interpocket coupling u. While the
renormalized values of these parameters are important for
the flow of u, the latter does not couple back into the flow
of the former. This is analogous to the situation in (2 +
1)-dimensional quantum electrodynamics with short-range in-
teractions [109–114]. We can therefore discuss the flow of e,
g, c, and m1/m0 first and postpone the discussion of the flow of
u until later. (2) Similarly, the flow equations for e, g, and c are
independent of the mass ratio m1/m0. This can be understood
as a consequence of the fact that diagrams involving closed
particle-hole loops, such as those displayed in Figs. 3(d)–3(g),
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(c)(a)

(h) (i) (j) (k)

(b) (d) (e) (f) (g)

(l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

FIG. 3. Diagrammatic representation of fermion (a)–(c) and gauge-field (d)–(e) self-energies, as well as vertex corrections for gauge (f)–(n)
and interpocket (o)–(u) couplings, at the one-loop order. Solid and wavy inner lines denote fermion and gauge-field propagators, respectively.
Diagrams (b) and (c) are independent of external momentum and therefore yield no contribution to the anomalous dimensions. Diagrams
(d)–(g) involve closed particle-hole loops, and thus vanish identically in our models. The gauge-field anomalous dimensions are therefore
identically zero at the one-loop order. Diagrams (h)–(n) yield finite contributions that are related by means of Ward identities to the fermion
anomalous dimensions arising from (a). In the two-pocket model, the particle-particle scattering diagram (o) vanishes. In the three-pocket
model, it contributes only to the flow of ũ, while the particle-hole scattering diagram (p) contributes only to the flow of u. The flows of u and ũ
therefore do not mix. (q) and (s) Representative diagrams for classes of six and two, respectively, triangle diagrams that contribute to the flows
of the interpocket interactions.

vanish in our models. This is because the spinon band struc-
tures of our models do not allow particle-hole fluctuations of
the same flavor. (3) At the present loop order, e and g have
the same scaling dimension, such that their ratio g/e is an
RG invariant. This again is a consequence of the vanishing
of closed particle-hole loops, together with the Ward identity
associated with the local U(1) symmetry.

As a first step, let us discuss the RG flow of the gauge
couplings e and g, together with the flow of c, all of which
are independent of the mass ratio m1/m0. Since e and g are
marginal at tree level, their relevance or not upon the inclusion
of loop fluctuations may depend on the initial values of the
different parameters. In any case, however, e and g are either
both relevant or both irrelevant, as their ratio remains constant.
Due to the structure of F , we find that e and g are irrelevant
(relevant) for (g/e)2 � 1 [(g/e)2 � 1]. There are two critical
ratios of (g/e)2, for which e and g remain marginal. The values
of these critical ratios depend on c. Figures 4(a) and 4(b) show
representative flow diagrams in the e-g plane for two fixed
values of c, illustrating the two gauge-coupling-irrelevant and
gauge-coupling-relevant sectors, respectively, as well as the
fact that the slope g/e remains constant under the RG flow.
The speed of artificial light c is a relevant parameter and
initially increases under the RG flow. In the gauge-coupling-
irrelevant sector for large ratios (g/e) � 1, it flows all the way
up to infinity, while in the gauge-coupling-relevant sector for
(g/e)2 � 1 it converges to a finite infrared value c ∈ (0,∞).
The value of c again depends on the ratio g/e and satisfies
F (g/e, c) = 0. This is illustrated in Figs. 4(c) and 4(d), which
show the RG flow projected onto the e-c plane for two rep-
resentative fixed ratios g/e in the gauge-coupling-irrelevant
and gauge-coupling-relevant sectors, respectively. The fact
that the speed of light’s infrared value c is finite in the
gauge-coupling-relevant sector near (g/e)2 � 1 has a crucial
consequence: As can be seen from Eq. (10), a finite c requires
that F (g/e, c)e2 → 1 in the infrared limit. In this limit, the
flows of e and g [Eqs. (8) and (9)] then effectively become
d (e, g)/(d ln b) � 1

2 (e, g), which means that e and g remain

finite at all finite RG times. There is therefore no divergence
of e and g any finite RG time in neither the gauge-coupling-
irrelevant nor the gauge-coupling-relevant sector.

How does the flow of e, g, and c affect the mass ratio
m1/m0? As readily observable in Eq. (11), the flow of m1/m0

vanishes when the particle and hole bands have equal ef-
fective masses, (m1/m0) = 1. We find that this equal-mass
subspace is stable in the sense that m1/m0 flows to one for
all initial finite values of e, g, and c. This is illustrated in
Figs. 4(e) and 4(f), which show the RG flow projected onto
the e- m1

m0
plane again for the two representative fixed ratios g/e

in the gauge-coupling-irrelevant and gauge-coupling-relevant
sectors, respectively. In order to investigate the stability of the
U(1) spin liquid state in the following, we may therefore focus
on the equal-mass subspace and set the mass ratio to its stable
infrared value (m1/m0) = 1.

Let us now discuss how the gauge couplings e and g and
the speed of artificial light c influence the flow of the particle-
hole interpocket interaction parametrized by u. Evaluating the
diagrams shown in Figs. 3(o)–3(u) for fixed m1/m0 = 1 leads
to the flow equation

du

d ln b
= u2 + G(g/e, c)e2u + H (g/e, c)e4, (12)

where we have rescaled u �→ 2πu/m0, and G(g/e, c) and
H (g/e, c) are second-order and fourth-order, respectively,
polynomials in g/e and rational functions in c. For large
c � 1, they satisfy G(g/e, c) = 2c2 − 2 + 2g/e + 1

2 (g/e)2 +
O(1/c) and H (g/e, c) = c4 + (−1 + g/e)c2 + O(c). Simi-
larly, for general finite c > 0, we have G(g/e, c) > 0 and
H (g/e, c) > 0 in both limits (g/e)2 � 1 and (g/e)2 � 1. Full
forms of G(g/e, c) and H (g/e, c) are given in the Appendix.
We note that the G term in Eq. (12) arises from the triangle
diagram in Fig. 3(q) and is therefore quadratic in e and g and
linear in u, while the H term results from the diagrams in
Figs. 3(r)–3(u) and is quartic in e and g, but independent of
u. These latter diagrams therefore generate a finite particle-
hole interpocket coupling even in the absence of an initial

165133-6



NESTING INSTABILITY OF GAPLESS U(1) SPIN … PHYSICAL REVIEW B 104, 165133 (2021)

FIG. 4. RG flow of gauge couplings e and g, speed of light c, and mass ratio m1/m0, for both the two-pocket and three-pocket models.
Arrows denote flow towards infrared. (a) Flow diagram in e-g plane for fixed c = ∞. The separatrices (purple lines) divide the plane into
distinct sectors, for which both e and g are relevant (red arrows) and irrelevant (blue arrows), respectively. The Gaussian fixed point e = g = 0
is marked as a black dot. (b) Same as (a), but for fixed c = 1, showing that the slope of the separatrices change as a function of c > 0,
but the qualitative behavior for (g/e)2 � 1 and (g/e) � 1 remains unchanged. (c) Flow diagram in e-c plane for fixed ratio g/e = 1 in the
gauge-coupling-irrelevant sector [blue sector in (a) and (b)], showing that c flows to infinity in this sector. (d) Same as (c), but for g/e = 1/3
in the gauge-coupling-relevant sector [red sector in (a) and (b)], showing that c initially increases, but eventually flows to a finite value
c ∈ (0,∞) in the deep infrared. (e) Flow diagram in e- m1

m0
plane for fixed ratio g/e = 1 in the gauge-coupling-irrelevant sector [blue sector

in (a) and (b)], showing that the mass imbalance is irrelevant, in the sense that m1/m0 flows to one. (f) Same as (e), but for g/e = 1/3 in the
gauge-coupling-relevant sector [red sector in (a) and (b)], showing that the mass imbalance is also irrelevant in this sector.

u at the microscopic scale. Importantly, the contribution is
positive, leading to a repulsive interpocket interaction between
equally charged spinon excitations (or, equivalently, an at-
tractive interpocket interaction between oppositely charged
excitations), in qualitative agreement with the situation of a
simply connected spinon Fermi surface [83]. This has impor-
tant consequences for the stability of the U(1) spin liquid state
with spinon Fermi pockets, as we see now.

Consider first the limit e = g = 0, which corresponds to
the Gaussian fixed point in the gauge sector. In this limit,
the flow of u is simply du

d ln b = u2, which has a unique fixed
point for u = 0. The interpocket coupling u is marginally
relevant (irrelevant) for u > 0 (u < 0). In fact, starting the
flow for arbitrarily small u > 0, we find that u diverges at a
finite RG time. This runaway flow corresponds to a divergent
susceptibility in the channel associated with the particle-hole
interpocket scattering and is to be understood as the onset of
spontaneous symmetry breaking [93,94]. Starting the flow for
u < 0, however, we find that u flows towards the Gaussian
fixed point, corresponding to a stable Fermi-liquidlike phase.
We note that there is no Cooper pairing instability for attrac-
tive interactions [83] as a consequence of the nondegeneracy

of the spinon bands and the fact that we focus on infinitesi-
mal Fermi-pocket sizes. For e = g = 0, the stability of nested
Fermi pockets in our simple model hence depends on the
initial sign of u.

This situation drastically changes upon the inclusion of
gauge fluctuations for e �= 0 or g �= 0. As a finite gauge cou-
pling induces a repulsive interpocket interaction u > 0, the
Gaussian fixed point becomes unstable in the presence of the
U(1) gauge field. Integrating out numerically the RG flow in
the full parameter space spanned by the e, g, c, and u, we
always find, for arbitrary initial values of u, a divergence of
the interpocket coupling at finite RG time. This divergence
occurs not only in the gauge-coupling-relevant regime, but
also in the gauge-coupling-irrelevant regime, in which e and g
flow marginally to zero. The latter can be understood analyt-
ically with the help of Eq. (12) as follows: As both G(g/e, c)
and H (g/e, c) are positive for all g/e and c > 0, any real
zeros of the flow of u for fixed e and c can only occur for
negative u. For large c � 1, these pseudo fixed points are
located at u � −e2c2 + O(c). As c flows faster to infinity
than e to zero in the gauge-coupling-irrelevant sector, any
pseudo fixed point is shifted towards u → −∞ during the
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FIG. 5. RG flow of interpocket interactions u and ũ in the three-pocket model for m1/m0 = 1. Arrows denote flow towards infrared.
(a) Flow diagram in u-ũ plane for fixed e = g = 0, illustrating the Gaussian fixed point at (u, ũ) = (0, 0), and the division of parameter
space into three distinct regions: For u < 0 and ũ > 0, both couplings are marginally irrelevant. For u > 0 and ũ > −u, there is a runaway
flow towards u → ∞ and ũ/u → 0, while for ũ < 0 and u < −ũ, there is a runaway flow towards ũ → −∞ and u/ũ → 0. (b) Integrated
flow in full parameter space spanned by (e, g, c, u, ũ) and projected onto the u-ũ plane, in the gauge-coupling-irrelevant sector [blue sector in
Figs. 4(a) and 4(b)]. Here we have chosen fixed initial values of (e, g, c) = (0.01, 0.01, 1) and different initial values of (u, ũ) along the dashed
line depicted in the figure. Despite the marginal irrelevance of e and g, there is a runaway flow for all initial values of u and ũ. The thick purple
curve separates the upper right subsector, in which u → ∞ and ũ/u → 0 (heavy blue), from the lower left subsector, in which ũ → −∞ and
u/ũ → 0 in the infrared limit (light blue). (c) Same as (b), but in the gauge-coupling-relevant sector [red sector in Figs. 4(a) and 4(b)] for fixed
initial values of (e, g, c) = (0.03, 0.01, 1). Again, there is a runaway flow for all initial values of u and ũ, with leading divergence u → +∞
(heavy red) or ũ → −∞ (light red).

flow of e and c, leaving behind only the runaway flow towards
positive infinity. Importantly, the divergence of the flow to-
wards u → ∞ for all initial values of u and nonzero e and/or
g occurs at finite RG time, and should hence be associated
with the onset of spontaneous symmetry breaking [93,94]. In
the full parameter space spanned by e, g, c, m1/m0, and u,
the U(1) spin liquid state is therefore ultimately unstable at
low energy. Similar gauge-coupling-driven instabilities have
been discussed in a number of relativistic [109–121] and
nonrelativistic [122,123] gauge theories with matter content
in two and three spatial dimensions. We note, however, in
contrast to these previous works, the instability here, at least
for the gauge-coupling-irrelevant case, does not occur as a
consequence of a fixed-point annihilation mechanism, but
rather should be understood to originate from a running off
of the pseudo fixed points to infinity negative coupling [124].
Properties of the resulting new ground state will be discussed
in Secs. IV and V.

B. Three-pocket model

In the previous subsection we have seen that the U(1) spin
liquid state with two perfectly nested spinon Fermi pockets is
ultimately unstable at low temperatures due to a divergence
of the particle-hole interpocket interaction at finite RG time.
We now show that a similar instability also occurs in the
three-pocket model defined in Eq. (7) with two independent
interpocket interactions, parametrized by u and ũ.

To begin with, we note that the flow equations for e,
g, c, and m1/m0 in the three-pocket model are identical to
those of the two-pocket model, Eqs. (8)–(11). This is another
consequence of the fact that Feynman diagrams with closed
particle-hole loops vanish in the present type of models.
Hence, the previous discussion of the flows of e, g, c, and
m1/m0, as well as the flow diagrams depicted in Fig. 4, fully

apply also to the present three-pocket model. The roles of the
two different interpocket interactions parametrized by u and
ũ remain to be examined. Evaluating the corresponding dia-
grams, shown in Figs. 3(o)–3(u), for the three-pocket model,
leads to the flow equations

du

d ln b
= u2 + G(g/e, c)e2u + H (g/e, c)e4, (13)

dũ

d ln b
= −ũ2 − G̃(g/e, c)e2ũ − H (g/e, c)e4, (14)

where we have rescaled (u, ũ) �→ 2π (u, ũ)/m0. The functions
G(g/e, c) and H (g/e, c) are the same as those in Eq. (12),
while G̃(g/e, c) is another second-order polynomial in g/e
and rational function in c, with G̃(g/e, c) = 2c2 − 1

2 (g/e)2 +
O(1/c) for c � 1. An explicit expression of G̃(g/e, c) for
general c > 0 is given in the Appendix.

The flow in the u-ũ plane is depicted for different initial
values of the gauge couplings e and g in Fig. 5. For vanishing
gauge couplings, e = g = 0, there is a Gaussian fixed point at
(u, ũ) = (0, 0), which attracts the flow in the region u < 0
and ũ > 0, see Fig. 5(a). For u > 0 and ũ > −u, there is a run-
away flow towards u → +∞ and ũ/u → 0. In the remaining
region for ũ < 0 and u < −ũ, on the other hand, there is a run-
away flow towards ũ → −∞ and u/ũ → 0. Figure 5(b) shows
the numerically integrated flow in the five-dimensional param-
eter space spanned by e, g, c, u, and ũ, projected onto the u-ũ
plane, using initial values for e and g in the gauge-coupling-
irrelevant sector. As in the two-pocket model, there is no fixed
point remaining at any finite u and ũ, destabilizing the region
of u < 0 and ũ > 0, and leaving behind the runaway flow
towards u → ∞. We have explicitly verified this picture by
integrating out the flow for various sets of initial parameter
values, confirming that the runaway flow occurs for arbitrary
initial values of u and ũ always at finite RG times, even
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when e and g flow to zero in the gauge-coupling-irrelevant
sector. In analogy to the two-pocket model, we interpret this
destabilization to arise from a running-off of the pseudo fixed
points towards u → −∞, and it signals the onset of spon-
taneous symmetry breaking. A similar destabilization occurs
for initial values of e and g in the gauge-coupling-relevant
sector, as depicted in Fig. 5(c). Again, the fact that the gauge
couplings are finite implies the absence of any fixed point
at finite couplings in the u-ũ plane and the divergence of an
interpocket coupling at finite RG time.

IV. SPINON GAP OPENING

The RG analysis discussed in the previous section shows
that the U(1) spin liquid state with nested Fermi pockets is
unstable due to a divergent interpocket coupling at finite RG
times. There is a corresponding nesting vector associated with
each interpocket interaction, which depends on the location
of the Fermi pockets within the Brillouin zone in the par-
ticular microscopic realization of the model. In the proposed
realization of the two-pocket model for the quadruple point
in the phase diagram of the anisotropic Kitaev model in
a [111] magnetic field [79], the coupling u connects states
separated by the nesting vector Qnesting = M. In this real-
ization, a divergent u therefore corresponds to a divergent
susceptibility at wave vector M and appears to favor a long-
range-ordered ground state with ordering wave vector M.
Such a state doubles the real-space unit-cell size in the di-
rection of M, and hence breaks part of the lattice translational
symmetry spontaneously. In the proposed realization of the
three-pocket model for the field-induced intermediate phase
of the isotropic Kitaev model [79,80], the coupling u connects
states in the particlelike pocket at � with states in the holelike
pockets at K and K′, while the coupling ũ connects states
in the two different holelike pockets. In both channels, the
corresponding nesting vector is Qnesting = K, see Fig. 2. A
divergence of u and/or ũ hence suggests a long-range-ordered
ground state with ordering wave vector K in this case, which
triples the unit-cell size, but preserves the 120◦ rotational
symmetry on the honeycomb lattice [73,125]. This illustrates
that the precise nature of the resulting ground state arising
from the divergence of the interpocket couplings is nonuni-
versal and depends on the particular microscopic realization
of the effective continuum model. Instead of a full char-
acterization in this section, we therefore content ourselves
with pointing out some general universal features of the low-
temperature phase, which can be inferred readily from our
effective modeling. In particular, we will show that the diver-
gence of the interpocket couplings leads to a full gap opening
in the spinon band structure at low temperatures. A further
characterization of the gapped ground state, taking micro-
scopic properties of particular realizations of our effective
models into account, is postponed to Sec. V.

To make progress analytically, we focus on the infrared
regime in which the interpocket couplings are large and pro-
vide the dominant contribution to the partition function. While
the fluctuations of the gauge field are crucial for the generation
of repulsive interpocket couplings in the first place, they can
be safely neglected in this low-energy regime. This suggests
a mean-field analysis of the Hubbard-Stratonovich-decoupled

interaction channel corresponding to the interpocket coupling
with the strongest RG divergence [126]. In our models, the
situation is simplified by the fact that there is, for each set
of initial couplings, a unique dominant decoupling channel
associated with the divergent RG flow. In the two-pocket
model we have u → ∞, associated with the channel ϕ ∼
ψ

†
0 ψ0 − ψ

†
1 ψ1 . A finite vacuum expectation value 〈ϕ〉 �= 0

corresponds to a shift in energy of the particlelike and holelike
spinon bands relative to each other and, as we show explicitly
below, leads to a gap opening in the spinon spectrum. In the
three-pocket model, there are two different regimes with either
u → ∞ and ũ/u → 0 or ũ → −∞ and u/ũ → 0, depending
on the initial values of the couplings. In the former regime,
the associated decoupling channel is (χ1, χ2) ∼ (ψ†

0 ψ0 −
ψ

†
1 ψ1 , ψ

†
0 ψ0 − ψ

†
2 ψ2 ), which again shifts the particlelike and

holelike bands relative to each other, preserving the symme-
try between the two holelike pockets if 〈χ1〉 = 〈χ2〉 �= 0. In
the latter regime, the associated decoupling channel is φ ∼
(ψ†

1 ψ1 + ψ
†
2 ψ2 ) and corresponds to a simultaneous shift of

the two holelike bands only. Within our two models, there are
therefore in total three cases to be distinguished. In all three
cases, the corresponding Hubbard-Stratonovich transforma-
tion can be written on the level of the partition function Z
generically as

Z =
∫

D�D�†e−{S0[�,�†]− g
2 (�†A�)2}

∝
∫

D�D�†D�e−{S0[�,�†]+ r
2 �2+h�·(�†A�)}, (15)

where we have introduced the two-component (three-
component) complex spinor fields � and �†, with � =
(ψ0, ψ1)� [� = (ψ0, ψ1, ψ2)�], and the real bosonic order-
parameter field �, with � = ϕ [� = (χ1, χ2) and � = φ,
respectively] for the case(s) of the two-pocket (three-pocket)
model. The functional S0 denotes the noninteracting Gaus-
sian part of the fermionic action and the parameter g > 0
represents the particular repulsive interpocket coupling, with
g = u in the two-pocket model and g = u (g = −ũ) in the
three-pocket model for dominant positive u (dominant neg-
ative ũ). The real and symmetric 2 × 2 and 3 × 3 matrices A,
respectively, define the corresponding decoupling channel and
are given explicitly for the three different cases in Table I. The
Hubbard-Stratonovich transformation in Eq. (15) becomes
exact provided that we identify g ≡ h2/r for r > 0. Without
loss of generality, we further assume h � 0. Then, positive
expectation values 〈ϕ〉 > 0 and 〈χ1,2〉 > 0 correspond to an
upward (downward) shift in energy of the particlelike (hole-
like) bands for the cases of dominant particle-hole coupling
u > 0, while negative 〈φ〉 < 0 corresponds to a downward
shift of the holelike bands for the case of dominant hole-hole
coupling ũ < 0.

Since the Hubbard-Stratonovich-decoupled action is
quadratic in � and �†, the fermions can be integrated out,
yielding an effective action for the order-parameter field �.
On the mean-field level, the expectation value of the order
parameter is then obtained by minimizing the effective ac-
tion with respect to �, neglecting the fluctuations in �. This
approximation can be understood as the leading order of a
controlled 1/N expansion, where N is the number of spinon
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TABLE I. Field content, Hubbard-Stratonovich decoupling channel, and spinon gap in the two-pocket model with particle-hole interpocket
coupling u > 0 (first row), and in the three-pocket model for dominant particle-hole interpocket coupling u > 0 (second row), and dominant
hole-hole interpocket coupling ũ < 0 (third row), respectively. While the particle-hole interaction in the two-pocket model and the hole-hole
interaction in the three-pocket model can be decoupled with a single-component real order-parameter field � = ϕ and � = φ, respectively, the
particle-hole interaction in the three-pocket model requires a decoupling in terms of a two-component real order-parameter field � = (χ1, χ2).
The mean-field ground state in each of the three cases is characterized by a full gap � > 0 in the spinon spectrum for all finite g = h2/r > 0.

Model Dominant coupling Spinon fields Order parameter Decoupling channel Spinon gap
g = h2/r > 0 �, �† complex � real � ∼ �†A� � ∝ h〈�〉

Two-pocket g = u > 0 � =
(

ψ0

ψ1

)
� = ϕ A =

(
1 0
0 −1

)
� = 2h〈ϕ〉 = �2

2π
u > 0

Three-pocket g = u > 0 � =
⎛
⎝ψ0

ψ1

ψ2

⎞
⎠ � =

(
χ1

χ2

)
A =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

� = 3h〈χ1〉 = 3h〈χ2〉 = 3�2

4π
u > 0

g = −ũ > 0 � =
⎛
⎝ψ0

ψ1

ψ2

⎞
⎠ � = φ A =

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠ � = −h〈φ〉 = −�2

4π
ũ > 0

Fermi pockets in the model. We demonstrate the calculation
explicitly for the case of dominant positive u in the two-pocket
model, corresponding to the first row in Table I. For the
three-pocket model, the calculation is analogous, and we will
restrict the presentation to the discussion of the main results
in this case. In the two-pocket model, the mean-field effective
potential reads

VMF(ϕ) = r

2
ϕ2 −

∫ ∞

−∞

dω

2π

∫ � d2p
(2π )2

[ln(iω + p2 + hϕ)

+ ln(iω − p2 − hϕ)], (16)

where we have reintroduced the ultraviolet cutoff �, and
assumed units in which the effective band masses are set to
m0 ≡ 1/2 and m1 ≡ 1/2, exploiting again the property that
the mass ratio m1/m0 = 1 in the infrared. Up to a physically
irrelevant constant VMF(0), the integral is convergent in the
sense of the Cauchy principle value, and evaluates to

VMF(ϕ) =

⎧⎪⎨
⎪⎩

r
2ϕ2 + �2

4π
hϕ + �4

4π
for ϕ < −�2

h ,

( r
2 − h2

4π
)ϕ2 − �2

4π
hϕ for − �2

h < ϕ < 0,
r
2ϕ2 − �2

4π
hϕ for ϕ > 0,

(17)

where we have set VMF(0) ≡ 0 without loss of generality.
Note that VMF(ϕ) is continuously differentiable at all ϕ.
The effective potential is plotted for different values of h2/r
in Fig. 6. The minimum of the effective potential VMF(ϕ)
corresponds to the mean-field expectation value 〈ϕ〉. In the
noninteracting case for h2/r = 0, we have 〈ϕ〉 = 0. For any
finite h2/r > 0, however, the minimum shifts towards posi-
tive

√
r〈ϕ〉 = �2

4π

√
h2/r > 0, corresponding to a full gap � =

2h〈ϕ〉 = �2

2π
h2

r > 0 in the spinon spectrum. The linear opening
of the gap � as a function of h2/r is shown in the inset of
Fig. 6. Similarly, in the case of the three-pocket model for
dominant positive u, we find that the potential VMF(χ1, χ2)
for the corresponding order parameter � = (χ1, χ2) becomes

minimal for 〈χ1〉 = 〈χ2〉 > 0, while for dominant negative ũ,
we find that VMF(φ) attains its minimum at 〈φ〉 < 0. These
results imply that in all three cases, the RG divergence of
the repulsive interpocket interactions correspond to a full gap
opening in the spinon spectrum. This conclusion is consistent
with the general expectation that the mean-field energy is
minimized when the spectral gap is maximized [127,128]. For
each of the three cases, mean-field gap � and order-parameter
expectation value 〈�〉 are given explicitly as functions of the
respective interpocket coupling in the last column of Table I.

V. LOW-TEMPERATURE PHASE

In the previous two sections we have argued that a U(1)
spin liquid state with nested spinon Fermi pockets is unsta-
ble at low temperatures towards a long-range-ordered ground
state characterized by a full gap in the spinon spectrum. In this
section we shall further characterize the nature of the resulting
low-temperature phase, taking properties of proposed micro-
scopic realizations of our continuum models into account.

An important characteristic of all proposed realizations of
U(1) spin liquids with spinon Fermi pockets [69,78–81,98]

FIG. 6. Mean-field potential in two-pocket model as function of
order parameter ϕ. For h2/r = 0, the minimum is at ϕ = 0, while it
moves to positive ϕ > 0 for all finite h2/r > 0. This corresponds to
a spinon gap � ∝ h2/r, as schematically shown in the inset.
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is the fact that the emergent gauge field in the lattice model
is actually compact. This allows instanton events that change
the magnetic flux within a plaquette of the lattice and create
a monopole of the gauge field. In the presence of a finite
density of states at the Fermi level, monopole creation opera-
tors are RG irrelevant and our continuum field theory, which
assumes a noncompact U(1) gauge field, is a valid low-energy
description [101]. However, once a gap in the spinon spectrum
has opened up as a consequence of the RG divergence of an
interpocket coupling, the noncompactness of the gauge field
needs to be taken into account. In fact, in the absence of
any low-energy matter degrees of freedom, monopole creation
operators become RG relevant and monopoles start to prolif-
erate below a certain temperature scale [84,85]. This leads to
confinement of spinons and a fully conventional ground state
that features magnetic or nonmagnetic long-range order.

As argued in the beginning of the previous section, the
ordering wave vector of the state favored by the divergent
interpocket coupling is given by the nesting vector Qnesting,
which connects spinon excitations in different Fermi pockets
of the spin liquid state. For the proposed realization of the
three-pocket model in the antiferromagnetic Kitaev model in
a [111] magnetic field [79,80], we have Qnesting = K, corre-
sponding to the corners of the Brillouin zone, see Fig. 2. The
divergent interpocket coupling in this case hence favors a state
with ordering wave vector Q = K, which breaks lattice trans-
lational symmetry but preserves the 120◦ lattice rotational
symmetry. The corresponding hexagonal unit cell consists of
six sites. There are a number of different magnetic [73,125]
and nonmagnetic [87,88,129] states on the honeycomb lattice
known that feature this ordering wave vector. However, the
fact that monopoles of the U(1) gauge field proliferate at
low energy suggests that the ground state is paramagnetic
[87,130]. In fact, on the honeycomb lattice, the monopole
creation operator has precisely the same quantum numbers as
the order parameter for a VBS order at Q = K [130–133]. The
divergence of the interpocket coupling and the proliferation
of monopoles therefore conspire to destabilize the U(1) spin
liquid state with nested spinon Fermi pockets at the K points
towards a quantum paramagnetic ground state with a six-site
unit cell and VBS order. This leaves us with two possible
ground states, depicted in Figs. 7(a) and 7(b). These states are
known as plaquette VBS [88–90,129,134] and columnar VBS
[87,132,133] in the literature. In these quantum paramagnetic
states, the fractionalized spinons are gapped and confined,
but the low-energy spectrum may feature gapless spin-singlet
excitations in the thermodynamic limit [129].

A similar analysis is possible for the situation with spinon
Fermi pockets at the � and M points in the Brillouin zone,
such as in the two-pocket and four-pocket models proposed in
Refs. [79] and [81], respectively. The difference in this case,
however, is that the divergent interpocket coupling favors a
state with ordering wave vector Q = M, corresponding to a
four-site rectangular unit cell. This may be a quantum param-
agnetic state, such as the zigzag VBS depicted in Fig. 7, which
can be understood as a four-sublattice version of the staggered
VBS state [135,136], but magnetically ordered states, such
as stripy and zigzag antiferromagnets [6,88,137], are equally
well possible. In these models, the plaquette and columnar
VBS states favored by the proliferating monopoles [130,131]

FIG. 7. Candidate quantum paramagnetic ground states of mod-
els for U(1) spin liquids with nested spinon Fermi pockets on the
honeycomb lattice. For the three-pocket model with spinon Fermi
pockets around � and K, K′ points [79,80], the low-temperature
instability is towards a state with ordering wave vector Q = K, such
as (a) the plaquette valence bond solid (VBS) [89,90,134] or (b) the
columnar VBS [87,88,129,132,133]. Both states feature six-site unit
cells (dotted hexagons), with the columnar VBS being characterized
by a fixed pattern of dimer singlets, while the plaquette VBS is char-
acterized by a pattern of plaquette singlets, each of which consists of
an antisymmetric combination of the Kekulé structure, as depicted
in the insets. The columnar VBS is also known as Kekulé VBS
[131,133,138,139] or Read-Sachdev [87,88] state in the literature.
For the two-pocket [79] and four-pocket [81] models with spinon
Fermi pockets around � and M points, the divergent interpocket
interaction can alternatively also drive an instability towards a state
with ordering wave vector Q = M, such as (c) the zigzag VBS with
four-site unit cell (dotted rectangle). In this state, neighboring spins
along zigzag chains on the honeycomb lattice form dimer singlets.
It breaks lattice rotational symmetry and can be understood as a
four-sublattice version of the staggered VBS [135,136].

therefore compete with such four-site-unit-cell states. The
question which one will eventually win depends on micro-
scopic parameters of the particular system at hand and is
beyond the scope of the present effective modeling.

VI. CONCLUSIONS

In this work we have studied the fate of U(1) spin liquids
with nested spinon Fermi pockets in two spatial dimen-
sions. We have argued that the emergent U(1) gauge field
generically generates a repulsive interaction between equally
charged spinon excitations and drives a divergence of an
interpocket coupling during the RG flow. This divergence
can be understood as a nesting instability of the U(1) spin
liquid state. The instability induces a full gap in the spinon
spectrum at low temperatures. This causes a proliferation of
monopoles of the compact U(1) gauge field and leads to a
conventional long-range-ordered ground state. In this state,
all gauge-noninvariant excitations, such as the fractionalized
spinons, are confined. This main conclusion of our work has
been shown explicitly within two minimal models, which
feature two and three, respectively, perfectly nested spinon
Fermi pockets in the Brillouin zone. From this analysis, how-
ever, it is clear that a similar instability should be expected
also in models with larger numbers of spinon Fermi pockets.
An effective description of the four-pocket spin liquid state
suggested in Ref. [81], for instance, would consist of three
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symmetry-related spinon fields ψi, i = 1, 2, 3, corresponding
to the pockets near the three M points in the hexagonal Bril-
louin zone, in addition to the spinon field ψ0 that corresponds
to the pocket near the � point. This again allows only two
interpocket interaction channels

u
∑

i

(ψ†
0 ψ0 ψ

†
i ψi ) + ũ

∑
i< j

(ψ†
i ψi ψ

†
j ψ j ), (18)

in close analogy to the three-pocket model of Eq. (7). A
similar divergence of an interpocket coupling should therefore
occur also in this case. The instability of U(1) spin liquids
with nested spinon Fermi pockets can also be understood
in terms of a spin-Peierls transition, as an example of the
general tendency of frustrated low-dimensional spin systems
to form VBS order [87]. A similar spin-Peierls instability has
recently been studied in the context of three-dimensional Z2

spin liquids with Majorana Fermi surfaces, although, in this
case, the result of the instability is not a VBS state, but another
spin liquid [140].

For our RG calculations we have focused on the limit of
infinitesimally small spinon Fermi pockets. We argued that
monopole operators are likely irrelevant, as long as the spinon
spectrum remains gapless. In the ultimate limit of infinitesi-
mally small spinon Fermi pockets, however, this assumption,
although natural, has strictly speaking not been proven. We
believe that an explicit calculation along the lines of Ref. [101]
may be possible. This is left for future work. Our focus on
infinitesimally small spinon Fermi pockets allowed a con-
trolled RG analysis, as all pertinent couplings turned out to be
marginal at tree level within our RG scheme. Our results are
applicable also to systems with finite spinon Fermi pockets as
long as the RG scale at which the flow diverges is large com-
pared to the sizes of the pockets. When the pockets become
too large, further interactions can appear, that are not included
in our analysis. In particular, scattering processes within the
spinon Fermi pockets become possible. If such intrapocket
interactions are sufficiently attractive beyond a certain finite
threshold, they could drive a Cooper pairing instability in
which the U(1) gauge symmetry is broken down to a Z2

subgroup via the Higgs mechanism [83]. On the honeycomb
lattice, this stable gapped Higgs phase may be understood as
being adiabatically connected to the non-Abelian spin liquid
ground state of the Kitaev model in an infinitesimal field
[3,78,79]. As the gauge-field excitations generate repulsive in-
teractions, the weak-coupling instability, however, will always
be towards the conventional long-range-ordered state. This
suggests an unconventional deconfined quantum critical point
at finite attractive intrapocket interactions between the long-
range-ordered and non-Abelian Kitaev spin liquid phases.
Similar such exotic continuous quantum phase transitions be-
tween deconfined spin liquids and confined states featuring
conventional magnetic [141,142] or nonmagnetic [105,106]
long-range orders have recently been found in square-lattice
systems. Studying the competition between Cooper and nest-
ing instabilities at finite spinon-Fermi-pocket sizes represents
an excellent direction for future research.

Recently, a number of numerical and theoretical stud-
ies have proposed spinon Fermi pocket models as effective
descriptions for the field-induced intermediate phase in the

antiferromagnetic Kitaev model [78–81,98] and extensions
thereof [61,69]. If these systems are indeed described within
certain energy windows by spinon-Fermi-pocket models, as
the numerics suggests, then we expect a low-temperature
instability in the thermodynamic limit towards a long-range-
ordered state. We note, however, that finite system sizes
effectively cut off the RG flow. Hence, the instability will be
visible in the numerics only if the system size is larger than
the scale set by the RG time at which the running interpocket
coupling diverges. The actual nature of the low-temperature
order depends on microscopic properties of the system. For
the three-pocket spin liquid state with pockets at the � and
K, K′ points [79,80], we have argued that the proliferation of
monopoles leads to plaquette or columnar VBS order on the
honeycomb lattice with ordering wave vector Q = K, which
coincides with the nesting vector of the noninteracting spinon
Fermi surface. When the nesting vector is different from K,
such as in the four-pocket state with spinon Fermi pockets at
the � and the three M points [81], the plaquette and columnar
VBS orders compete with other nonmagnetic and magnetic
states that feature Q = M order. Which one of these will
eventually be selected depends on the energetics of the mi-
croscopic system. Tuning magnetic interactions might allow
one to drive the system from one order to another, yielding a
possibly complex phase diagram with unconventional phase
transitions.

When the extents of the spinon Fermi pockets are no longer
small compared to the RG divergence scale, it is also possible
that effects of imperfect nesting might become important.
These could suppress the instability. For the proposed realiza-
tion of the two-pocket model in the anisotropic Kitaev model
in a [111] magnetic field [79], for instance, the effective band
mass tensor corresponding to the holelike pocket around the
M point of the hexagonal Brillouin zone will generically be
anisotropic. This spoils the nesting property when the sizes
of the Fermi pockets increase. By contrast, in the proposed
realization of the three-pocket model in the isotropic Kitaev
model [79,80], the effective band masses of both the par-
ticlelike and holelike bands near the � and K, K′ points,
respectively, are isotropic. Perfect nesting therefore continues
to hold as long as the spinon bands are well approximated by
quadratic dispersions, see Fig. 2. This, in particular, will be the
case in the vicinity of the proposed Lifshitz transition towards
the conventional paramagnet at high fields.

We finally comment on implications for materials. The
most important consequence of our work is that a gapless
U(1) spin liquid with nested spinon Fermi pockets is ruled out
as a candidate ground state describing the magnetic behav-
ior of any two-dimensional frustrated quantum magnet. This
applies, for instance, to the in-field behavior of α-RuCl3, for
which such a state was recently proposed on the basis of the
quantum oscillations observed in thermal conductivity mea-
surements [68,69]. The assumption that this behavior indeed
arises from fractionalized excitations near a neutral Fermi
surface [68,143] can then be reconciled with our result only
if either of the following two scenarios is realized:

Scenario A. The system features an extended spinon
Fermi surface that is not nested. In this case, a gapless
spin liquid that is stable up to zero temperature is possible
[83,101].
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Scenario B. The spin liquid state with spinon Fermi pock-
ets describes the material only in a finite energy window.
At the lower bound of this spin liquid regime, the sys-
tem exhibits a finite-temperature phase transition towards
a conventional long-range-ordered ground state, such as a
VBS state, which spontaneously breaks lattice translational
symmetries.

We note that the fact that the thermal Hall effect vanishes
for field directions along Ru-Ru bonds [64], while quantum
oscillations can be observed for all measured in-plane field
directions [68], has recently been argued to contradict the
scenario of a simply connected spinon Fermi surface (scenario
A) [69]. This may be interpreted as suggesting that scenario
B is more likely realized in the quantum paramagnetic regime
of α-RuCl3. We believe it would be therefore be worthwhile
to look for signatures of a dimerized or plaquette VBS state
at ultralow temperatures in in-plane fields between 7 and 11 T
in this material. In fact, this scenario would naturally explain
three recent experimental observations: (1) Low-temperature
thermal transport measurements show a dip at around 1 K in
the heat conductivity data as function of temperature for fixed
in-plane fields in a finite field range below 11 T [51]. This 1 K
scale is significantly smaller than the 4 K scale below which
quantum oscillations are readily observable [68], and should
therefore be expected to arise from different origin. If sce-
nario B is realized in α-RuCl3, this additional low-temperature
scale might originate from the onset of long-range quantum
paramagnetic order, such as VBS order, in this field range.
To test this scenario, temperature scans of the longitudinal
heat conductivity at fixed in-plane fields between 7 and 11 T
down to the millikelvin regime are called for. (2) Specific
heat measurements at fixed field strength and fixed temper-
ature below 1 K as function of in-plane field angle reveal
that characteristic deviations from the hexagonal sixfold pe-
riodicity develop in the quantum paramagnetic regime [144].
These anomalies occur for the two antiparallel in-plane field
directions that are perpendicular to a particular Ru-Ru bond,
indicative of a spontaneous breaking of the hexagonal lattice
rotational symmetry down to a residual twofold symmetry.
This behavior may be consistent with the development of
dimerized staggered or zigzag VBS order. (3) The zero-field
magnetic order in α-RuCl3 is easily melted away by a very
moderate external pressure of the order of 1 GPa or less
[145–147]. At a critical hydrostatic pressure, the system ex-
hibits a magnetic transition, along with a structural transition,
towards a quantum paramagnetic state that has been under-
stood as a dimerized VBS state [148]. This shows that VBS
states strongly compete with magnetic orders in α-RuCl3, and
therefore might play important roles also for zero pressure
when the magnetic orders are suppressed by external fields.

Experiments in both hydrostatic pressure and finite exter-
nal magnetic fields could elucidate the relation between the
pressure-induced VBS state at zero field and the zero-pressure
quantum paramagnet at finite fields. On the theory side, it
would be desirable to devise a pertinent microscopic model
of relevance for α-RuCl3 that features zigzag order at zero
field and allows fractionalized states with spinon Fermi sur-
faces at finite fields. The recently proposed class of extended
Kitaev-Heisenberg models [61], which can be understood as
deformations of the dual version [86] of the antiferromagnetic
Kitaev model and feature a ferromagnetic Kitaev interaction
[24,70] and a positive off-diagonal Gamma interaction [31],
might be a useful starting point in this respect. If a pertinent
model can be found, it might allow one to tune between the
cases of an extended stable spinon Fermi surface (scenario A)
and the nested-spinon-Fermi-pocket state with its concomitant
low-temperature instability (scenario B). Mapping out the cor-
responding phase diagram and determining thermodynamic,
spectroscopic, and transport properties within the different
phases and across the transitions should help to eventually
clarify the true nature of the field-induced quantum param-
agnetic regime in α-RuCl3.
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APPENDIX: DETAILS OF RG CALCULATION

In the Appendix we provide details of our RG scheme and
the evaluation of loop integrals. We demonstrate the procedure
explicitly for the two-pocket model in Eq. (3). Comments on
the case of the three-pocket model are given below. In order
to perform the loop integration, we add a gauge-fixing term of
the form

Lgf = − 1

2ξ

(
1

c2
∂τ aτ + ∇ · a

)2

, (A1)

with gauge-fixing parameter ξ ∈ (0,∞). For explicit com-
putations we use Landau gauge ξ → 0. Integrating out the
fast modes with momenta in the shell |p| ∈ (�/b,�) and all
frequencies ω ∈ (−∞,∞) yields the effective action for the
remaining slow modes as

S< =
∫ �/b

0

dp
(2π )d

∫ ∞

−∞

dω

2π

[
ψ

†
0

(
bηω

0 iω + bη
p2

0
p2

2m0

)
ψ0 + ψ

†
1

(
bηω

1 iω − bη
p2

1
p2

2m1

)
ψ1 + 1

2c2
(bηaτ /2paτ − bηω2

a /2ωa)2

+ 1

2
bη

p2
a (p × a)2

]
+

∫ �/b

0

dp1dp2

(2π )2d

∫ ∞

−∞

dω1dω2

(2π )2

[
− g + δg

2m0
(p1 + 2p2) · aψ

†
0 ψ0 + g + δg′

2m1
(p1 + 2p2) · aψ

†
1 ψ1
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− i(e + δe)aτψ
†
0 ψ0 − i(e + δe′)aτψ

†
1 ψ1

]

+
∫ �/b

0

dp1dp2dp3

(2π )3d

∫ ∞

−∞

dω1dω2dω3

(2π )3

[
g2 + δg2

2m0
a · aψ

†
0 ψ0 − g2 + δg2′

2m1
a · aψ

†
1 ψ1 + (u + δu)ψ†

0 ψ0 ψ
†
1 ψ1

]
, (A2)

where in the second line we define p × a ≡ pxay − pyax in
d = 2 spatial dimensions, and p1 and p2 in the third line
correspond to the momenta of the gauge field a ≡ a(ω1, p1)
and the fermion fields ψi ≡ ψi(ω2, p2), i = 0, 1, respectively.
In the effective action, the fermion anomalous dimensions ηω

0 ,

η
p2

0 , ηω
1 , η

p2

1 , and gauge-field anomalous dimensions ηaτ
, ηω2

a ,

η
p2

a arise, at the one-loop order, from the fermion self-energy
and polarization diagrams in Figs. 3(a)–3(c) and 3(d) and 3(e),
respectively. The explicit vertex corrections δe, δe′, δg, δg′,
δg2, and δg2′ are related to the fermion anomalous dimensions
by means of the Ward identities

δe

e
= ηω

0 ,
δe′

e
= ηω

1 ,
δg

g
= δg2

g2
= η

p2

0 ,

δg′

g
= δg2′

g2
= η

p2

1 , (A3)

which are ensured by gauge invariance. We have explic-
itly verified by evaluating the corresponding diagrams in
Figs. 3(a)–3(c) and 3(f)–3(n) for the fermion anomalous di-
mensions and vertex corrections, respectively, that the above
identities hold within our RG scheme to the one-loop order.
This represents an important crosscheck of our calculations.
The effective action therefore remains invariant under local
U(1) transformations, despite the fact that our momentum-
shell regularization explicitly breaks gauge invariance. Note
that the model lacks Lorentz invariance, such that ηω

0 and η
p2

0 ,

as well as ηω
1 and η

p2

1 , are independent. The same is true,

in principle, for ηaτ
, ηω2

a , and η
p2

a , although these happen to
vanish at the one-loop order, as discussed below. The vertex
correction δu that renormalizes the interpocket interaction is
obtained at the one-loop order from the diagrams shown in
Figs. 3(o)–3(u).

Next, we rescale momenta as p �→ p/b and frequencies as
ω �→ ω/bz, with z denoting the dynamical critical exponent to
be determined below. Renormalizing the fields as

ψ0 �→ b(d+2z−ηω
0 )/2ψ0, aτ �→ b(4+d−z−ηaτ +ηω2

a −η
p2
a )/2aτ ,

(A4)

ψ1 �→ b(d+2z−ηω
1 )/2ψ1, a �→ b(2+d+z−η

p2
a )/2a, (A5)

and choosing z = 2 + ηω
0 − η

p2

0 allows us to keep the
form of the noninteracting part of the effective action
fixed, provided that the ratio of effective band masses
m1/m0 and the speed of artificial light c are renormalized
as

d ( m1
m0

)

d ln b
= (

2 − z + ηω
1 − η

p2

1

)(m1

m0

)
,

dc

d ln b
= 1

2

(
2z − 2 − ηω2

a + ηp2

a

)
c. (A6)

The flow of the gauge couplings can then be written
as

de

d ln b
= 1

2

(
4 − d − z − ηaτ

− ηp2

a + ηω2

a

)
e,

dg

d ln b
= 1

2

(
4 − d − z − ηp2

a

)
g. (A7)

Note that diagrams with closed particle-hole loops vanish in
the present type of models. This can be understood from the
spinon band structure in the situation when the Fermi pockets
have shrunk to isolated Fermi points [Fig. 1(b)], which does
not allow particle-hole fluctuations of the same spinon flavor.
Technically, it arises from the fact that the frequency poles
of the particle and hole propagators are located in the same
complex half-plane, such that the integral over frequency van-
ishes. This applies, for instance, to the polarization diagram
in Fig. 3(e), which is the only one-loop diagram that con-
tributes to the gauge-field anomalous dimensions, implying
that ηaτ

= ηω2

a = η
p2

a = 0 at this order. As a consequence, the
electric and magnetic gauge couplings e and g have the same
scaling dimension and the ratio g/e is marginal at the one-
loop order. At higher loop orders, however, we expect finite
contributions to ηaτ

, ηω2

a , and η
p2

a , lifting the RG invariance
of the ratio g/e. Finally, the flow of the interpocket coupling
reads

du

d ln b
= (

z − d − ηω
0 − ηω

1

)
u + δu. (A8)

Evaluating the pertinent one-loop diagrams shown in Fig. 3
leads to the forms displayed in Eqs. (8)–(12). The functions
F , G, and H occurring in these equations are found in Landau
gauge ξ → 0 explicitly as

F (x, y) = y

(1 + 2y)4
[2y2(1 + 8y) + 4y2(1 − 4y)x − (1 + 6y + 18y2 + 8y3)x2], (A9)

G(x, y) = y

(1 + 2y)4
[2y2(1 + 8y + 32y2 + 16y3) + 4y2(1 + 8y)x + (1 + 8y + 22y2 + 8y3)x2], (A10)

H (x, y) = y

16(1 + 2y)5
[4y4(5 + 50y + 192y2 + 320y3 + 128y4) + 16y4(1 + 10y + 32y2)x − 4y2(1 + 10y + 30y2 − 20y3)x2

− 8y2(1 + 10y + 10y2 + 4y3)x3 + (3 + 30y + 100y2 + 184y3 + 180y4 + 72y5)x4]. (A11)
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The renormalization of the three-pocket model is car-
ried out analogously. Due to the discrete symmetry that
connects the two holelike pockets parametrized by ψ1 and
ψ2 in this model, both fermion fields are rescaled with
the same anomalous dimension ηω

1 ≡ ηω
2 , and their effec-

tive band masses also receive the same loop correction,
i.e., η

p2

1 ≡ η
p2

2 . As a consequence, Eqs. (A6)–(A8) hold in
the same form also for the three-pocket model. For the
flow of the hole-hole interpocket coupling, we similarly

obtain
dũ

d ln b
= (

z − d − 2ηω
1

)
ũ + δũ. (A12)

The explicit evaluation of the loop integrals leads to Eq. (14)
in the main text, with the function G̃ reading in Landau gauge

G̃(x, y) = y

(1 + 2y)4
[2y2(3 + 24y + 32y2 + 16y3)

+ 12y2x − (1 + 4y + 14y2 + 8y3)x2]. (A13)
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