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Resolving the Berezinskii-Kosterlitz-Thouless transition in the two-dimensional
XY model with tensor-network-based level spectroscopy
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Berezinskii-Kosterlitz-Thouless transition of the classical XY model is reinvestigated, combining the tensor
network renormalization (TNR) and the level spectroscopy method based on the finite-size scaling of the
conformal field theory. By systematically analyzing the spectrum of the transfer matrix of the systems of various
moderate sizes, which can be accurately handled with a finite bond dimension, we determine the critical point
removing the logarithmic corrections. This improves the accuracy by an order of magnitude over previous studies
including those utilizing TNR. Our analysis also gives a visualization of the celebrated Kosterlitz renormalization
group flow based on the numerical data.
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I. INTRODUCTION

The Berezinskii-Kosterlitz-Thouless (BKT) transition was
historically the first example of topological phase transitions,
which is now an essential concept in physics [1]. The canon-
ical model exhibiting the BKT transition is the classical XY
model in two dimensions, which is defined by the total energy
(classical Hamiltonian)

E = −
∑
〈i, j〉

cos(θi − θ j ), (1)

where θ takes the angular value (0 � θ < 2π ) at each site
on the square lattice and only the nearest-neighbor inter-
actions are considered. The topology of the configuration
space allows topological point defects (vortices and antivor-
tices), whose dissociation drives the BKT transition. The BKT
transition can be described in terms of two running cou-
pling constants: yK controlling the thermal fluctuation of spin
waves, and yV representing the vortex fugacity [see Eq. (A3)
for the precise definitions].

The nontrivial interplay between these two couplings is
described by the celebrated Kosterlitz renormalization group
(RG) equation [2]:

dyK
dl

= −y2
V ,

dyV

dl
= −yV yK,

(2)

where l ∼ log L is the logarithm of the length scale L [3].
The phase diagram is Fig. 1 and the transition line becomes

yK = yV . We can introduce new variables g and t by yV =
g + t and yK = g − t , so that the phase boundary corresponds
to t = 0. At the BKT transition t = 0, the RG equation for g is
reduced to dg/dl = −g2, which implies g ∼ 1/l ∼ 1/ log L.

This slow decay is the source of the notorious logarithmic
corrections.

The BKT transition is conceptually well understood in
terms of the Kosterlitz RG equation. However, the famous
“Kosterlitz RG flow” has remained a rather abstract concept,
which cannot be seen directly. Moreover, because of the loga-
rithmic corrections, significant finite-size effects persist even
in a large system, making conventional finite-size scaling of
Monte Carlo methods such as Binder plot [4,5] powerless.
Even with considerable efforts over decades, an accurate de-
termination of the critical temperature remains difficult even
with a huge computational power.

On the other hand, many 1D quantum systems can be
also described by the same effective theory and thus also
exhibit the BKT transition. Interestingly, a powerful numer-
ical finite-size scaling method called “level spectroscopy”
was developed specifically for those 1D quantum systems
by Okamoto and Nomura [6–10]. Based on the conformal
field theory (CFT) results on the finite-size energy spectrum
[11,12], they found that the BKT transition can be identified
with a level crossing between a certain pair of the energy
levels, canceling the logarithmic corrections. This allows a
surprisingly accurate determination of the BKT transition
point with exact numerical diagonalization of rather small
systems.

However, the applications of level spectroscopy have been
limited to 1D quantum BKT system such as quantum spin
chains so far. While it should be applicable to the spectrum
of the transfer matrix for the classical 2D XY model, the
level spectroscopy has not been applied there, because of
the difficulty in calculating the spectrum for the system with
continuous variables θ j . In this paper, we demonstrate a suc-
cessful implementation of level spectroscopy on the classical
2D XY model, based on the tensor network renormaliza-
tion (TNR) scheme [13–18]. The TNR enables to obtain a
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FIG. 1. Phase diagram of the BKT transition of the XY model.
The behavior of the low-temperature phase is controlled by the c = 1
critical line originated from U(1) symmetry. The RG flow separates
the phase with yV → 0 from yV → ∞ phase when l increases.

precise spectrum of the transfer matrix, to which the level
spectroscopy can be applied. As in the case of the 1D quantum
system, it allows a very accurate determination of the critical
point by removing the logarithmic corrections from systems
of moderate sizes, which can be described by a tensor network
with a finite bond dimension. On the other hand, our TNR
study covers larger system sizes than those in the existing
level spectroscopy studies on 1D quantum systems. We find
a new feature of the finite-size scaling, that leads to a further
improvement of level spectroscopy. Moreover, we can also
visualize the celebrated Kosterlitz RG flow of the BKT tran-
sition from numerical data, for the first time to our knowledge
[19].

II. SU(2) SYMMETRY ON THE BKT LINE

Thelow-temperature critical phase of the BKT transition is
described by the free boson field theory in 1 + 1 dimensions,
also known as Tomonaga-Luttinger liquid [20–22]:

HTLL =
∫

dx

[
πK

2
�2 + 1

2πK
(∂xφ)2

]
, (3)

where K is called the Luttinger parameter and φ is a dual
field of θ with compactifications φ ∼ φ + π and θ ∼ θ + 2π .
� = 1

πK φ̇ is the canonical conjugate field of φ. Note that
we deal with a continuous field θ (x) instead of the lattice
variables θi. (We follow the convention of Ref. [23]. See also
the Appendix.) The compactification of the fields entails the
existence of vertex operators Vm,n =: eimθ+i2nφ :, which have
the conformal weights hm,n = 1

2 ( m
2
√

K
+ √

Kn)2 and h̄m,n =
1
2 ( m

2
√

K
− √

Kn)2.
It is helpful to first consider the BKT transition in the

quantum spin- 1
2 XXZ chain. There, the single vertex operators

V0,±1 are forbidden [24,25] and the BKT transition is driven
by the double vertex operators V0,2 + V0,−2. The Hamiltonian
is then modified to the sine-Gordon model as

HXXZ = HTLL
K=1/2 +

∫
dx

2π

{
yK
2
K + yV cos(4φ)

}
+ H ′, (4)

where K = −2∂μφ∂μφ shifts the Luttinger parameter from
K = 1

2 and H ′ represents the RG-irrelevant perturbations. The
RG equation is again Eq. (2) and g = yK = yV is the BKT
transition line. This corresponds to the isotropic XXX chain
and the system has SU(2) symmetry. More precisely, HTLL

K=1/2

turns into SU(2)1 WZW model and Eq. (4) can be written
with SU(2) currents as [26,27] (see Sec. A and Table II of
the Appendix for details)

HXXZ = HWZW
k=1 −

∫
dx

2π

[
g(JL · JR)

+ t

(
J+J̄− + J−J̄+

2
− J0J̄0

)]
+ H ′. (5)

Ignoring the RG-irrelevant perturbation H ′ for the moment,
exactly at the BKT transition, t = 0 and the effective Hamil-
tonian has a SU(2) symmetry. Consequently, all the finite-size
energy levels can be classified in terms of the representation of
the SU(2). Therefore, the BKT transition point can be identi-
fied by the degeneracy (level crossing) of the finite-size energy
levels. This is nothing but the level spectroscopy method
proposed and developed in Refs. [6–10,28–30]. Thanks to the
emergent SU(2) symmetry, the transition point determined by
the level spectroscopy is exact in all orders of the marginal
coupling g, as long as the irrelevant perturbation H ′ is negligi-
ble. In CFT, there is a correspondence between the finite-size
energy levels and local fields. The lowest excited states of
HWZW

k=1 correspond to the “spin-wave” operators W±1 = e±iθ

and the single vortex operators V±1 = e±2iφ , all with the scal-
ing dimension 1/2. These 4 states are split into a singlet and a
triplet by the SU(2) symmetric marginal perturbation g.

In the 2D classical XY model, the single vortex operator
V±1 = e±2iφ is not forbidden in the Hamiltonian and indeed
it is what drives the BKT transition, rather than the double
vortex operator V±2. Nevertheless, the effective field theory
in terms of boson field is equivalent to Eq. (4), with the
replacement 2φ → φ and θ → 2θ . This implies that the fixed
point Hamiltonian for the BKT transition point has the Lut-
tinger parameter K = 2 instead of K = 1/2. It appears that
the effective field theory in this case no longer has the SU(2)
symmetry and the level spectroscopy may not apply. How-
ever, in Ref. [9], for level spectroscopy of the corresponding
class of quantum spin chains, “half-vortex operators” V±1/2

were introduced by twisting the boundary condition. At the
BKT transition, one of the half-vortex states V s

1/2 = √
2 sin φ

becomes degenerate with the spin-wave states W±2 = e±2iθ

to form an SU(2) triplet, thereby enabling the application
of the level spectroscopy. Thus, in order to apply the level
spectroscopy to the 2D classical XY model, we need to cal-
culate the spectrum of the transfer matrix (which corresponds
to the energy levels of 1D quantum Hamiltonian), under the
periodic and twisted boundary conditions.

III. LEVEL SPECTROSCOPY WITH TENSOR
NETWORK RENORMALIZATION

Now we demonstrate a successful implementation of level
spectroscopy based on TNR for the XY model in Eq. (1). First,
the partition function of the model is represented in terms of a
tensor network, using a series expansion [31,32]

eβ cos(θi−θ j ) =
∞∑

n=−∞
ein(θi−θ j )In(β ), (6)
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where In is the modified Bessel functions of the first kind.
In the practical calculations, we cut off the sum at |n| = 15,
which is verified as sufficient.

In the tensor network representation of the XY model on
the square lattice, the tensor on each site has four “legs” corre-
sponding to the interactions with the four nearest neighbors. If
we contract the legs of L horizontally aligned tensors with the
periodic boundary condition, the remaining tensor is nothing
but the transfer matrix in the vertical direction for the system
of width L. As the transfer matrix corresponds to the Hamilto-
nian of the 1D quantum system, the level spectroscopy can
be applied to its spectrum. In practice, the transfer matrix
is obtained by contracting horizontal legs of a single tensor
obtained after N steps of TNR. Since each step of TNR
corresponds to rescaling of the lattice spacing by

√
2, this

procedure gives the transfer matrix for the system of width

L = √
2

N
. The eigenvalues λn(L) thus obtained are related to

the energy spectrum En(L) of the corresponding 1D quantum
Hamiltonian as

λn(L)

λ0(L)
= exp ( − 2πxn(L)), (7)

where we define the rescaled energy levels xn by En(L) −
E0(L) = 2πxn(L)/L [33]. In this way, we can read off xW±2 .
On the other hand, xV s

1/2
appears in the spectrum of the transfer

matrix with the twisted boundary condition. By introducing a
twist of angle 2π/L in the original model as

H = −
∑
〈x〉

cos

(
θi − θ j − π

L

)
−

∑
〈y〉

cos(θi − θ j ), (8)

we can also obtain the transfer matrix spectrum for width L
with the twisted boundary condition. In particular, xW±2 and
xV s

1/2
appear as the fourth/fifth (degenerate) and the leading

eigenvalues in the transfer matrix in the periodic and twisted
boundary conditions, respectively, in the vicinity of Tc. The
scaling dimensions of the twisted boundary condition is mea-
sured against the leading eigenvalue of the periodic boundary
condition.

Let xW2 and xV s
1/2

be the rescaled energy levels correspond-
ing to the SU(2) triplet. While xO is given by the scaling
dimension of the operator O in a pure CFT without any pertur-
bation, it receives corrections from the irrelevant perturbations
(yK, yV , and H ′) and depends on the system size L. Up to
the first order in t and H ′ (but to all orders in g), and using
t ∝ T − Tc, we find

xW2 (L) = xc(g) + αW (L)(T − Tc) + δW (L),

xV s
1/2

(L) = xc(g) + αV (L)(T − Tc) + δV (L),

where we employed the degeneracy [effective SU(2) sym-
metry] xW2 = xV s

1/2
= xc(g) on the BKT transition line t = 0.

δW and δV represent the first-order corrections due to the
irrelevant perturbation H ′. In the level spectroscopy, the tran-
sition temperature is first estimated by the crossing point T ∗
between the two levels xW2 and xV s

1/2
. As far as the irrelevant

perturbation H ′ is ignored, it gives the exact transition tem-
perature, which corresponds to t = 0, removing the notorious
logarithmic corrections to the all order. However, because of
the irrelevant perturbation H ′, the crossing point xW2 = xV s

1/2

FIG. 2. The calculated scaling dimension of xW2 (increase as tem-
perature goes up) and xV s

1/2
(decrease as temperature goes up) using

loop-TNR [16] at L = 32. As xW±2 are always degenerate, the level
crossing with xV s

1/2
implies the formation of the SU(2) triplets. The

calculation is carried out with various bond dimension D =40, 44,
and 48. The level-crossing points are obtained by linearly fitting two
lines. The data points + are on top of each other.

rather gives

T ∗ = Tc − δW (L) − δV (L)

αW (L) − αV (L)
. (9)

αW (L) and αV (L) can be extracted as the slope of the corre-
sponding levels in Fig. 2 for each size L. Since the leading
irrelevant perturbations (other than the marginally irrelevant
K and V ) to the fixed point Hamiltonian are the square of the
stress-energy tensor with the scaling dimension 4, the standard
CFT analysis [11] implies δW ∝ δV ∝ 1/L2. Thus, the level-
crossing point T ∗(L) between xW2 and xs

V1/2
obtained for the

system size L is related to the true transition temperature Tc as

T ∗(L) = Tc − const.
1

α(L)L2
, (10)

where α(L) = αW (L) − αV (L). Therefore, the transition point
can be extrapolated linearly by plotting T ∗ against 1

α(L)L2 . The
original level spectroscopy implicitly assumed that α(L) is
independent of L. This was a reasonable assumption because
the system size employed there only ranged from L = 4 to
12. However, in our study, the system size is extended up
to L = 32 and the size dependence of α(L) is not negligible.
Indeed, in our numerical estimates of α(L), we found a weak
dependence on L, which is consistent with the asymptotic
behavior α(L) ∼ log L determined by the RG equation (2).
The left panel of Fig. 3 exhibits the size dependence of the
level-crossing temperature T ∗. The data show a good agree-
ment with the theoretical prediction. The data for L = 4,
which appears off from Eq. (10), are presumably affected by
more irrelevant perturbations with the scaling dimension 6 and
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FIG. 3. The level-crossing temperature T ∗ plotted against 1
α(L)L2 at L = 4, 8, 16, and 32. The data from the bond dimension D =

28, 32, 36, 40, 44, and 48 are shown. The right panel shows the estimated Tc by linear fitting of L = 8, 16, and 32 and its error in the fitting is
shown as well. Note that the discrepancy between the estimates of Tc with D = 28 and D = 48 is only about 10−4, which is comparable to the
errors in the best existing numerical estimates (see Table I).

higher. Thus we carry out the linear extrapolation from the
data for L = 8, 16, 32 where Eq. (10) holds almost perfectly
to obtain Tc. On the other hand, any practical calculation
based on a tensor network is inherently limited by a finite
bond dimension. The TNR is also accurate for the system
sizes only up to the maximum correlation length imposed by
the finite bond dimension. In the present level spectroscopy
approach, however, we can obtain very accurate results from
only moderately large systems up to L = 32, where the TNR
with the bond dimension D = 48 is sufficient [34]. This is
manifest in the right panel of Fig. 3, which shows the extracted
Tc as a function of the bond dimension D: The dependence on
D saturates at D ∼ 40, and the BKT transition temperature
is identified as Tc = 0.892943(2) at D = 48. As shown in
Table I, our result has a higher precision than previous studies
by an order of magnitude,

IV. RG FLOW OF THE XY MODEL

Finally, one can extract the coupling constants of the sine-
Gordon model to visualize the RG flow. Ignoring H ′ here, up

TABLE I. Comparison of the estimated critical temperature of
the 2D classical XY model.

Monte Carlo (1979)[35] 0.89
Monte Carlo (2005)[36] 0.8929(1)
Monte Carlo (2012)[37] 0.89289(6)
Monte Carlo (2013)[38] 0.8935(1)
Series expansion (2009)[39] 0.89286(8)
HOTRG (2014)[40] 0.8921(19)
VUMPS (2019)[32] 0.8930(1)
HOTRG (2020)[41] 0.89290(5)
Present paper 0.892943(2)

to the second order in yK and yV , the lowest rescaled energy
levels are given as

xW±2 = 1

2
− yK

4
+ 1

4
y2

V , (11)

xV s
1/2

= 1

2
+ yK

4
− yV

2
+ 1

8

(
y2
K + 2yKyV − y2

V

)
, (12)

xV c
1/2

= 1

2
+ yK

4
+ yV

2
+ 1

8

(
y2
K − 2yKyV − y2

V

)
, (13)

where V c
1/2 = √

2 cos φ is the remaining singlet. We read off
xW±2 from Ref [42] and determine xV s

1/2
by imposing a restric-

tion by the symmetry (see the Appendix). Then, the running
coupling constants are extracted from the numerically ob-
tained energy levels as

yK ∼ 2 − 4xW±2 + (
xV c

1/2
− xV s

1/2

)2
,

yV ∼ (
xV c

1/2
− xV s

1/2

)
/
(
1 − 1

2 yK
)
, (14)

which are valid up to O(y3). Figure 4 shows the obtained RG
flow of the XY model in the vicinity of the transition tem-
perature. The theoretical trajectories of Eq. (2) are hyperbolas
y2

V − y2
K = const. and our result matches perfectly with it: The

low-temperature phase shown with blue colors flows to the
yV = 0 critical line, whereas the high-temperature region does
not. In the middle of two phases are the RG flow of the critical
temperature Tc = 0.893 marked with yellow dots, which is on
top of the blue BKT line. This estimate of Tc is consistent with
our earlier estimate shown in Table I [43].

V. CONCLUSION

We analyzed the eigenspectrum of the renormalized ten-
sors for the classical 2D XY model at finite renormalization
steps, in terms of finite-size scaling of CFT. The BKT
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FIG. 4. The numerically computed RG flow of the XY model.
The data was extracted from T = 0.88 ∼ 0.9 and L =16, 32, 64,
128, 256, and 512. The dotted lines are rough fittings of the plots
by hyperbolas and the blue line indicates the BKT line yK = yV .

transition is described in terms of two marginal couplings
yK (spin wave stiffness) and yV (vortex fugacity), and the
transition point can be identified with yK = yV where a hidden
SU(2) symmetry emerges. By exploiting the SU(2) symmetry,
we determine the transition temperature with a record pre-
cision from the spectrum, improving the level spectroscopy
method developed for 1D quantum systems. Furthermore, we
note that SU(2) symmetry is no longer a requisite by regarding
level spectroscopy as determination of transition temperatures
based on the coupling constants of the underlying field theory
extracted from the finite-size spectrum. One can extract the
running coupling constants from a finite-size spectrum by
following Eqs. (B12), (B13), and (B18) in the Appendix, and
tracking the RG flow exhibits the phase separation visually
similar to Fig. 4. Our method is advantageous because finite-
size effects are substantially reduced by the removal of the
logarithmic corrections and the effects of the finite bond-
dimension are suppressed at the moderate system sizes needed
for our analysis. We also numerically tracked the evolution
of the two coupling constants yK and yV as the system size
is increased near the transition to visualize the celebrated
Kosterlitz RG flow. The present work connects the conceptual
understanding of one of the most important examples of phase
transitions to the contemporary numerical algorithm, paving
the way to further developments.
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APPENDIX A: REVIEW ON LEVEL SPECTROSCOPY

1. Overview

The original level spectroscopy was first developed to
determine the transition temperature of the BKT transition
for quantum spin chains. In particular, they investigated the
effective Hamiltonian for the spin 1/2 XXZ spin chain. It
has a phase transition (dimer to CDW) and the gapless phase
is described by the Tomonaga-Luttinger liquid (TLL). The
Lagrangian of the gapless phase is essentially

L = 1

2πK
(∂μφ∂μφ), (A1)

where K is called Luttinger parameter. The bosonic field φ is
compactified in the bulk as

φ ∼ φ + π

The canonical quantization of the field theory Eq. (A1) is done
by requiring the canonical conjugate field

� ≡ δL
δφ̇

= 1

πK
φ̇,

where φ̇ = ∂tφ. The resulting Hamiltonian is

HTLL =
∫

dx

[
πK

2
�2 + 1

2πK
(∂xφ)2

]
. (A2)

Following the equation of motion of the Lagrangian Eq. (A1)

∂μ∂μφ = 0,

we can decompose the field φ into the right- and left mover as

φ(t, x) = ϕ(x − t ) + ϕ̄(x + t ).

The dual field θ is then defined as

θ (t, x) = 1

K
(ϕ(x − t ) − ϕ̄(x + t )).

θ is also compactified as

θ ∼ θ + 2π.

In physical applications, often θ represents the angular vari-
able corresponding to the microscopic U (1) symmetry, and
it is indeed the continuous counterpart of the lattice variable
θi of the classical XY model in Eq. (1) of the main text.
(In the next section, we apply Wick rotation as τ = it, z =
x + iτ, and z̄ = x − iτ so as to consider the CFT on the plane.)

Since the filed theory Eq. (A1) is scale invariant, it de-
scribes the critical and gapless phases of 2D classical systems
and 1D quantum phases, respectively. However, the lattice
models, generally speaking, contain perturbations at finite
sizes and the XXZ spin chain is no exception. The field theo-
retical description of the system is the sine-Gordon model in
the long wave-length limit near the critical parameters as

HXXZ = HT LL
K=1/2 +

∫
dx

2π

{
yK
2
K + yV cos(4φ)

}
, (A3)
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TABLE II. The notation and normalized currents.

Boson field Definition Currents (k = 1 WZW) Corresponding operator The highest weight Corresponding state

φ ∼ φ + π ϕ(z) + ϕ̄(z̄) J0 1√
2
J |↑〉L limz→0 ei2ϕ(z) |0〉

θ ∼ θ + 2π 2(ϕ − ϕ̄) J̄0 − 1√
2
J̄ |↑〉R limz̄→0 −e−i2ϕ̄(z̄) |0〉

J i2
√

2∂ϕ J± = J1 ± iJ2 e±i4ϕ |↓〉L limz→0 e−i2ϕ(z) |0〉
J̄ i2

√
2∂ϕ̄ J̄± = J̄1 ± iJ̄2 −e∓i4ϕ̄ |↓〉R limz̄→0 ei2ϕ̄(z̄) |0〉

where K = −2∂μφ∂μφ = JJ̄ in Table II. The first and second
terms in the perturbations represent the renormalization of
K and the creation of vortex-antivortex pairs, respectively.
Kosterlitz derived the RG equations, and the transition occurs
when g = yK = yV . On the BKT line yK = yV , the system
restores SU(2) symmetry [44,45] and the SU(2) triplet V s

1 =
sin(2φ) and W±1 = e±iθ becomes degenerate to the higher
order loops of of g.

The TLL is an example of conformal field theory (CFT) in
1 + 1 dimensions. Cardy [11] showed that, in an unperturbed
CFT, the energy eigenvalues En of the primary states in a
quantum Hamiltonian of length L is given as

En(L) − E0(L) = 2π

L
xn, (A4)

where E0 is the ground state energy and xn is the scaling di-
mension of the corresponding primary operator. Furthermore,
perturbations to the CFT Hamiltonian give corrections to this
relation [12]. Conversely, by analyzing the finite-size energy
spectrum, one can estimate the perturbations to the CFT. This
is the foundation of the level spectroscopy method.

2. Derivation of Level Spectroscopy

In the original papers [6–10] on level spectroscopy, the
degeneracy of V s

1 and W±1 was discussed in terms of the cor-
respondence between the sine-Gordon model and the SU(2)
Thirring model [44,45]. Here, we present the derivation of
level spectroscopy in more intuitive manner.

The comformal weights of : eimθ+i2nφ : are hm,n =
1
2 ( m

2
√

K
+ √

Kn)2 and h̄m,n = 1
2 ( m

2
√

K
− √

Kn)2. The scaling
dimension is defined as a sum of conformal weights as xm,n =
m2

4K + n2K as in the main text. At K = 1/2, (m, n) = (±1,±1)
and (m, n) = (±1,∓1) become currents respectively and the
Hamiltonian gets equivalent to SU(2)1 WZW model. The
currents respect the SU(2) current algebra as

Ji(z)J j (w) = k/2

(z − w)2
δi j + iεi jl Jl (w)

z − w
, (A5)

where k = 1 and i = 0, 1, 2 (or equivalently i = z, x, y) in
the current case. The notations are listed in Table II and one
can easily check that they follow Eq. (A5). Since the algebra
is a representation of SU(2), it can be interpreted as a spin
system. For instance, |↑〉L is ei2ϕ |0〉 because its SU(2) charge
is ∮

0

dz

2π i
J0(z) |↑〉L =

∮
0

dz

2π i

1/2

z
ei2ϕ(0) |0〉

= 1

2
|↑〉L , (A6)

whereas J+ |↑〉 = 0 because it has no pole as J+(z)ei2ϕ(w) ∼
(z − w)ei(4ϕ(z)+2ϕ(w)). Using these notations, Eq. (A3) at g =
yK = yV can be rewritten as

HXXZ = HW ZW
k=1 −

∫
dx

2π
g

{
J0J̄0 + 1

2
(J+J̄− + J−J̄+)

}

= HW ZW
k=1 −

∫
dx

2π
g(JL · JR), (A7)

where HW ZW
k=1 is a sum of the Sugawara energy-momentum

tensors as HW ZW
k=1 = ∫

T (z) + T̄ (z̄) = ∫
1
3 [(JL)2 + (JR)2]

[46]. The lowest lying eigenstates of
∫

dx
2π

(JL · JR) are the
spin singlet and triplets with their eigenvalues − 3

4 and 1
4 .

Using Table II, the primary operators corresponding these
states are

1√
2

(|↑↓〉 − |↓↑〉) = lim
z,z̄→0

√
2 cos (2φ(z, z̄)) |0〉 ,

|↑↑〉 = lim
z,z̄→0

−eiθ (z,z̄) |0〉 , (A8)

1√
2

(|↑↓〉 + |↓↑〉) = lim
z,z̄→0

i
√

2 sin (2φ(z, z̄)) |0〉 ,

|↓↓〉 = lim
z,z̄→0

e−iθ (z,z̄) |0〉 . (A9)

As J+ commutes with J2, V s
1 , and W±1 are degenerate. In

particular, the energy levels of the singlet and triplets to the
first order can be evaluated as

Esinglet = 2π

L

(
1

4
+ 1

4
− g

(
−3

4

))

= 2π

L

(
1

2
+ 3

4
g

)
, (A10)

Etriplets = 2π

L

(
1

4
+ 1

4
− g

(
1

4

))

= 2π

L

(
1

2
− 1

4
g

)
. (A11)

Thus, the scaling dimensions of the triplets are 1
2 − 1

4 g +
O(g2).

3. Implementation of level spectroscopy

For small system sizes, there are also irrelevant opera-
tors that do not respect SU(2) symmetry due to the lattice
anisotropy. The leading irrelevant ones are T 2, T̄ 2, T T̄ , where
T and T̄ are holomorphic and antiholomorphic components
of the energy-momentum tensor (not to be confused with the
temperature T ). Since they have scaling dimension 4, it splits
the energy levels of the triplets by ∼1/L2. While W±1 remain
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degenerate, V s
1 is no longer at the same energy level. Nonethe-

less, the OPE coefficients with these irrelevant operators must
be almost the same (conformal weights are almost the same).
Thus, the level-crossing point is closed to the true transition
point even at small L.

In the case of the 2D classical XY model, as discussed
in the main text, the BKT transition is described by making
the replacements on that for the S = 1/2 XXZ chain: 2φ →
φ, θ → 2θ , and K = 1/2 → K = 2. In this context, W±2

and V s
1/2 should be degenerate and form a SU(2) triplet, where

V s
1/2 is one of the linear combinations of V±1/2 corresponding

to the insertion of the π -twist operator (antiperiodic boundary
condition).

APPENDIX B: CALCULATION OF yK and yV

1. Lukyanov’s result

Combining the exact Bethe ansatz solution and the
low-energy effective field theory, Lukyanov [42] studied
the“vacuum” (ground-state) energy of the XXZ chain for a
given total magnetization under the twisted boundary condi-
tion with the twist parameter 2πθ . (Here we introduce θ as the
twist parametrizing the boundary condition as in Ref. [42].
This should not be confused with the use of θ as a field
variable elsewhere in this paper.) His remarkable results have
been verified by several numerical studies. While the results
are limited to θ < 1 in Ref. [42], we may access the excited
states corresponding to V±1 under the untwisted (periodic)
boundary condition. However, in this limit θ = 1, the mixing
between V±1 states by the allowed vortex perturbation V c

2 must
be taken into account, as it was indeed suggested by Lukyanov
[42]. Below we will demonstrate that the mixing is necessary
to reproduce the split between triplet and singlet levels at
the BKT transition, which is required by the emergent SU(2)
symmetry as discussed in the main text.

Lukyanov’s results can be also translated into our problem
of the classical 2D XY model by the simple replacement
2φ → φ as discussed above. In the following, we present
an analysis in the context of the classical 2D XY model.
According to Lukyanov, the scaling dimension to the third
order is

xm,n = m2

8

(
1 − yK

2
+ y2

V

4
− 7

32
yKy2

V

)

+ |m|
32

(
2y2

V − yKy2
V

)

+ 2n2

(
1 + yK

2
+ y2

K
4

+ y3
K
8

− y2
V

4
− yKy2

V

32

)
, (B1)

where xm,n is the scaling dimension of : eimθ+i2nφ :. In partic-
ular,

x1,0 = 1

8
− yK

16
+

(
3

32
− 15

256
yK

)
y2

V , (B2)

x2,0 = 1

2
− yK

4
+

(
1

4
− 11

64
yK

)
y2

V , (B3)

x0,1/2 = 1

2
+ yK

4
+ 1

8

(
y2
K − y2

V

) + y3
K

16
− 1

64
yKy2

V . (B4)

In Eq. (B4), however, the energy repulsion between xs
0,1/2 and

xc
0,1/2, due to the cosine term, is not considered here. Hence,

we shall determine it in order to calculate yK and yV to the
second order.

2. Calculation of xV s
1/2

We deduce the energy level of V s
1/2 using two facts:

(i) W±2 and V s
1/2 are exactly degenerate on the BKT

line.
(ii) xV s

1/2
+ xV c

1/2
= 2x0,1/2, which is Eq. (B4).

First, from Eq. (B3) we find the energy level of the triplets
on the BKT line g = yK = yV is

xtriplet = 1

2
− g

4
+ g2

4
. (B5)

Let us define xV c
1/2

− xV s
1/2

= 2b. Then, using the second fact,
we find that Eq. (B5) is larger than Eq. (B4) by b. Simple
calculation leads to the power expansions of b with g as

b = g

2
− g2

4
. (B6)

Given that b should be odd under yV → −yV the explicit form
of b is deduced as

b =
(

1 − 1

2
yK

)
yV

2
. (B7)

The final forms of the singlet and triplets are

xW±1 = 1

8
− yK

16
+ 3

32
y2

V , (B8)

xW±2 = 1

2
− yK

4
+ 1

4
y2

V , (B9)

xV s
1/2

= 1

2
+ yK

4
− yV

2
+ 1

8

(
y2
K + 2yKyV − y2

V

)
, (B10)

xV c
1/2

= 1

2
+ yK

4
+ yV

2
+ 1

8

(
y2
K − 2yKyV − y2

V

)
. (B11)

3. Perturbative calculation to the first order based
on conformal field theory

Generally speaking, xn(L) depends on the system size
due to the relevant/irrelevant perturbations to the fixed-point
Hamiltonian. Let the Hamiltonian with the system size L be

Ĥ (L) = Ĥ∗ +
∑

j

g j

∫ L

0
dx �̂ j (x), (B12)

where Ĥ∗ is the Hamiltonian of the fixed point, �̂ j (x) is an
operator with the scaling dimension x j and g j is a correspond-
ing coupling constant. The scaling dimensions of a finite-size
system is then described by

xn(L) = xn + 2π
∑

j

cnn jg j

(
2π

L

)x j−2

= xn + 2π
∑

j

cnn jg j (L). (B13)

ci jk is the operator product expansion (OPE) coeffi-
cient [11,12]. Following a standard calculation from
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Tomonaga-Luttinger liquid, we find that the OPE coeffi-
cients as cKW±mW±m = − m2

4K , cKV±nV±n = n2K , cV c
1 V c

1/2V c
1/2

= 1√
2

and cV c
1 V s

1/2V s
1/2

= − 1√
2
. On the other hand, the effective Hamil-

tonian for the classical XY model is

Ĥ = ĤTLL
K=2 +

∫ L

0
dx

{
yK
4π

K(x) + yV

2
√

2π
V c

1 (x)

}
. (B14)

Comparing Eq. (B14) with Eq. (B12), we identify gK = yK
4π

and gV = yV

2
√

2π
. Substituting them into Eq. (B13), we find

xW±m = m2

8
+ 2πcW±mW±mKgK

= m2

8

(
1 − yK

2

)
, (B15)

xV s
1/2

= 1

2
+ 2π

(
cV s

1/2V s
1/2KgK + cV s

1/2V s
1/2V c

1/2
gV

)

= 1

2
+ yK

4
− yV

2
, (B16)

xV c
1/2

= 1

2
+ 2π

(
cV c

1/2V c
1/2KgK + cV c

1/2V c
1/2V c

1/2
gV

)

= 1

2
+ yK

4
+ yV

2
. (B17)

This is in agreement with Eqs. (B8)–(B11) to the first order.
The scaling dimension

xn(L) = 1

2π
ln(λ0/λn) (B18)

in the main text changes as we renormalize the tensor(as we
change the system sizes L), and so are yK(L) and yV (L).
Therefore, we can compute yK at each scale by measuring the
deviation of xW±2 from 1

2 for example. The identification of
the relevant energy levels can be done by comparing the exact
values of the scaling dimensions in the UV/IR fixed point.

This approach is applicable as long as the Hamiltonian is
in the vicinity of the fixed-point. Combined with TNR, our
approach would potentially become a powerful method to
quantitatively compute running coupling constants of the field
theory from lattice models near the fixed points.
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