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Dual current anomalies and quantum transport within extended reservoir simulations
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Quantum transport simulations are rapidly evolving and now encompass well-controlled tensor network tech-
niques for many-body limits. One powerful approach combines matrix product states with extended reservoirs. In
this method, continuous reservoirs are represented by explicit, discretized counterparts and a chemical potential
or temperature drop is maintained by external relaxation. Currents are strongly influenced by relaxation when it is
very weak or strong, resulting in a simulation analog of Kramers turnover for solution-phase chemical reactions.
At intermediate relaxation, the intrinsic conductance, that given by the Landauer or Meir-Wingreen expressions,
moderates the current. We demonstrate that strong impurity scattering (i.e., a small steady-state current) reveals
anomalous transport regimes within this methodology at weak-to-moderate and moderate-to-strong relaxation.
The former is due to virtual transitions and the latter to unphysical broadening of the populated density of states.
Thus, the turnover analog has five standard transport regimes, further constraining the parameters that lead to
recovery of the intrinsic conductance. In the worst case, the common strategy of choosing a relaxation strength
proportional to the reservoir level spacing can prevent convergence to the continuum limit. This advocates
a simulation strategy where one utilizes the current versus relaxation turnover profiles to identify simulation
parameters that most efficiently reproduce the intrinsic physical behavior.

DOI: 10.1103/PhysRevB.104.165131

I. INTRODUCTION

The accurate simulation of many-body transport is es-
sential to understanding nanoscale electronics and quantum
dots [1–3], quantum dynamics and control [4–7], spintronic
phenomena [8–10], and the development of “atomtronic” plat-
forms for physical simulation [11–20]. Recent developments
have delivered increasingly rigorous and well-controlled nu-
merical tools to pursue this goal. One approach employs a
canonical transformation to a mixed basis, where energy or
momentum modes are paired according to their natural scat-
tering structure, to perform tensor network simulations that
are extensive in space and time [21]. This is a substantial
advance for matrix product state calculations, which are oth-
erwise limited by the linear growth of entanglement entropy
[14,20,22–30] (though some operate in linear response via the
Kubo formula [31,32]). Alternative strategies have also been
presented, including those that introduce a linear-logarithmic
reservoir discretization and reorganize reservoir modes to
improve performance [33]. All of these techniques assume
closed systems, which only give quasi-steady-state currents
when starting from a density or chemical potential imbalance
[34,35].

The mixed-basis approach reflects a natural scattering
structure, making it ideal for simulating open systems.

*marek.rams@uj.edu.pl
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Notably, it can directly target steady and Floquet states, or
simulate real-time noise around a stationary state [36]. Related
methods have also been applied to describe quantum thermal
machines [37]. These developments employ “extended” or
“mesoscopic” reservoirs, where finite collections of fermionic
modes are broadened by external environments to yield an
effective continuum.

The extended reservoir approach (ERA) has a lengthy his-
tory, originating in the relaxation time approximation [38–44].
These early developments have evolved into a framework that
describes reservoirs in terms of broadened modes [45–48].
Within this framework, nonequilibrium Green’s functions
yield the exact, formal solution for both noninteracting and
interacting many-body systems [49–53]. These results pro-
vide a foundation to the overall approach but are limited for
practical many-body calculations. Consequently, most simu-
lations have been for transport though noninteracting systems
[54–65] (summarized in Ref. [50]) or classical thermal energy
propagation [66–70]. However, recent developments in tensor
networks deliver a general strategy for many-body calcula-
tions within the ERA and related methods. These methods
have enabled large-scale simulations of many-body impurity
systems [36,37,71], delivered solvers for dynamical mean-
field theory [72–77], and offered new perspectives for open
system dynamics [78]. The theory of extended reservoirs is
thus extensive.

The ERA yields a simulation analog of Kramers turnover
[49–53], where different transport behaviors are regulated by
the strength of relaxation. This leads to “friction-controlled”
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FIG. 1. Extended reservoir occupied density of states. The ex-
tended reservoir approach represents the left (L) and right (R)
reservoirs of a device S using a finite collection of modes. An
external environment broadens these modes through Markovian or
non-Markovian relaxation, which we depict using the occupied den-
sity of states for thermodynamic limit (green or blue, respectively).
Transport is then driven by a chemical potential difference μ across
L/R, affording a current I through S. We show a single mode
ωS in isolation (gray, dotted line assuming a small broadening)
and depict its occupied DOS when hybridized with Markovian
or non-Markovian reservoirs (green or blue, respectively). Practi-
cal calculations generally require Markovian relaxation. This can
anomalously broaden the populated DOS, necessitating judicious
parametrization. Data are from the single-site impurity model in
Eq. (14) with ωS = ω0, system-reservoir hopping v = ω0/8, NW =
128 equally spaced reservoir modes, and γ = ω0/5, lying on the
low-γ side of a Markovian anomaly.

currents at very weak (contact-limited) and strong (over-
damped) relaxation, with the physically relevant conductance
moderating the current at some point between these limits.
Here, we go beyond prior developments and demonstrate
that additional transport regimes are unveiled for strong
impurity scattering. One of these is a virtual anomaly asso-
ciated with tunneling processes and the other a Markovian
anomaly that emerges from the unphysical Markovian broad-
ening of the occupied density of states (DOS). These regimes
become pronounced at weak system-reservoir coupling, re-
vealing very large currents relative to the continuum limit
(i.e., the physically relevant current given by the Landauer
or Meir-Wingreen expressions for noninteracting and many-
body impurities, respectively). Additional features can emerge
due to unrelated processes (e.g., strongly off-resonant tunnel-
ing) but the five regimes we discuss appear to be universal,
persisting even for weak scattering [36] and are enhanced
when destructive interference is present in the impurity [65].

II. BACKGROUND

We will focus on transport through a central system S
driven by a chemical potential or temperature drop across
noninteracting left (L) and right (R) reservoirs (see Fig. 1)
[79–81]. The full Hamiltonian is

H = HS + HL + HR + HI, (1)

where the system Hamiltonian HS may contain many-body
interactions, including electron-electron, electron-photon,
and electron-vibration couplings. Furthermore, the reservoir
Hamiltonians HL(R) = ∑

k∈L(R) h̄ωkc†
kck describe a collec-

tion of explicit, noninteracting modes of frequencies ωk (h̄
is the reduced Planck’s constant). A quadratic Hamiltonian
HI = ∑

k∈LR
∑

i∈S h̄(vkic
†
kci + vikc†

i ck ) couples S to LR
with strength vik = v∗

ki, where cm (c†
m) are fermionic annihi-

lation (creation) operators for a level m ∈ LSR. We take the
index of sites in LSR to include all relevant labels (state, spin,
reservoir, or system, etc.) and sum over all states in a given
region.

Finite reservoirs only support a stationary current when
external reservoirs are present. Thus, we will solve the
(Markovian) Lindblad master equation

ρ̇ = − ı

h̄
[H, ρ] +

∑
k∈LR

γk+

(
c†

kρck − 1

2
{ckc†

k , ρ}
)

+
∑

k∈LR
γk−

(
ckρc†

k − 1

2
{c†

kck , ρ}
)

(2)

for the LSR system with Markovian relaxation in LR ({·, ·}
is the anticommutator) and a corresponding scenario for non-
Markovian relaxation. Throughout this work, we use the term
Markovian relaxation when it follows from a time-local Lind-
blad master equation as in Eq. (2). Non-Markovian relaxation
corresponds to evolution with similar retarded and advanced
Green’s functions, but instead with proper occupations as
described in Sec. II A; that would, however, follow from
an inherently non-time-local master equation. Reference [49]
shows the Hamiltonian for the LSR system and environment
that gives rise to the non-Markovian equation of motion when
the environment is integrated out.

The first term in Eq. (2) gives the evolution of the full,
many-body density matrix ρ according to the Hamiltonian H
in Eq. (1). Open dynamics arise from the Lindbladian terms,
which inject or deplete particles to or from the modes k at rates
γk+ and γk−, respectively. If we adopt a convention where
these rates are γk+ ≡ γk f α (ωk ) and γk− ≡ γk[1 − f α (ωk )],
the LR reservoir modes will relax to an equilibrium Fermi-
Dirac distribution f α (ωk ) (with α ∈ {L,R}) when decoupled
from S . The chemical potential μα of each reservoir is in-
cluded in f α (ωk ), where we take μL = −μR = μ/2 for the
potential bias between reservoirs μ. The result is a pseudoe-
quilibrium state, as it does not incorporate relaxation-induced
broadening of the extended reservoirs’ modes. We will show
how this leads to a transport anomaly at moderate to strong γ .

Reference [49] provides the formal solution for the steady-
state current corresponding to Eq. (2), which is valid both
for interacting and noninteracting many-body systems S (see
Refs. [52,53] for a unified derivation and fully analytic solu-
tions for proportional coupling). It was also proven that the
formal solution limits to either the Meir-Wingreen expression
or the Landauer formula. These expressions require us to find
the single-particle Green’s function in a system with many-
body interactions. This can be complicated and often requires
many approximations. Alternatively, one can solve Eq. (2)
numerically using established techniques such as tensor net-
works (as recently applied to transport in Refs. [36,37,71]).
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We begin by addressing systems that are proportionally
coupled to the electrodes. This requires identical distributions
of mode frequencies and relaxation strengths in each finite,
extended reservoir. The distribution of the system-reservoir
coupling constants must also be the same up to some overall
proportionality constant. We will show that if we apply a small
level shift between reservoirs, we can effectively “turn off”
the virtual anomaly. This general observation will carry over
to nonproportionally coupled and interacting setups. Even if
the continuum limit has such a symmetry, there can be finite
representations that limit to proportional coupling yet have
it formally broken. In fact, breaking proportional coupling
and using non-Markovian relaxation results in a three-regime
Kramer turnover, which is more well behaved, with both
anomalies removed.1

A. Steady-state current

The steady-state current associated with Eq. (2) has an
exact solution for arbitrary noninteracting systems and reser-
voirs [49,52,53]

I = e
∫

dω

2π
tr[�̃

L
Ga�RGr − �LGr�̃

R
Ga], (3)

encompassing both Markovian and non-Markovian relax-
ation. Here, e is the electron charge, Gr(a) is the re-
tarded (advanced) Green’s function of the full system, and
�L(R) (�̃

L(R)
) are the unweighted (weighted) spectral func-

tions (we note to the reader that in some contexts the spectral
function is also known as a “hybridization function”), which
all depend on the frequency ω. We employ notation where
bold symbols indicate matrices with standard matrix multi-
plication assumed. For non-Markovian (nM) relaxation, this
formula reduces to

I
nM= e

∫
dω

2π
( f L(ω) − f R(ω))tr[�LGr�RGa], (4)

where we indicate specific conditions for the equation by
labeling the equality (i.e., here “nM” indicates that this ex-
pression is for non-Markovian relaxation). The explicit forms
for the underlying Green’s functions are Gr(a) = 1/(ω −
H̄S − �r(a) ) with self-energies �r(a) = ∑

k∈LR gr(a)
k |vk〉〈vk|.

These expressions are identical for Markovian and non-
Markovian relaxation. We use |vk〉 to denote the coupling
vector between mode k ∈ LR and all sites i ∈ S , i.e., 〈i|vk〉 =
vik , and write gr(a)

k = 1/(ω − ωk ± ıγk/2) for the retarded
(advanced) Green’s function with k ∈ LR. These latter quan-
tities have γk > 0 but are isolated from the system. The
single-particle Hamiltonian describing S is H̄S , where HS =∑

i, j∈S [H̄S ]i, jc
†
i c j . General and exact results for the steady-

state current with many-body impurities, in the presence of
Markovian and non-Markovian relaxation, can be found in
Refs. [49,53]. We study many-body systems numerically, and
provide analytic results for noninteracting systems.

1Breaking proportional coupling is much more reflective of physi-
cal reality, where defects and other inhomogeneities in structure will
break such a strong symmetry.

As a final component, one also needs the spectral density
�L(R) = ı(�r

L(R) − �a
L(R) ) = −2 Im �r

L(R),

�L(R)(ω) = ı
∑

k∈L(R)

[
gr

k (ω) − ga
k (ω)

]|vk〉〈vk|. (5)

The population-weighted counterpart is

�̃
L(R)

(ω) = ı
∑

k∈L(R)

f̃k
[
gr

k (ω) − ga
k (ω)

]|vk〉〈vk|. (6)

Based on this, Markovian and non-Markovian relaxation only
differ in how we evaluate the Fermi-Dirac occupations f̃k ,

f̃k =
{

f α (ω) non-Markovian,

f α (ωk ) Markovian (7)

for reservoir α ∈ {L,R} and f α (ω) having bias μα . These
distributions set mode occupations to an inherently unphys-
ical Markovian equilibrium or to a physical non-Markovian
equilibrium. The latter occupies modes to give an appropriate
broadening and thus gives a proper Fermi level as shown in
Fig. 1.

For systems that are proportionally coupled yet otherwise
arbitrary (e.g., in structure, with or without many-body inter-
actions, and for Markovian or non-Markovian relaxation), the
steady-state current is [52,53]

I
λ= ıe

λ

1 + λ

∫
dω

2π
tr[��̃{Gr − Ga}], (8)

where we use label “λ” to indicate proportional coupling.
Stated formally, this means that [80,81]

�R = λ�L ≡ λ� (9)

for some positive constant λ. The current I = λ
1+λ

IL + 1
1+λ

IR
is then an average over the left, IL, and right, IR, currents
to/from S . The current in Eq. (8) also contains a difference in
weighted spectral densities

��̃
λ= ı

∑
k∈L

(
f̃ Lk − f̃ Rk

)[
gr

k (ω) − ga
k (ω)

]|vk〉〈vk|, (10)

where the sum only runs over states k in the left reservoir.
As per the proportional coupling requirements, the left and
right reservoirs are equivalent in their mode placement and
relaxation, with couplings related by vk′i = vki

√
λδkk′ with

k′ ∈ R, k ∈ L. The factor of λ does not appear in Eq. (10),
as averaging brings it out front in Eq. (8).

We may simplify this further for Markovian (M) relaxation.
The occupation factors in Eq. (8) are then evaluated at ωk ,
removing them from the ω integration and giving an analytic
expression [52,53]

I
λ,M= −2eλ

1 + λ

∑
k∈L

(
f̃ Lk − f̃ Rk

)〈vk| Im [Gr (ωk + ıγk/2)]|vk〉.
(11)

The integral in Eq. (8) cannot be evaluated for the non-
Markovian case due to the appearance of f α (ω).

B. Kramers turnover

In the presence of relaxation, particle and thermal transport
yield behavior analogous to Kramers turnover for condensed-
phase chemical reaction rates [49,68]. Stated succinctly,
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Kramers problem describes reactants that must overcome a
free-energy barrier to become products, while also being
subject to friction and noise due to the encapsulating sol-
vent [82,83]. When friction is weak, the reaction rate will
be linearly proportional to the strength of this friction. This
quantity defines the rate at which equilibrium is reestablished,
restoring the proportion of reactants that possess sufficient
free energy to overcome the barrier. For large friction, this
restoration process is rapid. However, strong friction can lo-
calize reactants in the initial state, decreasing the reaction rate
in inverse proportion to the frictional strength. Between these
limits there is a region where the intrinsic, transition state rate
is dominant.

A similar phenomenon occurs for transport simulations. At
weak relaxation (friction, noise), the current is limited by cou-
pling to the external (implicit) environments, which control
the rate of particle injection and depletion in the reduced LSR
system. This regime is characterized by a current [49,52,53]

I
λ,M≈ 2eλ

(1 + λ)2

∑
k∈L

γk
(

f̃ Lk − f̃ Rk
)
, (12)

where factors γk contribute proportionally.
Conversely, at strong relaxation, coherence with the cen-

tral region is destroyed, localizing particles in the extended
reservoir modes. This results in the current [49,52,53]

I
λ,M≈ 4eλ

1 + λ

∑
k∈L

|vk|2
γk

(
f̃ Lk − f̃ Rk

)
, (13)

with |vk|2 = 〈vk|vk〉, and the factors γk giving inversely pro-
portional contributions.

Equations (12) and (13) give the asymptotic limits of
Eq. (11) for Markovian relaxation and proportional coupling,
with a linear regime for weak relaxation and an inverse regime
at strong. The primary objective of this paper is to extend prior
developments [49] by accounting for additional regimes that
occur for for weak coupling and nonresonant conditions. We
will show that these linear and inverse regimes flank a pair
of anomalous transport regimes. These anomalous regimes, in
turn, flank the physical regime corresponding to continuum
reservoirs (where relaxation is not present).

C. Example models

For demonstrative purposes, we will focus on two central
systems S: a single-site (noninteracting) impurity and a two-
site (interacting) impurity. For the single-site case,

HS = h̄ ωSc†
1c1, (14)

with onsite mode frequency ωS . As a representative many-
body model, we take

HS = h̄ vS (c†
1c2 + c†

2c1) + h̄Un1n2, (15)

where the hopping frequency between sites is vS , the number
operator is n j = c†

j c j , the density-density interaction strength
is U , and onsite mode frequencies are fixed at zero.

We consider a setup, where the central region S is situated
between spatially one-dimensional (1D) reservoirs i.e., one-
dimensional chains with hopping of frequency ω0 between
nearest-neighbor lattice sites. The last site of each reservoir

is attached to a single site of S via hopping frequency v. This
makes for a unique arrangement in the single-site model.

For the two-site model, we address two variants of attach-
ment. First, we consider the destructive interference model of
Ref. [65] (but with a many-body interaction U ), where the first
site is connected to both reservoirs and the second to neither
(i.e., it is proportionally coupled). In the second variant, the
sites form a serial junction with the first site connected only
to L and the second only to R, as in Ref. [36]. There is no
proportional coupling in this case since each site is coupled to
a single reservoir.

In the continuum limit, when each reservoir chain extends
to infinity, each of our reservoirs contributes to retarded self-
energy of the system site it is attached to so that (see, e.g.,
Ref. [49])

�r = 8v2

W 2

⎛
⎝ω + ı

γ

2
− ı

√
W 2

4
−

(
ω + ı

γ

2

)2
⎞
⎠, (16)

where W = 4ω0 is the reservoir bandwidth. Equation (16) is
sufficient to derive the Green’s functions and spectral densi-
ties. This choice will minimally impact most of the results.
This also holds for the performance of numerical simulations,
where we employ the reservoirs’ energy bases instead of their
chain representations. Nonetheless, our numerical results will
be specific to this setup and some equations will be specific to
the 1D DOS.

The reservoirs can be discretized in a number of ways,
provided that they reproduce the continuum in the asymptotic
limit. We will present equations for “evenly spaced” (ES)
reservoir modes as well as “transformed spacing” (TS).
TS is defined by the eigenfrequencies of a finite, spatially
one-dimensional chain of NW sites. These can be found using
the canonical transformation ck = ∑

j∈α U
†
k jc j with U†

k j =√
2/(NW + 1) sin[ jkπ/(NW + 1)] and k = 1, . . . , NW .

This yields frequencies ωk = 2ω0 cos[kπ/(NW + 1)] and
couplings vki = vk = v

√
2/(NW + 1) sin[kπ/(NW + 1)]. We

note that k carries both a numerical index and a reservoir index
α. This discretization gives the system-reservoir coupling at
the Fermi level (h̄ωF = 0)

|vF |2 TS= |v|2�F /(πω0), (17)

as well as the level spacing

�F = 2ω0π/(NW + 1). (18)

These quantities will be used below. Similar expressions hold
for the evenly spaced discretization, where we have

|vF |2 ES= |v|2�0/(πω0) (19)

and

�0 = W/NW = 4ω0/NW , (20)

where reservoir modes ωk are placed in midpoints of each
of the NW bins of size �0 (thus filling in the bandwidth).
We employ the midpoint approximation to set coupling
constants to the reservoirs in our MPS calculations, and en-
sure that they properly limit to the continuum, i.e., vk j =
2v[�k/(πW )

√
1 − (2ωk/W )2]1/2 for the interval ωk ± �0/2.

This coupling method performs comparably to the integrated
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coupling for common reservoir discretization methods [84],
where one integrates the spectral density over a symmet-
ric frequency range ωk ± �0/2 about the finite reservoir
mode ωk . This integrated quantity allows one to define an
equivalent coupling for ωk that maintains the total weight
from the continuum reservoir in this spectral region, given
by vk j = vπ1/2[K (ωk + �k/2) − K (ωk − �k/2)]1/2 where
K (ω) = 2ω/W (1 − 4ω2/W 2)1/2 + csc−1[W/(2ω)]. We use
these integrated couplings for our exact, noninteracting cal-
culations.

III. RESULTS

Figure 1 depicts a typical extended reservoir and its
weighted spectral functions (i.e., the occupied density of states
in the reservoirs). The DOS and occupied DOS are taken
from continuum limit expressions for a single site coupled
to a pair of one-dimensional reservoirs (transformed to the
energy basis). It is clear that non-Markovian relaxation re-
sults in an actual Fermi level, while Markovian relaxation
gives unphysical broadening.2 This broadening is responsible
for the anomaly observed at moderate-to-strong relaxation
strength, as well as for the zero-bias currents associated with
asymmetric (nonproportionally coupled) reservoirs [49].

Figure 2 shows the steady-state current for Markovian
relaxation, Eq. (11), for the single-site model in Eq. (14).
When the coupling is strong (v ≈ ω0), the current assumes
a well-defined plateau as a function of the relaxation rate γ .
We take γ to be the same for all reservoir modes. It is here that
the steady-state current generically reproduces the continuum
reservoir limit. This plateau is markedly different at weak cou-
pling (v 
 ω0), where large features exist at moderately small
and moderately large γ (the peaks of which mark the plateau
edges at strong coupling). Situated between these features is
a regime that corresponds to the continuum limit (Landauer’s
formula for noninteracting cases), a region that increases in
size for larger reservoirs.

We will address the origin of these anomalies in linear re-
sponse, as the resulting expressions are easily interpreted (the
same underlying phenomena occur out of linear response).
Notably, the non-Markovian and Markovian relaxation have
different forms, yielding distinct implications. Starting from
Eq. (8), the current for non-Markovian relaxation is

I
λ,nM≈

lr
−eμ

π

λ

1 + λ
tr[� Im Gr]|ω=0, (21)

where μ = μL − μR is a symmetrically applied bias, re-
sulting in evaluation at ω = 0 (although it can be evaluated
anywhere in the suitably small bias window). Here, we have
also replaced the difference in the weighted spectral density
with the spectral density of L. In contrast, Markovian relax-
ation gives

I
λ,M≈

lr
−eNB

π

λ

1 + λ

∫
dω tr[�F Im Gr]. (22)

2We note that this unphysical behavior specifically refers to ap-
plicability when describing fermions, as Lindblad master equations
always give a mathematically proper quantum evolution.

(a)

(b)

FIG. 2. Anomalous currents and Kramers turnover for a single-
site impurity. (a) Kramers turnover versus relaxation γ and coupling
v. Strong scattering (weak coupling) reveals two regimes: a “vir-
tual anomaly” for weak-to-moderate relaxation and a “Markovian
anomaly” for moderate-to-strong relaxation. The former is due to
resonant L,R modes which artificially increase particle currents.
The respective virtual transitions through S are eventually over-
damped and turn over. The Markovian anomaly is due to unphysical
smearing of the populated DOS by the relaxation, again increasing
the current. This too is ultimately overdamped at stronger relaxation.
These regimes flank the intermediate γ regime where the continuum
limit is best recovered. Results correspond to a single-site impurity
in Eq. (14) with ωS = ω0, and NW = 128 equally spaced reservoir
modes. Couplings are given by the (integrated) strength within each
mode bin and the bias is μ = ω0/2 = 2μL = −2μR. The white line
designates the onset of the anomaly parameter space, according to
Eq. (33). (b) Kramers turnover at weak coupling versus γ for several
NW . On the logarithm scale, the size of the continuum regime is
proportional to log NW , while anomalies slow its convergence to the
Landauer limit (dashed black line). Parameters are the same as in
(a) but at v = ω0/8 and for various NW . Stars denote the optimal
relaxation γ 
 while squares correspond to γ � (a popular choice;
proportional to the level spacing in the reservoirs), demonstrating a
shift of γ � from the optimum.

The integral is the key difference: this gives an overlap of the
system DOS at all frequencies with the spectral density, while
taking only contributions from the Fermi level modes (taken
at ωk = 0 and designated F ),

�F = ı
[
gr

F (ω) − ga
F (ω)

]|vF 〉〈vF |. (23)

Alternatively, we can start with the analytic solution (11) for
Markovian relaxation, yielding

I
λ,M≈

lr
−2eNB

λ

1 + λ
〈vF | Im Gr

F |vF 〉, (24)
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which is equivalent to Eq. (22). The Green’s function

Gr
F = Gr (0 + ıγF /2) (25)

is at the Fermi level (assuming a smooth γk there) and

NB =
∑
k∈L

f̃ Lk − f̃ Rk ≈
{2NW

μ

πW

NW
μ

W

for TS,

for ES (26)

is the effective number of modes in the bias window, which is
typically not an integer (though it will be at zero temperature
and for particular arrangements of modes). Linear response
requires that f̃ Lk − f̃ Rk is negligible except around the Fermi
level or, more broadly, non-negligible only in the region where
there is little variation for the other factors present in Eq. (24).
The approximate equality in Eq. (26) reflects that the level
spacing varies in the bias window and that modes can cover
more than just the bias window (e.g., μ/�F is not always an
integer).3

The non-Markovian and Markovian expressions (21) and
(22) converge when relaxation is weak. The difference be-
tween these is nonetheless pronounced at strong relaxation,
where non-Markovian effects give an overlap between the
spectral density and system DOS around the Fermi level.
Conversely, Markovian relaxation gives an overlap over all
frequencies. This issue originates in the violation of the
fluctuation-dissipation theorem and has important conse-
quences.

We will examine this behavior in detail for a single-site
impurity. Its Green’s function is

Gr λ= 1

ω − ωS − (1 + λ)
∑

k∈L
|vk |2

ω−ωk+ıγk/2

, (27)

where ωS is onsite frequency for the impurity and vk is a
scalar since there is only one site in S . In the following,
we will take equally spaced reservoir modes that are finite
realizations of a one-dimensional lattice with real-space hop-
ping frequency ω0. Nonetheless, all of our analytic results
will apply to arbitrary, proportionally coupled reservoirs (see
Sec. II C). For simplicity we assume a homogeneous relax-
ation rate, i.e., γk = γ .

Employing Eq. (27) in Eq. (24) allows us to interpolate be-
tween all regimes for weak system-reservoir coupling (WC).
At very small γ , the contribution from the self-energy be-
comes dominant and Gr scales proportional to γ , yielding I ∝
γ . Conversely, for very large γ , the self-energy contribution is
small. However, since Eq. (24) is evaluated at ωk + ıγ /2, the
dominant factor in Gr is inversely proportional to relaxation
rate leading to I ∝ 1/γ . Approximating the self-energy with
the dominant contribution at small γ , the current is

I
λ,M,WC≈

lr

2eλNB|vF |2
1 + λ

γ /2 + (1 + λ)|vF |2/γ
ω2
S + (γ /2 + (1 + λ)|vF |2/γ )2

, (28)

where the reservoir size is embedded in both NB [see Eq. (26)]
and |vF |2 ∝ v2/NW . This approximate interpolation breaks
down at large system-reservoir coupling but becomes exact

3For closed systems, one will get systematic errors when the mode
“bins” do not exactly fill the bias window [34].

as the coupling goes to zero for off-resonant tunneling (e.g.,
ωS outside of the bias window). It nonetheless captures the
physics of different turnover regimes, as well as their quanti-
tative behavior when coupling is weak. For finite reservoirs,
this expression converges to the exact finite reservoir result,
not the Landauer formula, as |v|2/ωS drops below the finite
level spacing. Here, v is the total, real-space coupling and not
vk which already depends on 1/

√
NW . Due to this, the order

of limits is important, as we will discuss later.
As a point of reference, we introduce I◦ to denote the

continuum (Landauer) result

I◦ λ≈
lr

e

2π

4λ|v|4
(1 + λ)2|v|4 + ω2

0ω
2
S

μ. (29)

This expression is given in linear response. Nonetheless, the
correspondence with the extended reservoir approach also
becomes exact for nonlinear response and arbitrary S as the
reservoirs approach the continuum and relaxation limits to
zero [49,52,53].

A. Duality between current anomalies

We can isolate specific aspects of turnover by rewriting
Eq. (28) in a Lorentzian form for the weak-to-moderate and
moderate-to-strong anomalies,

I
λ,M,WC≈

lr

2eλNB|vF |2
1 + λ

γ̃

ω2
S + γ̃ 2

. (30)

This expression permits an easy separation of relaxation
regimes,

small γ

γ̃ ⇒ (1 + λ)|vF |2/γ ⇔ large γ

γ̃ ⇒ γ /2, (31)

which are distinguished by the parameter γ̃ .4 We immediately
find some useful results. First and foremost, the anomalous
current maximum I� is the same for both anomalies, indepen-
dent of NW , and is given by

I� ≈ eλNB|vF |2
1 + λ

1

ωS

ES≈ eλ|v|2μ
(1 + λ)πω0ωS

. (32)

The second expression assumes evenly spaced modes (that
represent a one-dimensional spectral function). In linear re-
sponse, this implies that the current anomaly will surpass the
Landauer value by a factor of

I�

I◦
ES= ω0ωS

2(1 + λ)|v|2 , (33)

where the Landauer current I◦ is in Eq. (29). This relation di-
verges as the coupling decreases, implying that the anomalies
progressively dwarf the Landauer current. If we take I� = I◦
at weak coupling, Eq. (33) yields the parameter values where
the anomalous regime is revealed [see the white turnover
curve in Fig. 2(a)].

4While we expect some other models will show such a strong
duality, it will not be general. However, we expect the qualitative
discussion to apply beyond the one-site impurity and that some of
the quantitative expressions for weak coupling will hold.
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At weak coupling, the current (28) will not develop a
well-defined plateau, but will instead give a distinct minimum
between anomalies. Due to the nature of this arrangement,
this minimum will occur at the geometric midpoint between
the anomalies. This will not hold for strong coupling, as the
minimum will be distorted by nonperturbative effects. Note
that additional features may appear in this region, such as an
additional nonlinear dip for strongly off-resonant tunneling.

The duality (30) also indicates that the maximum of both
anomalies will be found at γ̃ = ωS , as defined by the two
particular γ̃ .5 The optimal relaxation γ 
 for estimating the
current is at their geometric mean

γ 

WC≈ |vF |

√
2(1 + λ)

ES= 2|v|
√

2(1 + λ)

πNW
(34)

in the weak-coupling limit. By this, we mean that it gives the
best estimate for the Landauer limit while excluding the “ac-
cidental” crossings within the I ∝ γ and the I ∝ 1/γ regimes.
We write Eq. (34) as an approximate expression since it only
becomes exact when we take v → 0.6 Figure 3 shows how the
optimal estimator behaves across coupling regimes when we
go to very large NW . We indeed find consistency with Eq. (34)
when NW is small and coupling is weak, observing a γ 
 that
scales as N−1/2

W . However, this shifts to different asymptotic
behavior as NW is increased. The origin of this discrepancy
lies in how we take limits for Eq. (28) and subsequent results.
That is, our analytical solution is predicated on limiting to
v → 0 at a fixed NW , while the procedure used in Fig. 3
effectively limits to NW → ∞ at fixed v. Despite this caveat,
Eq. (34) will still hold at small and moderate NW and thus for
most practical simulations.

Equation (34) is peculiar. Folklore suggests that an ap-
propriate γ should be comparable to the level spacing in
the reservoirs. Indeed, this assumption is used in most of
the literature. For large coupling, this is correct: the linear
in γ region terminates upon reaching the Landauer plateau
near a transition point at γ ∝ 1/NW [49]. The same behavior
also occurs for the case discussed above. However, owing to
the anomaly, it overshoots the Landauer plateau (while both
cases end at γ ∝ 1/NW , the numerical prefactor is different,
with one being the bandwidth and the other containing the
real-space system-reservoir coupling). As such, this choice
can increase errors when coupling is weak. In other words,
the relaxation defined by the level spacing γ � = W/NW only

coincides with the optimum relaxation when NW = 2πω2
0

v2(1+λ) .

For a smaller number of modes, γ 
 will be weaker than γ �.
For a larger number of modes, γ 
 will be stronger than γ �.
While changing the prefactor in γ � can improve accuracy for
finite NW , it does not fundamentally alter this behavior. The
relaxation γ � will be offset from the optimum and this can re-
sult in a saturation of the relative current error at a magnitude

5One can also take the point where the two Lorentzian turnovers
intersect, which gives the same value.

6Note that, even as coupling becomes weak, the current at γ 
 in
Eq. (34) will not yield Landauer’s result as noted in the main text
after Eq. (28), as that equation becomes exact only when the effective
real-space coupling is less than the finite level spacing.

(a)

(b)

(c)

FIG. 3. Optimal relaxation and accurate simulation. Extended
reservoir simulations typically employ a relaxation γ proportional
to the level spacing (γ ∝ 1/NW ). However, the dual anomalies,
present for Markovian reservoirs and weak coupling, indicate that
the optimal estimator should be proportional to the inverse square
root of modes (γ ∝ 1/

√
NW ). (a) The actual optimal estimator γ 


(found numerically by comparing turnover to the continuum limit
I◦) transitions from scaling as 1/

√
NW to 1/NW as the coupling

approaches unity. Deviations are seen for large NW at weak cou-
pling, as explained in the text. Best fits to A/N p

W scaling give
parameters (A, p) = (1.72, −0.81), (0.87,−0.74), (0.41,−0.69),
(0.18, −0.59), (0.08, −0.55), and (0.04, −0.52) for v from large to
small (couplings v are labeled in units of ω0 and increase between
curves as denoted by the arrows). The standard deviation for all
fitting parameters is ±0.01. (b) Relative error |I
 − I◦|/I◦ versus
NW for the current I
 = I (γ 
) for the γ 
 from (a) compared to the
continuum limit value. (c) Relative error |I� − I◦|/I◦ for the estimate
I� = I (γ �), where the relaxation γ � = W/NW is equal to the level
spacing. This current estimate misses the plateau by a fixed amount
as NW increases. In other words, the estimate rides the edge of the
virtual anomaly as NW → ∞ and γ → 0 (taken together) and will
not converge to the continuum limit. Model parameters are the same
as Fig. 2(b), except where specified.

comparable with the accuracy obtainable with tensor network
simulations [see Fig. 3(c)].

Our observations demonstrate that, barring additional
knowledge about a transport problem, one should always
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FIG. 4. Domain of confidence. Turnover behavior (black solid
line) generically gives rise to five regimes: (1) a region linear in γ

where the current is limited by the contact to external environment
(dashed blue line); (2) a regime where virtual transitions connect
resonant reservoir modes, leading to a “virtual anomaly” with over-
damped turnover (dotted blue line); (3) a domain of confidence
where calculations most closely represent the continuum limit; (4)
a regime where unphysical broadening, “the Markovian anomaly,”
creates overlap between reservoir and system states (dashed orange
line); and (5) an overdamped regime where the current is inversely
proportional to the relaxation (dotted orange line). The straight lines
are the approximate analytic expressions for the currents in these
different regimes, the dotted gray line is the Landauer limit, and the
dashed gray line the “dual” anomalies, Eq. (28), at weak coupling.
The calculation has the same parameters as Fig. 2(b) with NW = 128
evenly spaced reservoir modes. Also shown are three other calcula-
tions: one (yellow solid line) with shifted Markovian reservoirs so
that all L modes are off resonant with R modes, removing the virtual
anomaly; a second simulation (green solid line) with non-Markovian
relaxation, which contains the virtual anomaly but not the Markovian
anomaly since there is a well-defined Fermi level. The third (black
dashed line) has shifted, non-Markovian reservoirs, removing both
anomalies. Note that the non-Markovian relaxation often displays
different scaling in the large-γ regime (here ∝1/γ 2 since ωS is
outside the bias window, whereas it would give 1/γ otherwise [49]).

scan the current versus relaxation strength, as in Ref. [36].
This will indicate if anomalous behavior is present, as shown
in Fig. 4 where the anomalies flank a “domain of confi-
dence.” One should obtain a plateau (see Fig. 2) in this
intermediate relaxation regime and extend past kBT/h̄, with
kB Boltzmann’s constant and T the temperature. This thermal
relaxation strength marks the onset of convergence between
Markovian dynamics, with an improper equilibrium, and non-
Markovian dynamics, with a proper Fermi level [49].

The preceding results constitute an overview of anomalies
for the single-site impurity, which encapsulate general im-
plications that extend beyond this analytically tractable case.
We now will discuss their physical origin and derive some
approximate expressions for the current.

B. Small-γ (virtual) anomaly

For very small γ we can expand Eq. (28) to obtain

I
λ,M,WC≈

lr

2eλ

(1 + λ)2
NBγ

ES≈ 2eμλ

W (1 + λ)2
NW γ , (35)

which is the weak relaxation expression when limited to linear
response and weak coupling [49,52,53] [the second equality
invokes the approximation in Eq. (26) and the bandwidth
for a 1D DOS] [see Eq. (12)]. This expression assumes that
both |vF |2/γ � γ and |vF |2/γ � |ωS |. Furthermore, since
|vF |2 ∝ |v|2/NW , the second condition will define the start
of the linear regime for nonresonant tunneling at weak cou-
pling. This implies that γ must be much smaller than the
level spacing in the reservoirs and also much smaller than
the effective coupling |vF |2/ωS (i.e., perturbatively from one
reservoir mode to the system state). One can, however, satisfy
the first inequality yet have a case where |vF |2/γ 
 |ωS |.
This yields a a second expression for the current,

I
λ,M,WC≈

lr
2eλNB

|vF |4
ω2
S

1

γ

ES≈ 8eμλ|v|4
π2ω2

Sω0

1

NW γ
, (36)

corresponding to an additional 1/γ regime where virtual
tunneling between individual pairs of reservoir states is sup-
pressed. That is, we now have an effective coupling of
|vF |2/ωS between the system and L (and λ|vF |2/ωS for R).
While coherence is suppressed in this regime, similar to
its large-γ counterpart, this suppression now occurs for vir-
tual processes. It depends on |v|4, the reservoir size, and
the system’s ω2

S , i.e., to the perturbative coupling squared
(|v|2/ωS )2. Figure 4 shows where these approximations fit on
the full turnover profile.

The origin of this process immediately suggests how we
can remove the anomaly. We need only shift the L and R
modes out of alignment, and thus out of resonance, so that
the virtual tunneling events are suppressed by an additional
factor of the level spacing [for the equally spaced case, the
shift can be at most W/(2NW )]. Figure 4 also shows the
turnover profile with suppressed virtual tunneling, leaving a
I ∝ γ region that transitions into the large-γ anomaly directly
through the intermediate, physical regime.

If γ 
 kBT/h̄, the non-Markovian and Markovian relax-
ation will have similar behavior in the weak-to-moderate γ

regime [49]. This implies that non-Markovian relaxation will
have the same virtual anomaly, and thus we do not discuss it
separately.

C. Large-γ (Markovian) anomaly

For very large γ , we can expand Eq. (28) to obtain

I
λ,M,WC≈

lr

4eλ

1 + λ
NB

|vF |2
γ

ES≈ 4eμλ

(1 + λ)πω0

|v|2
γ

, (37)

which is the strong relaxation expression limited to linear
response [49,52,53] [again, the second equality uses the ap-
proximation in Eq. (26) and the bandwidth for a 1D DOS] [see
Eq. (13)]. In contrast to small-γ approximation, this expres-
sion now assumes that γ /2 � (1 + λ)|vF |2/γ and γ /2 �
|ωS |. Since |vF |2 ∝ |v|2/NW , the second condition will define
the start of the 1/γ regime for nonresonant tunneling at weak
coupling. For moderate-to-strong coupling, broadening of the
system mode due to system-reservoir coupling will determine
where the transition happens. For the cases when the first
inequality is satisfied but the second is violated, i.e., we have
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γ /2 
 |ωS |, the following relation is established:

I
λ,M,WC≈

lr

eλ

1 + λ
NB

|vF |2
ω2
S

γ
ES≈ eμλ

(1 + λ)πω0

|v|2
ω2
S

γ , (38)

corresponding to another I ∝ γ regime. In this case, reservoir
states at the Fermi level (precisely, within the bias window,
which is assumed to be small) are broadened to give increased
spectral weight around the system’s DOS. While the math-
ematical origin for this is clear, the behavior is unphysical
since the broadened tail of the reservoir modes should not
be occupied. This region is improperly populated due to the
Markovian relaxation. The expressions derived for moderate-
to-strong and strong relaxation are also plotted in Fig. 4.

Markovian and non-Markovian relaxation give different
behavior in the moderate-to-strong γ regime. If we com-
pare Eqs. (21) and (22) in linear response, we see that
non-Markovian relaxation gives a current from the overlap
between the reservoir DOS at the Fermi level and the (broad-
ened) system DOS at the Fermi level, ω = 0. Conversely, for
Markovian relaxation, the current is the total overlap between
broadened Fermi level modes in the reservoir and the sys-
tem’s density of states. These Lorentzian broadened modes
have long tails, which give large anomalous currents when
coupling to the central region is weak. This is compounded
when broadened reservoir modes at the Fermi level reach the
highly peaked system DOS. This effectively puts the occupied
(unoccupied) DOS from L(R) “in resonance” with the system
level(s). Stated in another way, the broadening due to relax-
ation has replaced temperature in determining the effective
bias window.

The origin of this anomaly indicates that it can be removed
by using non-Markovian relaxation. Figure 4 shows this, con-
firming the absence of the Markovian anomaly at large γ .
While our off-resonant example gives a large-γ turnover that
scales as I ∝ 1/γ 2, we would get I ∝ 1/γ for non-Markovian
relaxation when the system mode is in resonance (this is an
example of system-induced asymptotics). The benefits from
using non-Markovian relaxation do come at a cost: while easy
to solve for noninteracting systems, this does not yield a time-
local Lindblad master equation that is amenable to many-body
simulations.

To further explore this moderate-to-strong γ anomaly, we
can do a separate calculation at weak coupling v. In this case,
we may ignore reservoir-induced broadening in the system
if the relaxation is moderate to large. Such maneuvers are
possible since the explicit reservoir modes become progres-
sively disconnected from the system due to rapid decoherence
at large γ (a fact related to the Zeno paradox). This is not
possible at weak relaxation where strong coherence remains
even at weak coupling (i.e., a strong hybridization of modes).

In this weak-coupling limit at strong relaxation, the current
from Eq. (22) becomes

I
λ,M,WC≈

lr
−eNB

π

λ

1 + λ

∫
dω tr

[
�F Im Gr

0

]
, (39)

where Gr
0 is the bare system’s Green’s function [i.e., for a

single-site system Gr
0 = 1/(ω − ωS + ıη) with η → 0 at the

end of calculation]. If the system has a strong peak in the DOS

around ωS , we get the overlap integral

I
λ,M,WC≈

lr
eNB

λ

1 + λ
|vF |2 γ

ω2
S + γ 2/4

, (40)

which is equivalent to Eq. (30) for large γ . This derivation
underscores that an unphysical spread of the occupied (and
unoccupied) DOS for extended reservoir modes is causing the
anomaly.

This approach generalizes to more complex systems. For
instance, we can discuss multiple noninteracting system states
coupled to environments with a proportionality factor λ:

I
λ,M,WC≈

lr
eNB

λ

1 + λ

∑
i∈S

|viF |2 γ

ω2
i + γ 2/4

. (41)

It is immediately apparent that the behavior for moderate-to-
strong and strong relaxation is not markedly different from
that of a single impurity. The only difference is that |vF |2/ωS
is replaced by a sum over all sites in the moderate-to-strong
case

∑
j∈S |v jF |2/ω j , and furthermore that |vF |2 is replaced

with
∑

j∈S |v jF |2 for the large-γ limit. Note that the current in
these expressions scales with number of sites NS in the central
region. If we imagine that S is an array of identical sites which
are decoupled from each other so that v jF = vF and ω j = ωS ,
we will find a large-γ anomaly that grows linearly with NS .

D. Continuum limit

The Markovian anomaly will persist even as we ap-
proach the continuum limit NW → ∞. Conversely, the virtual
anomaly will be completely suppressed, as a finite γ is al-
ways sufficient to “turn over” the infinitesimal coupling from
individual reservoir modes to the system. However, the level
spacing will not impact moderate-to-strong relaxation, pro-
vided that it is sufficient to have anomalies separated from
each other. Since compact expressions are readily derived in
the continuum limit, we can also examine behavior outside of
weak coupling. The only quantity we need is the retarded self-
energy in Eq. (16), which is sufficient to derive the Green’s
functions Gr = [ω − ωS − (1 + λ)�r]−1 = (Ga)† and spec-
tral densities � = −2 Im �r . In a formal sense, this allows
us to obtain expressions in nonlinear response by integrating
Eq. (8).

Nonproportional coupling may also be addressed using the
more general expressions provided in Ref. [49]. For instance,
one may assume that both reservoirs are one dimensional with
a shifted DOS, as previously derived for flat-band reservoirs
[49], to show the existence of zero-bias currents due to the
Markovian anomaly.

In linear response, we can apply Eq. (16) to Eq. (22),
yielding a straightforward expression

I
λ,M≈

lr

2e|v|2μλ

πω0(1 + λ)

ϒ

ω2
S + ϒ2

, (42)

where

ϒ = γ

2
+ |ṽ|2

2ω2
0

( − γ +
√

γ 2 + 4ω2
0

)
. (43)

This result includes incoherent processes due to relaxation
from implicit environments alongside coherent processes
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from extended environments L(R). For convenience, we de-
fined a modified coupling constant |ṽ|2 = (1 + λ)|v|2. When
γ is still weak compared to the total hybridization strength
|v|2/ω0, we expect a linear increase in the current versus γ .
This arises from Lorentzian broadening of the Fermi level
mode in the reservoir, which increases its weight near the
system DOS (this is essentially static). The current, with its
linear in γ correction, is given by

I
λ,M≈

lr
I◦ + γ

2eλ|v|2μ
π (1 + λ)ω0

(|ṽ|2 − ω2
0

)(|ṽ|4 − ω2
0ω

2
S
)

(|ṽ|4 + ω2
0ω

2
S
)2 , (44)

which converges to Eq. (38) for weak coupling. This correc-
tion can be positive or negative depending on the alignment
of the system level and the given coupling strength. For weak
coupling it is a linear increase away from the Landauer limit,
which will subsequently reach a maximum and decrease as
1/γ .

To see the sign of the correction, we can examine the
extremum in the current for |ṽ|2 > ω2

0, occurring at

γ = 2|ṽ|2 − 2ω2
0√

2|ṽ|2 − ω2
0

. (45)

The value of the current is given by Eq. (42) with ϒ2 =
2|ṽ|2 − ω2

0. This is a maximum when ω2
S < ϒ2 [i.e., when

|ṽ|2 > (ω2
0 + ω2

S )/2], but a minimum when ω2
S > ϒ2 [i.e.,

when |ṽ|2 < (ω2
0 + ω2

S )/2, with this condition yielding a neg-
ative sign in Eq. (44)7]. For increasing relaxation rate, the
minimum will be followed by a subsequent maximum with
current

I� = eλ|v|2μ
π (1 + λ)ω0ωS

(46)

at

γ = ωS +
−ω2

0ωS + 2|ṽ|2
√

−2|ṽ|2 + ω2
0 + ω2

S

2|ṽ|2 − ω2
0

. (47)

Equation (46) is the same as Eq. (32) for weak coupling.
When |ṽ|2 < ω2

0, there will be a maximum in the current
with value given by Eq. (46) provided that |ṽ|2 < ω0ωS .
This comes at Eq. (47) except when |ṽ|2 = ω2

0/2 where γ =
(4ω2

S − ω2
0 )/(2ωS ). These results show a wide range of be-

havior for Markovian relaxation, even for a simple, single-site
model. Thus, when performing practical simulations, it is
imperative to increase NW and decrease γ in a manner that
avoids this behavior. For any given system of interest, one
should also scan the current versus γ to ensure formation of a
Landauer plateau.

Moving beyond these features, the current will decrease
as γ becomes stronger. In effect, the Lorentzian is now so
broad that the full system’s state(s) are within its body, with a
decay of 1/γ due to further broadening. This occurs as the full

7We have two conditions for the minimum, |ṽ|2 > ω2
0 and |ṽ|2 <

(ω2
0 + ω2

S )/2, which together give that |ṽ|4 < ω2
0ω

2
S . The former

condition also gives that |ṽ|2 − ω2
0 > 0. Thus, the linear term is

negative.

system’s Green’s function is getting sharper and sharper since
the rapid decoherence due to γ effectively cuts the system off
from the reservoirs.

E. Landauer’s regime

We can use the preceding results to constrain the re-
quired reservoir size and relaxation strength. The prior work
demonstrated, in Ref. [49], that γ 
 kBT/h̄ must hold for
the Markovian approximation (which has an ill-defined Fermi
level) to converge to the non-Markovian relaxation (which
has a well-defined Fermi level). This is a useful condition
since neither the proof nor the expression rely on the sys-
tem architecture, the reservoir band structure, or any other
details, just the nature of the relaxation. Here, we give more
precise conditions for our reference impurity problem, which
are generally helpful for understanding the extended reservoir
approach.

We begin from the large-γ side. To fully remove the
Markovian anomaly, we require a γ small enough that the
linear component of Eq. (44) is negligible. Taking the ratio
of the linear component to I◦ to obtain an upper bound on γ

yields

γ 
 |ṽ|2ω0
(|ṽ|4 + ω2

0ω
2
S
)∣∣|ṽ|2 − ω2

0

∣∣∣∣|ṽ|4 − ω2
0ω

2
S
∣∣ v→0−−→ |ṽ|2

ω0
. (48)

Once again, the linear correction can be negative due to dif-
ferent behavior in different parameter regimes. Similarly, we
can find where the virtual anomaly turnover, Eq. (36), equals
I◦ to provide a lower bound on γ . In the weak-coupling limit,

γ � 4ω0

πNW

ES= �0

π
, (49)

where �0 is the level spacing.
There is no contradiction between this result and the

square-root result. Putting the two inequalities, Eqs. (48) and
(49), together and maximally satisfying the constraints will
yield the same NW dependence of the optimal estimator in
Eq. (34). As we discussed earlier, Fig. 3 shows that the opti-
mal estimator behaves as 1/

√
NW for strong scattering (weak

coupling) and shifts to 1/NW for weak scattering.

F. Many body S
The considerations in this work carry over to more com-

plicated noninteracting systems, as well as to interacting
many-body systems. Here, we present data for the two-site
systems of Eq. (15) and Sec. II C in a weak-coupling regime.
In doing so, we compare limits with and without a density-
density interaction U . These data are for (i) a proportional
coupling case, where both reservoirs are coupled to the
same system site, and none coupled to the other system site
[Fig. 5(a) ]and (ii) for a nonproportional coupling case, where
each reservoir is connected to a different site of the system
[Fig. 5(b)]. The reservoirs themselves are identical in both
cases.

To address many-body interactions, we employ the ex-
tended reservoir tensor network approach of Ref. [36]. In this
case, the density matrix of the LSR system is vectorized
and expanded as a matrix product state (MPS) using local

165131-10



DUAL CURRENT ANOMALIES AND QUANTUM TRANSPORT … PHYSICAL REVIEW B 104, 165131 (2021)

(a)

(b)

FIG. 5. Anomalies in interacting systems. Current for the spin-
less, interacting two-site system in Eq. (15), where the insets indicate
how the system is connected to the reservoirs. The anomalous regions
are apparent and we refer to the main text for further discussion.
Profiles with resonant and off-resonant modes are marked with open
circles and crosses, respectively, with the latter always removing the
virtual anomaly. The setup follows Sec. II C with NW = 128 evenly
spaced reservoir modes. Our reservoir-impurity coupling is weak,
v = ω0/8, and the interimpurity coupling is vS = (1 + √

2)ω0/4. We
apply a symmetric bias μ = ω0/2 between L and R and assume a
temperature kBT = h̄ω0/40. The density-density interaction strength
is U = −ω0/2 (red), U = 0 (black), and U = ω0/2 (blue). The black
lines indicate the reference (exact) solution for the noninteracting
case with the horizontal line marking the Landauer limit in this case.
The error bars at ±σ show an estimate of the MPS convergence,
where σ 2 = σ 2

1 + σ 2
2 . Here, σ1 is a standard deviation reflecting

fluctuations of the current in a time window of �t = 50/ω0 at long
times after reaching the steady state. The current I is defined as
I = ∑

i Ii/nI [with i iterating over nI = 2 possible interfaces for
(a) and 3 for (b)] and σ 2

2 = ∑
i |Ii − I|2/nI quantifies the mismatch

of currents at different interfaces. The errors are associated with the
finite MPS bond dimension, where we fix Dmax = 256 (or 352 for
low-γ slopes) and truncate the MPS Schmidt values below 10−6

(whichever gives a smaller bond dimension at a given cut).

operator bases. These are formed by operators appearing in
the Lindbladian from Eq. (2) when using an energy repre-
sentation [23]. This arrangement is configured in the mixed
basis, where we order modes in a manner that localizes corre-
lations to the bias window and thus minimizes entanglement
along the chain [21]. It should be noted that the Lindbla-
dian does not mix different particle sectors. We enforce the
resulting block structure of the density matrix by forming
MPS from U(1)-symmetric (particle-number-preserving) ten-
sors [85], speeding up and stabilizing the simulations.

The superoperator L encoding the action of the Lindbla-
dian on the vectorized density matrix is represented as a
matrix product operator. This allows us to simulate Eq. (2)
efficiently using the time-dependent variational principle for

MPS [86,87], despite the complicated long-range coupling
structure in that setup (and Jordan-Wigner strings). We note
that standard approaches to target the steady state directly,
e.g., variationally minimizing L†L with the help of the
density-matrix renormalization group algorithm, prove to be
unstable. This behavior is due to a gap that rapidly vanishes
with decreasing γ and nontrivial entanglement that persists
in the optimized basis. Nevertheless, simulating the time evo-
lution is a viable strategy to reach the desired steady state.
We illustrate this in Fig. 5 where, for U = 0, we compare
the exact values of the current (black lines) with the MPS
results (black symbols). These data overlap tightly across
several orders of magnitude in γ , and only in the limit of very
low γ do errors from the MPS become noticeable. A similar
comparison cannot be made for the interacting case, as exact
results are inaccessible. Thus, we must rely solely on our MPS
simulations.

The results for a repulsive interaction (U = ω0/2, blue
points in Fig. 5) closely mimic the turnover structure of the
noninteracting case: both anomalies are clearly visible for
unshifted modes (crosses) and only the Markovian anomaly
remains when modes in L(R) are brought out of alignment
(circles). Conversely, when the interaction is attractive (U =
−ω0/2, red points in Fig. 5), the system is close to resonance
is enhanced in both setups. There is now an effective impurity
mode that is pushed into the bias window, hiding the two
anomalies under a larger intrinsic current. We nonetheless
retain a signature of the low-γ anomaly if the mode energies
are taken out of alignment, as shown by the departure of the
red crosses and red circles around γ ≈ ω0/100.

A comparison of transport profiles when reservoirs modes
are on and off resonant can be used to estimate an optimal γ 
.
In particular, the Landauer regime may be found by seeking
the intersection between turnover profiles with on-resonant
and off-resonant modes, guiding convergence to the Landauer
limit for finite-NW simulations. We explore this possibility in
detail in Ref. [84] while quantifying the impact of different
reservoir discretization on simulation efficiency.

IV. CONCLUSIONS

The conclusions herein, together with prior results on
quantum electron [49–53] and classical thermal [68,69] trans-
port, provide a global perspective on the factors for accurate
extended reservoir simulations:

(i) The Markovian relaxation strength must be weaker
than the thermal relaxation kBT/h̄, at least around the Fermi
level, to approximate proper reservoir equilibria [49]. This
requirement can be relaxed on occasion since transport prop-
erties do not necessarily change when passing below a given
effective temperature scale. Thus, accurate conductance val-
ues will still result if γ < kBT 
/h̄, with T 
 the lowest of these
temperature scales. This behavior is observed for common
models (see, e.g., Ref. [36] where below about kBT 
 ≈ ω0/10
the conductance does not change). If there are no features,
whether in the density of states, the transmission function, or
due to many-body interactions (e.g., the Kondo temperature
[88]), then there is no reason to have an excessively small γ .
This is heuristic and should be employed with care, especially
when considering other observables such as noise.
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It should be noted that there is a fundamental pathology
of the Markovian Lindblad master equation [89], which is
due to to improper equilibrium (i.e., the Markovian equation
relaxes the modes to the occupation of the equilibrium state
for isolated reservoirs). However, it can be rigorously proven
that with appropriate choice of parameters an approach based
on the Lindblad equation limits to the correct results. The ap-
proach based on an extended reservoirs and a Redfield master
equation is a promising alternative which might potentially
help convergence to the thermodynamic limit for some cases.

(ii) Other energy scales appear within the Markovian ex-
tended reservoir framework. In particular, we have shown
that the reservoir spacing � and the coupling |v|2/ω0 (or
its more complicated version), set important energy scales
for simulation. These bound the domain of confidence for γ

from below and above, respectively. The former suppresses
virtual transitions and thus helps to identify an upper bound
for the virtual anomaly. The latter ensures that broadening is
under control and that the simulation result lies prior to the
Markovian anomaly.

(iii) Certain features, such as the band structure and gap
states [51,69], can collectively give rise to a range of behavior.
Many-body interactions may sometimes help in this regard
(though they may also be detrimental) by smearing sharp fea-
tures in the DOS, particularly those that support interference
or effects that give rise to anomalous currents.

The only generally effective approach for extended reser-
voir transport simulations is to scan physical observables
versus relaxation strength and reservoir size. This considera-
tion also holds for other applications, such as nonequilibrium
thermodynamics. Weak-coupling cases are particularly trou-
blesome due to the anomalies studied here and the complexity

resulting from five distinct transport regimes. Other meth-
ods, such as perturbative treatments of the system-reservoir
coupling, can address parameter regions where extended
reservoirs may be numerically difficult to apply.8 It remains to
be seen if these factors influence alternative implementations
with intermode relaxation in the reservoirs.

Our results provide a comprehensive perspective for ex-
tended reservoir simulations, while refining the Kramers
turnover picture for open transport simulations. We likewise
establish a domain of confidence where Markovian relaxation
can provide accurate transport profiles. This will advance the
practical use of these methods and help usher in the era of
ERAs.
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8If one desires to simulate cases where contact is weak, or where it
fluctuates between weak and strong regimes (such as Floquet states
that are modulated by a harmonic function), then one needs to resolve
this issue and have a verified and validated simulation approach
throughout the range of parameters (e.g., large enough reservoir
size, small enough gamma that one remains on the plateau). Simi-
lar concerns arise when discussing electronic sensing and junction
configurations [90–98].
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