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Superconductivity in twisted bilayer quasi-one-dimensional systems with flat bands
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Unconventional superconductivity recently observed in twisted bilayer graphene is associated with the pres-
ence of van-Hove singularities very close to the Fermi level reflecting the flattening of bands for a set of magic
twist angles. In this paper, we address a stack of two identical quasi-one-dimensional layers, each one composed
of a set of chains with p-wave orbitals at each site. When the layers are stacked with a 90◦ relative angle, the
bilayer system resembles the Mielke lattice (which admits one exact flat band in the one-body tight-binding
model for particular values of the hopping parameters). When a small rotation is applied to one of the layers,
regions with different layer stacking appear that may be characterized as one-dimensional or two-dimensional
regions according to the most relevant hopping integrals between layers. The system, for sizes smaller or of
the order of the Moiré pattern unit cell, can be qualitatively described: (i) addressing individually each region,
for example in what concerns the density of states, (ii) interpreting the full lattice as a coupled system of these
regions. This generates a n-band model, where each band is associated to a particular region of the lattice. We
address the role of these different regions on the upper critical field transition curve of a superconducting phase.

DOI: 10.1103/PhysRevB.104.165130

I. INTRODUCTION

Moiré patterns are interference patterns produced by the
slight offset superposition of two identical two-dimensional
(2D) periodic patterns. In physics, these patterns can be cre-
ated by stacking thin sheets of atoms, bonded by weak Van
der Waals interactions, and the resulting materials often have
unusual electronic and optical properties [1]. One prime ex-
ample is twisted bilayer graphene (TBG) [2–7]. Theoretical
studies showed that when the twist between the two graphene
sheets is reduced to small angles, the band velocity decreases,
resulting in the flattening of bands [8–11]. This phenomenon
was confirmed by the observation of two energy symmetric
van-Hove singularities (vHSs) in the density of states (DOS)
[12]. In reality, the width of the bands do not depend mono-
tonically on the twist angle but for a set of “magical” angles
the band velocity becomes zero [13–16], the energy difference
between the vHSs reaches a minimum, and they are no farther
than 10 meV from the Fermi energy [17]. The presence of
vHSs near the Fermi level is known to enhance superconduc-
tivity correlations [18–21], and thus, one can expect to find a
superconducting phase in TGB. Recently, inducing insulating
and superconducting states were experimentally observed in
TBG [2,3], and the underlying mechanisms behind them have
since been discussed [22–25]. These states are absent in single
graphene sheets and are very similar to those seen in copper-
oxide-based high-Tc superconductors.

The flattening of bands that occurs in bilayer graphene
upon twist motivated the study, reported in this paper, of
new ways of constructing bilayer Hamiltonians that admit flat
bands. Flat band systems have been extensively studied from
a theoretical point of view in the last few decades, since the
works of Mielke and Tasaki [26–30]. These are usually 2D

tight-binding Hamiltonians (single layer) and the flat bands re-
sult from destructive interference in the single-electron paths
and reflect the existence of compact localized states [31–33].
The respective lattices are often called decorated lattices. In
this paper, we propose constructing a bilayer decorated lattice
by stacking two copies of a quasi-one-dimensional (quasi-1D)
layer composed of a set of equally spaced chains with p-wave
orbitals at each site. When the layers are rotated 90◦ with
respect to one another, for a certain interlayer distance (exper-
imentally, this distance can be controlled by applying pressure
to the layers [34–36]; for instance, such a method was used to
control the magic twist angle in the TBG [37]) the intralayer
and interlayer hopping terms between nearest neighbors are
of the same order, and the system resembles a Mielke lat-
tice, which admits one exact flat band in the single-particle
tight-binding (TB) model (note that our model shows some
common features with the TBG such as the presence of flat
bands in the energy dispersion and the bilayer stacking, but it
is structurally very different due to the strong anisotropy of the
layers that can be described as weakly coupled 1D chains of
p orbitals). We found that applying an additional small twist
angle θt may be enough to modify considerably the electronic
properties of the system, such as the density of states, and
the form of the energy eigenstates. Subspaces of 1D states
may emerge, associated with certain well defined regions of
the lattice (in Sec. III, we describe the lattices corresponding
to those regions), and the Mielke flat-band compact states
may not survive. The size of the systems discussed in this
work are of the order of the Moiré pattern unit cell (only a
few unit cell are present at most), and Bloch theory is not
useful to determine the electronic properties of such systems
[13]. Instead, we describe qualitatively the twisted Mielke-like
system as a set of regions with different stacking, each of them
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with a particular band structure, so that the full band structure
becomes that of a n-band model where each band is associated
with different regions of the twisted lattice.

We study the superconductivity of this n-band model as-
suming intraband and weak interband pairing interactions.
The latter reflects the tunneling of Cooper pairs between
different regions and since different values of the twisting
angle θt lead to different sizes and geometries of each stacking
region, the relative values of the pairing interactions should
also be a function of the twist angle. In our qualitative ap-
proach, we do not determine this dependence, but we consider
different relative values for these pairing interactions that en-
hance the contribution of a particular band and consequently
the contribution of a region with a particular stacking. Fur-
thermore, in our superconductivity study, we will reduce the
n-band model to simple qualitative two-band models that
describe the existence of particular bands (associated with
different stacking regions) with overlapping density of states
(that may be 1D- or 2D-like, with or without vHSs) of the
twisted system in particular energy intervals. Two particu-
lar cases are considered, and both of them include a band
typical of an isotropic 2D conventional superconductor with
an energy-band dispersion εk = vF (k − kF ), where vF is the
Fermi velocity and kF is the Fermi momentum: (i) In the first
case, the isotropic 2D band overlaps with a band of a quasi-
1D superconductor, with an energy-band dispersion εk − μ =
vF (|kx| − kF ) − 2ty cos(ky), where ty is very small, and kx and
ky are, respectively, the momentum in the directions x and
y; (ii) in the second case, the 2D band overlaps with a band
with a van-Hove singularity. We adopt the isotropic dispersion
relation εk − εvh = a × sign(q)|q|b, where q = k − kvh, εvh

and kvh are, respectively, the energy and momentum at the
van-Hove singularity respective to the flat band, and a and
b are constant parameters that control the extension of the
saddle point.

We discuss the role of the bands on the superconducting
state, in particular by looking at the form of the upper crit-
ical field transition curve. In what concerns the first model,
we found that the presence of the quasi-1D band modifies
the form of the upper critical field transition curve from a
paraboliclike curve, typical of a one-band 2D superconduc-
tor, to a curve that diverges at low temperatures reflecting a
dimensional crossover typical of quasi-1D superconductors.
For increasing quasi-1D intraband interaction, the temperature
at which the field diverges becomes higher, and this behavior
becomes true for temperatures close to the critical temperature
Tc, given a large enough quasi-1D bandwidth. In the case of
the second model we found that the curvature of the critical
curve also starts to become positive at higher temperatures
as one increases the intraband interaction of the band with a
van-Hove singularity. In this case, in the temperature range
where the curvature of the critical curve is positive, the decay
of the field with temperature is power-law. The numerical
calculations of the upper critical fields are carried out using
a Lanczos approach introduced in Refs. [38,39] for one band
but generalized by us in this paper to a n-band system (see
Appendix D). This paper is organized in the following way.
In Sec. II, we introduce the Hamiltonian that describes the
bilayer Mielke-like lattice. In Sec. III, we present the lattice
stacking configurations corresponding to the different regions

obtained when a twist is applied to the bilayer Mielke-like
lattice and discuss their dimensionality. In Sec. IV, we show
the density of states for θt = 0◦, for all those different lat-
tice stackings, and describe particular energy eigenstates. In
Sec. V, we identify the regions associated to the subspaces
of 2D and 1D states for θt = 2◦ and θt = 5◦, starting from
two different lattice configurations, and describe particular
energy eigenstates. In Sec. VI, we present the results for the
upper critical field-vs-temperature phase diagram for the two
band models described above. In Sec. VII, we leave our final
remarks. In Appendix A, we show how to decompose a rotated
py orbital into a sum of px and py orbitals. In Appendix B,
the n-band gap equation is derived and the expressions for
the pair propagator for the superconductors corresponding to
one-band systems with a 2D band, a quasi-1D band, and a
band with a van-Hove singularity are given. In Appendix C,
we introduce the n-band gap equation in the mixed representa-
tion. In Appendix D, we show how to simplify the n-band gap
equation by discretizing it in one of the directions and present
the Lanczos method used to solve that equation.

II. MODEL

We consider a single-particle tight-binding (TB) model
for a system of two stacked quasi-1D layers, rotated 90◦ in
relation to each another, each composed of a set of equally
spaced chains of identical atoms. In order for this system to
resemble the Mielke lattice, the hopping terms between first
neighbors in each chain and between the nearest atoms of
different layers should be the dominant ones, and hopping of
particles between chains of the same layer should be negligi-
ble. However, the distance between adjacent atoms of adjacent
chains is of the order of the distance between first-neighbor
atoms in each chain (we assume it to be the same, see Fig. 1).
In order for these hoppings terms to be neglected, we consider
that the orbitals associated to the atoms of layers 1 (bottom
layer) and 2 (top layer) are, respectively, px and py orbitals
(see Fig. 1). This implies that the hopping energies depend
not only on the distance between the center of the orbitals but
also on their relative orientation. The energies associated to
intralayer hoppings are given by the following [40]

Vx,x = l2Vppσ (d ) + (1 − l2)Vppπ (d ), (1)

where l = (x1 − x2)/d , with x1 and x2 being the x coordinates
of the mass center of each orbital, d the distance between
those centers, and |Vppσ | > |Vppπ | for the same distance (to
determine Vy,y one simply does x → y). For hoppings be-
tween nearest neighbor orbitals in a chain, one has l = 1
and so Vx,x = Vppσ (d = r0), where r0 is the distance between
nearest neighbor orbital in a chain. For hoppings between
adjacent orbitals of adjacent chains, one has l = 0 and so
Vx,x = Vppπ (d = r0). The neglecting of Vppπ (d = r0) is qual-
itatively justified if all relevant energy scales are larger than
this value, that is, for example, when the thermal energy
is larger than Vppπ (d = r0). In the following, we will adopt
this approximation, that is, any hopping terms associated to
energies equal or below Vppπ (d = r0) are not considered in
the Hamiltonian. Thus, the tight-binding Hamiltonian for our
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FIG. 1. Our Mielke-like lattice consists of a stack of two identical quasi-1D layers rotated 90◦ in relation to one another, each composed
of a set of equally spaced chains with either px (red ellipsoids) or py (blue ellipsoids) orbitals as shown in the center diagram. The intralayer
hopping interactions, in each chain, in layer 1 (horizontal layer) and layer 2 (vertical layer stacked on top of layer 1) are represented by red and
blue lines, respectively, in the right diagram. The distance between layers, h, as shown in the left diagram, is chosen such that the intralayer and
interlayer (black lines) hopping parameters between nearest-neighbor orbitals are equal. Intralayer hopping terms between the nearest orbitals
of different chains (dashed black lines) are very small and will not be included in the Hamiltonian.

Mielke-like system is given by

HT B = H1 + H2 + H12, (2)

with

H1 = Vppσ (r0)
N1∑

i=1

L1∑
j=1

a†
i, jai, j+1 + a†

i, jai, j−1 + H.c., (3)

and

H2 = Vppσ (r0)
N2∑
i=1

L2∑
j=1

b†
i, jbi, j+1 + b†

i, jbi, j−1 + H.c., (4)

where H1 and H2 correspond to hopping terms between near-
est neighbor orbitals in each chain of layer 1 and layer 2,
respectively. N1(N2) is the number of chains in layer 1(2)
and L1(L2) is the number of atoms in each chain of layer
1(2). In this work, we chose to use the parameters given in
[41]: Vppσ (d = r0) = −3.06 and Vppπ (d = r0) = 0.87 (these
values correspond to the parameters for a diamond structure).

The interlayer Hamiltonian H12 includes the hopping terms
V12(d ) between orbitals from different layers (that are at a
distance d from each other) that are larger than the cutoff
value indicated above, and it has a different form for each
of the possible stackings of the two layers. In the case of the
Mielke-like stacking shown in Fig. 1, this Hamiltonian has the
form

H12 = V12(dnn)
N1∑

i=1

L1∑
j=1

a†
i, jbi, j + a†

i, jbi+1, j

+ a†
i, jbi, j+1 + a†

i, jbi+1, j+1 + H.c., (5)

where dnn is the diagonal distance between nearest neighbor
sites in different layers, as one can conclude from the discus-
sion below. The (i, j) orbitals of layer 2 are obtained from
the (i, j) orbitals of layer 1 applying an in-plane translation
of (−r0/2,−r0/2), an out-of-plane (transverse) h shift, and a
90◦ clockwise rotation.

We know that CL states associated to a flat band exist in the
band structure of the Mielke lattice if the hopping parameters
Vppσ (r0) and V12(dnn) shown in Fig. 1 are all exactly the same.
Then, in our system, we have to enforce that the hopping
energies between nearest neighbor atoms of different layers,

V12(dnn), have to be equal to Vppσ (r0). Hoppings between
atoms of different layers implies, in our case, a Hamiltonian
matrix element between px and py orbitals. The energy asso-
ciated with such hopping terms is given by [40]

Vxy = lmVppσ (d ) − lmVppπ (d ), (6)

where again l = (x1 − x2)/d and m = (y1 − y2)/d , with y1

and y2 being the y coordinates of the mass center of the
two orbitals, and Vppσ (d ) and Vppπ (d ) being functions of dis-
tance of the form Vppσ (d ) = Vppσ (r0)(r0/d )n [and Vppπ (d ) =
Vppπ (r0)(r0/d )n] [41,42], where the power factor n = 2 was
chosen according to Refs. [41,42]. The distance between lay-
ers, h, is given by

h =
√

d2
nn − 2(r0/2)2, (7)

where dnn can be obtained from Vxy(d = dnn) = Vppσ (d = r0),
that is,

[lmVppσ (r0) − lmVppπ (r0)](r0/dnn)n = Vppσ (d = r0). (8)

The conditions for the construction of a Mielke-like lat-
tice are all settled. When we apply a rotation, the distance
between atoms of different layers changes and the orientation
of the orbitals on the rotated layer also changes, and these
are no longer py orbitals. However, we can decompose the
new orbitals, |py′ 〉, into a combination of px orbitals, |px〉, and
py orbitals, such that |py〉 , |py′ 〉 = cos θt |py〉 + sin θt |px〉 (see
Appendix A for details), and the interlayer hopping energies
are now given by

Vxy′ = cos(θt )Vx,y + sin(θt )Vx,x. (9)

In our work we chose to fix layer 1 and rotate layer 2, with the
rotation axis being transversal to the plane of layer 2, crossing
it at the geometric center, which coincides with the center of
one of the Mielke plaquettes, and thus the rotation axis will
not cross through any atom of the lattice. Nonetheless, we
tested a scenario where the rotation axis crosses an atom of
layer 2, and for small twist angles no noticeable differences
where found in our results. We also tested what happens if
the rotation axis crosses one or two unit cells far apart from
the geometric center, and the same applies. Take note that we
choose to rotate layer 2 in the anticlockwise direction, and in
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FIG. 2. (a) The first four of the eight possible orbital stackings described in the main text one may find in the Moiré pattern of the twisted
system. We have assumed in all of them the same interlayer distance as in the Mielke-like stacking. The hoppings parameters are normalized
to the nearest neighbor hopping parameter along the chains. (b), (c), and (d) show, respectively, the corresponding density of states, unit cell,
and electronic band structure. In (b), each van-Hove singularity is labeled according to whether it has a decay typical of a 2D or a 1D band,
where the symbol “∼” preceding some of those labels stands for “quasi.”

contrast with TBG, our results, due to the anisotropic nature
of the p orbitals, depend on the direction chosen.

Remember that an important condition for the construction
of the Mielke-like lattice was to impose that hopping terms
between orbitals in adjacent chains of the same layer have to
be neglected (if we include these terms in the Hamiltonian, the
flat band becomes slightly dispersive). Thus, when we twist
the system, we calculate all the hopping energies and only take
into account terms larger than a certain cutoff Vcutoff, which
should be larger than |Vppπ (r0)| = 0.87, i.e.,

cos θt (lmVppσ (r0) − lmVppπ (r0))(r0/d )n

+ sin θt (l
2Vppσ (r0) + (1 − l2)Vppπ (r0))(r0/d )n > Vcutoff.

(10)

The choice of Vcutoff will be discussed in Sec. III.

III. MIELKE-LIKE LATTICE AND OTHER LATTICE
ARRANGEMENTS DIMENSIONALITY

When we apply a twist, the arrangement of the orbitals of
layer 2 in relation to the ones of layer 1 changes throughout
the lattice. Moire patterns form, reflecting regions with differ-
ent atom stacking. These regions can either be 1D- or 2D-like
[i.e., orbitals of layer 2 may have hopping terms for orbitals
belonging to only one chain (1D) or to more than one chain

(2D) of layer 1 or vice versa] and they will be similar to one
of the stackings shown in Figs. 2 and 3 (or to an intermediate
case between those). We classify them according to whether
the 1D chains in the two layers are perpendicular or parallel
to each other and on whether the orbitals of the two layers are
superimposed or intercalated. In the cases where the orbitals
are intercalated, we distinguish them according to the in-plane
translation vector of layer 2 relatively to layer 1. So, we have

(1) perpendicular intercalated, (1/2, 1/2)r0 (Mielke-like
lattice);

(2) parallel superimposed (Creutz ladder-like lattice);
(3) parallel intercalated, (1/2, 1/2)r0;
(4) perpendicular superimposed;
(5) parallel intercalated, (1/2, 0)r0;
(6) parallel intercalated, (0, 1/2)r0;
(7) perpendicular intercalated, (1/2, 0)r0;
(8) perpendicular intercalated, (0, 1/2)r0.
All these stackings, as well as the respective density of

states, unit cell, and electronic band structure, are shown in
Figs. 2 and 3.

According to Eq. (6), the lowest finite value for the near-
est neighbor hopping interlayer interactions, tnn,12, occurs in
case (3), with t (3)

nn,12 ≈ 0.5Vppσ . We will then consider only
interlayer hopping terms with energy values larger than a
certain cutoff energy which is slightly smaller than t (3)

nn,12. To
be precise, we consider that the hopping parameters t12 in H12
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FIG. 3. (a) The last four of the eight possible orbital stackings described in the main text. (b), (c), and (d) show, respectively, the
corresponding density of states, unit cell, and electronic band structure. The description of the figure is the same as in Fig. 2.

should obey the following condition

t terms
12 � Vcutoff = Vppσ

2.1
. (11)

Let us now discuss these eight lattice configurations, shown
in Figs. 2 and 3, focusing on their dimensionality. The first
case corresponds to the Mielke-like lattice already discussed.
In (2) of Fig. 2, in agreement with the condition in Eq. (11),
second neighbors interlayer hopping terms are considered,
and the lattice resembles the Creutz ladder, and as such we
expect to find 1D states. In (3) of Fig. 2, the position of
the orbitals is the same as in the Mielke-like lattice, but the
orbitals of layer 2 are in this case also px. Consequently, the
interlayer hopping energies differ from those of the intralayer
hopping terms, and the condition for the appearance of exact
flat bands is broken. In (4), (7), and (8) of Figs. 2 and 3, there
are no interlayer hopping terms between nearest neighbors
because one of the orbitals is placed orthogonally on top of
the chain of the other layer. The next neighbor interlayer
hopping terms are too small to be considered, according to
Eq. (11), and thus the layers are independent from each other,
and consequently these systems are 1D. In (5) of Fig. 3, there
are finite hopping terms between layers. However, since the
layers are superimposed, the two first neighbor orbitals of
each orbital of layer 2 belong to the same chain of layer 1,
and then we also expect to find 1D states. Finally, in (6) of
Fig. 3, the nearest-neighbor orbitals of each orbital of layer
2 belong to two adjacent chains of layer 1 and thus, in this
case, the system is 2D. Note that Eq. (11) implies that in (6)
of Fig. 3, next-nearest neighbor interlayer hopping terms have
to be considered. In this case, the two next-nearest neighbors

of each orbital belong to different chains. Since the system as-
suming only nearest neighbor interlayer interactions is already
2D, in the context of our qualitative model, the differences
resulting from the inclusion of these additional terms are not
relevant.

Furthermore, note that we did not take into account
screening effects, which could reduce the next-neighbor or
higher-neighbor hopping parameters to values below the ones
shown in Figs. 2 and 3. This implies that in a more precise
model of our system, the results would be more robust to
variations of the chosen cutoff. As a last simplification in our
model, we also neglected the fact that the orientation of the
orbitals may change as a result of the overlap between chains,
and instead we assumed that the orientation of the orbitals is
always the orientation of the chain that it belongs to.

IV. DENSITY OF STATES FOR EACH STACKING

In Figs. 2(b) and 3(b), the density of states (DOS) g(ε) is
shown for the eight stacking configurations. We have assumed
in all of them the same interlayer distance as in the Mielke-
like stacking (this interlayer distance can be controlled by
applying a uniaxial pressure to the bilayer system), but if this
condition is relaxed we still expect similar qualitative behavior
of the DOS for each stacking.

For the Mielke-like lattice, (1) in Fig. 2, the DOS is similar
to that of a 2D square lattice but with a particular feature, a
singular peak centered at ε = −2 which indicates the presence
of a flat band in the electronic band structure. This band
is associated to a subspace of compact localized states, i.e.,
states with finite amplitudes, only in a few orbitals localized
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(1) 

(2) 

(3) 

(a)

(d)

(b)

(c)

(1) 

FIG. 4. Examples of energy eigenstates found in finite size lattices with stackings (1), (2), and (3). The wave function is finite in sites in
color (with blue and red corresponding to positive and negative values, respectively, and the relative absolute value of the amplitudes being
given by the circle radius). (a) Compact localized state in the Mielke-like lattice. The wave function has finite amplitude only in a small region
of the lattice. (b) Edge state in a finite size Mielke-like lattice. (c) One-dimensional state in the Creutz ladderlike lattice. The wave-function
amplitude is finite only in sites belonging to a certain chain. (d) Two-dimensional state in the (3) stacking lattice (the pattern repeats itself in
the rest of the lattice).

in a small compact region of the lattice and zero in the rest [see
Fig. 4(a) for an example]. In a finite size lattice, the DOS will
additionally show a small peak due to the existence of a set
of edge states. These states are characterized by having finite
amplitude only at orbitals located at the edges of the lattice
[see Fig. 4(b) for an example].

For the Creutz ladderlike ladder, (2) in Fig. 2, the DOS has
as expected a region that is typical of a 1D band (0.5 > ε > 8)
and a region associated to a quasiflat 1D band (−4.5 > ε >

−4). In (5) in Fig. 3, g(ε) is also described by two regions
associated to 1D bands but with some overlap. In both cases
we find large subspaces of states with finite amplitude along
one chain and zero in the rest of the lattice [see Fig. 4(c)].

In (3) in Fig. 2, the DOS is described as the overlap of a
large 2D-band-like region with 2D states like the one shown in
Fig. 4(d) and a small 1D-band-like region with states similar
to those found in (2) and (5). Although the lattice arrangement
is the same as in (1), this lattice does not support localized
states.

In the case of (4), (7), and (8) in Figs. 2 and 3, as we
mention in Sec. III, we do not have hopping between orbitals
in different layers. Consequently, the DOS are typical of 1D
bands. Since the layers are orthogonal to each other, one finds
states that are 1D at either the x or the y direction.

In the case of (6) in Fig. 3, one can conclude from the
electronic band structure that the van Hove singularity around
εk ∼ −2 is quasi-1D since the energy dispersion in the kx

direction is very small (and paraboliclike in the ky direction).
However, for energies close to the maximum of the top band,
the behavior is 2D-like since one observes strong energy dis-
persion in both directions in the electronic band structure.

V. TWISTED LATTICES ELECTRONIC STATES AND
DIMENSIONALITY

In the case of large systems (in our numerical analysis,
each layer is composed of 50 chains with 50 orbitals each),

even small rotations applied near the geometric center trans-
late into considerable relative displacements between layers in
the peripheral regions of the lattice. Then, upon a small twist,
despite the stacking being very similar to that of the unrotated
lattice in a region close to the rotation axis, it varies along
the lattice, and different regions can be identified according to
the orbitals stackings. In our system, as mentioned in Sec. III,
these different arrangements will be similar to one of the
other seven lattice stackings. Remember that while some of
those stackings are 2D-like, others correspond to quasi-1D
systems or can support flat-band states, and so, even for small
rotations, it is possible to have a lattice with regions associated
to 2D, quasi-1D, or flat-band states.

In Figs. 5 and 6, we identify the 2D and 1D regions on
the twisted lattices, for θt = 2◦ and θt = 5◦, starting from
stackings (1) and (2), and discuss some particular subspaces of
states. Colors help identify the dimensionality in each region
of the lattices. The red points correspond to the orbitals of
layer 1. The orbitals of layer 2 are represented either by blue
dots if they have hopping terms (or no terms at all) to orbitals
of a single chain of layer 1 or by green dots if they may hop to
orbitals that belong to different chains of layer 1. The colors
are determined according to the H12 terms calculated using
Eq. (9). In the same figure, for comparative purposes, we also
present a similar color scheme but this time the dimensionality
depends on the interlayer distances between orbitals. In this
case, an orbital in layer 2 is represented by a green dot if it
obeys the following condition (and by a blue dot otherwise):

dnn,12,2nd

dnn,12
� 1.5, (12)

where dnn,12 is the distance from that orbital to the nearest
neighbor in layer 1 (let us label the respective chain as A), and
dnn,12,2nd is the distance to the nearest neighbor of the layer 1
that is not in chain A. In what concerns the unrotated cases,
only in (8) the dimensionality of the lattice differs, being 1D
in the former and 2D in the latter.

165130-6



SUPERCONDUCTIVITY IN TWISTED BILAYER … PHYSICAL REVIEW B 104, 165130 (2021)

�2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

D
O
S
(
)

2Dflat

�2 �1 0 1 2
0

1

2

3

D
O
S
�
� 1D 1D

�2 �1 0 1 2
0

1

2

3

D
O
S
�
� 1D 1D

�2 �1 0 1 2
0

1

2

3

D
O
S
�
� 1D 1D

(1) (4)

(7) (8)

FIG. 5. Mielke-like lattice with a twist angle of layer 2 of: (a) θt = 0◦; (b) and (d) θt = 2◦; (c) and (e) θt = 5◦. Red dots represent the
sites of layer 1. Sites of layer 2 represented by green dots correspond to 2D regions while blue dots correspond to 1D regions. (b),(c) Lattice
configurations for θt = 2 and θt = 5 with the dimensionality of the sites being determined according to the hopping terms calculated using
Eq. (9). In (d) and (e), the dimensionality of the sites is determined by Eq. (12). From (a) to (b),(c) and (a) to (d),(e) the green and blue regions
occur with smaller periodicity. Each region has a lattice stacking indicated by the unit cells shown.

In Fig. 5, we show the Mielke-like lattice for several
twist angles. For θt = 2◦ [see Fig. 5(b)], the position of
the orbitals belonging to layer 2 in a region close to the
center (green circlelike region in the center) of the lattice
does not change significantly and thus the states associated
to that region are 2D. At the left/right and top/bottom of

that region, the bilayer system has (7) and (8) stackings, re-
spectively (blue-red “bridges”), and thus these regions should
support 1D states. These (7) and (8) stacking regions “con-
verge” to regions with the stacking (4) which is also 1D-like
(blue-red large regions). In the “distances only” color scheme
[see Fig. 5(d)], regions with configuration (8) (above and
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FIG. 6. (Creutz ladderlike lattice with a twist angle of layer 2 of: (a) θt = 0◦; (b) and (d) θt = 2◦; (c) and (e) θt = 5◦. The coloring follows
the same reasoning as Fig. 5 (2D regions in green and 1D regions in blue). In (b) and (c) the dimensionality of the sites is determined according
to the hopping terms calculated using Eq. (9). In (d) and (e), the dimensionality of the regions is determined by Eq. (12). As the twist angle
increases, the green and blue regions occur with shorter periodicity.

below the center of the lattice) are 2D-like and as such,
we have a 2D region that crosses vertically the middle re-
gion of the lattice. On the other hand, the 2D regions at the
center, middle of the edges, and corners of the lattice are
smaller.

In Fig. 7, we show the form of particular states that cor-
roborate the dimensionality description reflected by the color

schemes in Figs. 5 and 6. The state shown in Fig. 7(a)
corresponds to a 2D state of the Mielke-like lattice, with
θt = 2◦ and energy ε = 5.84 that has finite wave-function am-
plitude in the green region at the center of the lattice and zero
in the rest of the lattice. Looking at Fig. 5, one can confirm that
for energies ε ∼ 5.84, only 2D regions have finite DOS and
therefore the 1D regions behave as effective potential barriers.
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(1) 

(2) 

(a)

(d)

(b)

(c)

(1) 

(2) 

FIG. 7. (a),(b) Examples of energy eigenstates in the Mielke-like
lattice, with θt = 2◦. (a) 2D state located at the region with stacking
(1) in the center of the lattice. Similar states can be found in the
other red-green regions of Fig. 5(b). (b) 1D energy eigenstate with
support in the left region of Fig. 5(b) with stackings (7) and (8).
Note the deviation from the vertical direction due to the change
of stacking. (c),(d) Examples of energy eigenstates in the Creutz
ladderlike lattice, with θt = 2◦. (c) 1D energy eigenstate in the region
with stacking (5). In this case, there are no fully blue chains and thus
we only find 1D states in a fraction of a chain. (d) Stripelike state in
the central region of Fig. 6(b) that has support in the contiguous 1D
and 2D regions and that is a linear combination of 1D and 2D states.

Similar states can be found at the middle of the edges or at the
corners.

In Fig. 7(b), a 1D state of the Mielke-like lattice with θt =
2◦ and energy ε = −1.99 is shown. In this case, the state has
support vertically through a chain of layer 2, but one can also
find horizontal 1D states along chains of layer 1.

For a slightly larger twist, θt = 5◦, the periodicity of
Moire patterns of the twisted Mielke-like lattice decreases
[Fig. 5(c)], but the same regions as for θt = 2◦ can be iden-
tified in the pattern. In the “distances only” color scheme
[Fig. 5(e)), one sees again that the vertical bridges become
2D-like, but the 1D regions in the Moire pattern are larger. A
further increase of the twist leads the 2D and 1D regions to
become even more intercalated.

Next, we discuss the twisting of the Creutz ladderlike lat-
tice, that is the stacking (2). When we apply a small twist
of θt = 2◦, we obtain the color schemes shown in Figs. 6(b)
and 6(d). Naturally, in a region around the center, the atoms’
stacking is very close to the unrotated case (2) and, as such,

this region is associated to 1D states. Below and above this
region, the stacking of the orbitals is similar to that of (5),
which also supports 1D states. At the left and right of center,
the lattice structure is close to that in (6) which supports 2D
states. As one approaches the edges, the lattice arrangement
tends to (2). There are some small regions around the 2D green
region, where the orbitals are organized closely to (3), which
is a 2D-like structure, but some of the sites of layer 2 are rep-
resented by blue dots. This can be understood by the fact that
the choice of the hopping cutoff was done such that it would
be sightly smaller than the nearest neighbor hopping energy
of (3) (in the “distance only” [see Fig. 6(d)] color scheme this
problem does not occur, and the green regions are wider). We
could have chosen a smaller value for the cutoff, but then this
value would be close to the second nearest neighbor hopping
energies for (7) and (8) and the 1D-like behavior of such
structures would be more easily, upon rotations, changed to
2D-like.

From the color schemes in Fig. 6, we conclude that the
lattice is for the most part 1D and indeed we find 1D energy
eigenstates with finite amplitudes in a section of a chain
located between two 2D regions (similar states can also be
found located between a 2D region and the closest edge of the
lattice) [see Fig. 7(c)]. We also find states that have support
in contiguous 1D and 2D regions. These states are stripelike
states and are linear combinations of 1D and 2D states. In
Fig. 7(d), we show one of these states with energy ε = 5.31,
that is with energy in a range where the 1D DOS of stacking
(2) overlaps with the DOS of stacking (6), see Fig. 6(b). It is
due to this overlap that the linear combination of 1D and 2D
states occurs in the energy eigenstate.

Just like in the previous cases, increasing the twist (but still
in the range of small rotations), increases the periodicity of
the 1D and 2D regions [see Figs. 6(c) and 6(e)]. One should
note that the previous description of the twisted Mielke-like
lattice and of the twisted Creutz ladderlike lattice covers also
the cases where the twist is applied starting from one of the
other six stackings, since one can apply a translation to the
Moire patterns of Figs. 5 and 6 so that the chosen stacking
occupies the central lattice region.

VI. SUPERCONDUCTING CRITICAL FIELD VS
TEMPERATURE PHASE DIAGRAM

In this section, we conduct a study of the superconducting
critical field vs temperature phase diagram of our twisted
system. As mentioned previously, we consider a twist angle
small enough for the system size to be of the order of the
Moiré pattern unit cell (only a few unit cell are present at
most), and we describe qualitatively the twisted system as a
set of regions with different stacking, each of them with a
particular band structure and with a particular DOS. If a super-
conducting phase is present in the twisted lattice, coupling of
the superconducting order parameters in these regions should
occur due to Josephson tunneling between them. This makes
the study of the superconducting phase diagram in our twisted
bilayer system particularly interesting due to the possible joint
effect of several factors such as multiple bands, regions of
different dimensionality, and DOS with van-Hove singulari-
ties. In particular, the experimental upper critical field curve
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should reflect clearly the appearance of regions with different
dimensionality as the twist angle increases (remaining small).

We can interpret qualitatively the twisted system as the
n-band model, where each band is associated with one of
the lattice regions with different orbital stackings. Depend-
ing on the position of the Fermi level, the analysis of the
superconducting phase can be complex or simple depending
on whether the Fermi level is in an energy range where the
DOS of 2D and 1D regions overlap or not. In the latter case,
superconductivity only involves the participation of the 2D
regions or of the 1D regions which are effectively decoupled
from each other since Josephson tunneling between them will
be very small for small twist angles (again, if superconductiv-
ity occurs in the 2D regions, the 1D regions act as potential
barriers). The superconducting critical field vs temperature
phase diagram of 2D and quasi-1D superconductors has been
described in the past both in the case of in-plane [43–49]
and out-of-plane [38,49–53] magnetic field, and we know for
instance that in the case of a quasi-1D system in transverse
magnetic fields a dimensional crossover occurs at low tem-
perature and the critical field diverges [39,54–56]. The effect
of a van Hove singularity at the Fermi level or in its vicinity is
somewhat similar leading to upward curvature in the critical
field curve at low temperature [49,52,53].

In this section, we will address the more complex case with
2D and 1D regions DOS overlap at the Fermi level, such that
more than one band participates in the formation of the su-
perconducting state. Our analysis will be simplified assuming
one band per region and interpreting the Josephson tunneling
between 1D and 2D regions as interband pairing [57–59]. The
upper critical field-vs-temperature phase diagrams Hc2-vs-T
will be determined using the weak-coupling s-wave mean-
field BCS approach (and using the usual eikonal treatment for
coupled bands [60]). This method has been applied in the past
by several authors when VHSs are present in the DOS at the
Fermi level as well as in the case of a flat-band singularity
at the Fermi level [21,61–63]. In addition, our approach is
justified since we chose to broaden the flat bands in our upper
critical field calculations in order to take into account the
neglected hopping terms in our model and therefore a weak
electron-phonon coupling limit is always possible (in contrast,
one could argue that the presence of a nonbroadened flat
band makes any interaction a strong one). Furthermore, we
emphasize that the superconducting phase diagrams obtained
in this paper would remain qualitatively the same even when
assuming strong electron-phonon interactions, as in the case
of the Eliashberg approach, since the main modifications in
these diagrams result from the proximity to a dimensional
crossover (due to the 1D bands) or density of states peaks and
the effect of the latter is qualitatively the same whatever the
approach. We opt to use the standard weak-coupling s-wave
treatment as this is the simplest case where twisting effects can
be addressed. Other pairing symmetries could be considered
such as d-wave, but the main goal of our paper is to describe
the twisting effects on a superconducting bilayer quasi-1D
system and not the effects of the pairing symmetry.

We discuss in particular how the form of the nor-
malized [Hc2/Hc2(T = 0)]-vs-[T/Tc(H = 0)] curves changes
with varying ratio between the intraband pairing interactions
(this normalized upper critical field has a universal shape for

2D systems with constant DOS when magnetic field is applied
perpendicular to the layers). Analyzing Figs. 5 and 6, we
conclude that many different situations may occur depending
on the position of the Fermi level. We limit our study to two
simple situations: (i) a 2D band (associated with a 2D region)
with constant DOS weakly coupled with a quasi-1D band
(associated with a 1D region); (ii) a 2D band weakly coupled
with a band with a van-Hove singularity. In this second case,
the van-Hove singularity may be 1D-like or 2D-like. Never-
theless, we will adopt the approach of Refs. [49,52,53] and
consider an isotropic 2D band with a van-Hove singularity
that mimics the van-Hove singularity 1D-like exponent or the
2D-like exponent. These two cases are enough to show that
the upper critical field curve can be used as a probe of twist
angle applied to the bilayer system.

To determine Hc2, one needs to solve the two-band super-
conducting gap equations [60] which can be discretized as
described in Appendix D,

�a
i = g

[
V a

∑
j

Ka
i j�

a
j + V ab

∑
j

Kb
i j�

b
j

]
(13)

and

�b
i = g

[
V b

∑
j

Kb
i j�

b
j + V ab

∑
j

Ka
i j�

a
j

]
, (14)

where gV a and gV b are, respectively, the intraband pairing
interactions in bands a and b, and gV ab is the interband pairing
interaction between those bands. Ka

i j (K
b
i j ) and �a

j (�
b
j ) are the

pair propagator and the gap function of the band a(b). The
factor g is an arbitrary constant that was introduced in order
to interpret the previous equations as an eigenvalue equation
[see Eq. (15)]. In this work, we did not attempt to find the
dependence of the pairing interactions on the twist angle. One
may argue that the interband pairing which reflects the Joseph-
son tunneling between different regions should increase as the
twist angle increases (while the “intraregion” pairing interac-
tion should remain more or less the same in the case of the
region corresponding to the untwisted stacking) reflecting the
increase of the portion of the Moiré pattern corresponding to
the surface between the different regions.

Equations (13) and (14) can be written as a single vector
equation [

�a
i

�b
i

]
= gM

[
�a

j

�b
j

]
, (15)

where

M =
[

V aKa V abKb

V abKa V bKb

]
, (16)

and the upper critical field is obtained from the highest eigen-
value of the matrix M, which can be achieved by, for instance,
applying the Lanczos method. In Appendix B, we derive the
n-band gap equation and the pair propagators for each band.
In Appendix C, we introduce the n-band gap equation in a
mixed representation (useful to work with anisotropic pair
propagators) and in Appendix D, we describe the Lanczos
method used to solve the gap equations.

Next, we ascertain the role of the quasi-1D and the van-
Hove bands in the form of the upper critical field curve for
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the two-band models, considering different ratios between
the intraband pairings of those bands and the 2D band. (i)
In the first case, we consider an isotropic 2D band with
an energy-band dispersion εk = vF (k − kF ), where vF is the
Fermi velocity and kF is the Fermi momentum. The DOS
of this band overlaps with the DOS of a band of a quasi-
1D superconductor, with an energy-band dispersion εk − μ =
vF (|kx| − kF ) − 2ty cos(ky), where ty is very small [reflecting
the weak hopping terms in the 1D regions that were neglected
due to the condition Eq. (11)], and kx and ky are, respec-
tively, the momentum in the direction x and y. (ii) In the
second case, the 2D band DOS overlaps with the DOS of
a band with a van-Hove singularity. In order to remove the
effect of dimensionality, which is addressed in the previous
case, we follow the approach of Refs. [49,52,53] and adopt
the isotropic dispersion relation εk − εvh = a × sign(q)|q|b,
where q = k − kvh, εvh and kvh are, respectively, the energy
and momentum at the van-Hove singularity respective to the
flat band, and a and b are constant parameters that control the
extension of the saddle point.

In Fig. 8(a), the Hc2-vs-T phase diagrams are shown for the
first case when the intraband interactions ratio is V ∼1D/V 2D =
8, 9, 10, 11, and the weak interband pairing interaction is
given by V ∼1D,2D/V 2D = 0.05 where V 2D is the intraband
interaction of the 2D band, and V ∼1D is the intraband inter-
action of the quasi-1D band. For V ∼1D/V 2D = 8 (red curve),
the phase diagram is still typical of a 2D conventional super-
conductor. The upper critical field is maximum for T = 0 and
decreases with T as a parabola (negative curvature), reaching
zero at a critical temperature Tc. For V ∼1D/V 2D = 9 (brown
curve), at low temperatures, the curvature becomes positive,
with the field diverging at a finite low temperature. As one
increases V ∼1D, this behavior extends to intermediate temper-
atures (V ∼1D/V 2D = 10, green curve), and for large enough
V ∼1D it occurs at temperatures close to the critical temperature
(V ∼1D/V 2D = 11, blue curve).

The phase diagrams for the second case are shown in Fig. 4,
for V vh/V 2D = 0.5, 1.5, 2.0, V vh,2D/V 2D = 0.05, a = 1, and
b = 3, where V vh is the intraband pairing interaction for the
band with a van-Hove singularity, and V vh,2D is the interband
pairing interaction. For V vh/V 2D = 0.5 (red curve), the phase
diagram obtained is very close to the one of a typical 2D con-
ventional superconductor, but at low temperatures we start to
see a positive curvature on the critical field curve. This behav-
ior becomes more obvious for V vh/V 2D = 1.5 (brown curve)
and starts to happen at higher temperatures as one increases
V vh/V 2D, as one can see in the case where V vh/V 2D = 2.0
(green curve). By continually increasing V vh/V 2D, the cur-
vature of the critical field curve eventually becomes positive
in the whole range of temperatures. In that case, the phase
diagram obtained is close to that of a one-band superconductor
with a band with a van-Hove singularity and as such, at low
temperatures, the field decreases with temperature as a power
law.

VII. CONCLUSION

The large interest in twisted bilayer systems in recent years
has been motivated by the experimental finding of the super-
conducting phase in twisted bilayer graphene. These states

FIG. 8. Critical field vs temperature phase diagram of a two-
band model (a) with a quasi-1D band and a 2D band; (b) with
a band with a van-Hove singularity and a 2D band. In (a), the
phase diagrams are plotted for the following values of the intra-
band interactions ratio V ∼1D/V 2D = 8, 9, 10, 11, assuming KF

2D =
1, vF

2D = 1, and ty/vF
∼1D = 1.625. The interband interaction is kept

fixed, V ∼1D,2D/V 2D = 0.05. In (b) the diagrams obtained are for
V vh/V 2D = 0.5, 1.5, 2.0, assuming KF

2D = 1, vF
2D = 1, KF

vh = 1,
and the parameters a = 1, b = 3. The interband interaction is also in
this case kept fixed, with V vh,2D/V 2D = 0.05.

are absent in single graphene sheets and are very similar
to those seen in copper-oxide-based high-Tc superconductors
[3]. This phase occurs at certain magic twist angles reflecting
the flattening of particular bands near the Fermi level.

In this paper, we consider a different scenario where a
nearly flat band is already present in a bilayer system with a
90◦ twist that resembles a Mielke lattice. This system consists
of a stack of two identical quasi-1D layers, with each quasi-1D
layer composed of a set of chains with p-wave orbitals at
each site aligned with the direction of the chain. Calculating
the hopping integrals using the Slater-Koster method, if we
introduce a threshold in the hopping integrals larger than the
transverse hopping integral between chains in the same layer,
an exactly flat band is found at a particular interlayer distance
(that should be accessible applying an uniaxial pressure). The
presence of a twist in this system is particularly interesting
since 1D or 2D regions appear in the Moiré pattern. We
have characterized these regions according to stacking, band
structure, and DOS. The same analysis was carried for an
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untwisted bilayer system. This system can be classified as a
Creutz ladderlike lattice, and it also has a nearly flat band
for the interlayer spacing that generates the flat band in the
Mielke-like lattice. The contrasting feature when comparing
with the previous case is that this untwisted system is 1D
and only introducing a twist we find 2D regions in the Moiré
pattern (it is opposite in the case of the Mielke-like bilayer
system).

The possibility of a superconducting phase in these sys-
tems was addressed using a qualitative approach that relies
on the interpretation of the twisted bilayer lattice as a n-
band model, where each band is associated to a particular
region of the lattice. This approach is proposed in the case
of system sizes of the order of the Moiré pattern unit cell
(corresponding to small twist angles), where methods relying
on Moiré Bloch bands are not useful. Josephson tunneling
between different regions is interpreted as interband pairing
interactions [57–59]. An additional approximation was to re-
duce this n-band system to a two band system with one of
the bands describing a 2D region and the other corresponding
to a quasi-1D region or a region with a van-Hove singularity.
Our objective was to show in particular that the upper critical
field transition curve was sensitive to the twist angle as ex-
pected. In the first case, we find that the critical field curve
behaves closely to what is expected of a 2D superconductor
if the intraband pairing interaction of the quasi-1D band is
small. Though, for intermediate values of this pairing inter-
action, the parabolic behavior at low temperatures changes,
and the critical curve gains positive curvature, diverging at
a finite low temperature. This behavior is extended to tem-
peratures close to the critical temperature for large quasi-1D
bandwidths. In the second case, the critical field curve gains
positive curvature at low temperatures for small values of the
intraband interaction of the band with a van-Hove singular-
ity, and this behavior starts to happen at higher temperatures
for larger intraband values. For large enough intraband in-
teraction, this behavior is extended to the whole temperature
range.

Some results similar to those discussed in this paper were
proposed in ab initio simulations of twisted bilayer GeSe [64].
In this reference, a crossover from an effectively 1D to a 2D
system is also reported as the twist angle is increased. How-
ever, the flat bands reported in this reference are dispersive
in one spatial direction and therefore they are not flat bands
in the interpretation followed in our paper (no dispersion
in any direction). Nevertheless, this reference shows that in
more realist simulations of the quasi-1D bilayer materials,
qualitative features discussed in this paper such as the com-
petition between 1D and 2D regions in the twisted system are
also found. On that note, our analysis of the critical field vs
temperature phase diagram should be relevant to other twisted
bilayer systems with flat bands if the following underlying
assumptions also occur: (i) multiple-band superconductivity
(2D band overlapping with a quasi-1D band at the Fermi level
or with a band with a van-Hove singularity); (ii) system sizes
smaller or of the order of the Moiré pattern unit cell. However,
for instance, this is not the usual situation for the twist angles
that generate superconductivity in TBG, which generate an
isolated flat band at the Fermi level and where large system

sizes are considered that justify the consideration of Moiré
bands [13].

Notice that flat-band superconductivity may not always
be fully captured by the standard weak-coupling s-wave
treatment used in our study, and strong electron-electron
interactions (which, for instance, in TBG leads to drastic mod-
ifications on the band structure giving rise to band flattening
[22,23]) may need to be considered. The effect of such interac-
tions could, however, be qualitatively incorporated in our BCS
approach by using a modified DOS with stronger VHSs since
these are strengthened by such interactions (as suggested in
the extended van-Hove scenario for the high-Tc superconduc-
tors [65]), and that would make the low temperature curvature
of the upper critical field curve more pronounced [53].

Finally, we would like to point out that our lattice can be
generalized replacing each site by, for instance, a four-site ring
which admits as eigenstates an s-orbital state (kring = 0), px

and py states (symmetric and antisymmetric combinations of
the kring = ±π/2 states), and a dx2−y2 -orbital state (kring = π ).
The chains of these rings naturally form bands associated with
each orbital and one can more easily envisage a geometry
where the hoppings between different chains in the same layer
can be neglected.
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APPENDIX A: DECOMPOSITION OF
ROTATED py ORBITALS

When a rotation is applied to the py orbitals of layer 2, the
wave functions that describe such orbitals gain a component
in the x direction, and thus one can no longer use Eq. (6) to
determine the interlayer hopping energies. Nonetheless, the
rotated orbitals can be decomposed into a combination of px

and py orbitals, and those hopping energies can be obtained
by combining Eqs. (1) and (6).

We can relate the rotated orbital |py′ 〉 with the original py

orbital |py〉 by

|py′ 〉 = R̂z(θt ) |py〉 , (A1)

with the rotation operator in z (remember that the rotation axis
is transversal to the system) being given by R̂z(θt ) = e−iθt L̂z/h̄,
where the angular momentum operator L̂z in the subspace l =
1, m = 1, 0, 1, is given by

L̂z = h̄

⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦. (A2)
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Since py and px orbitals are given, respectively, by

ψnpy = − 1√
2

[ψn,1,1 − ψn,1,−1] ⇒ |py〉

= − 1√
2

(|m = 1〉 − |m = −1〉), (A3)

ψnpx = i√
2

[ψn,1,1 + ψn,1,−1] ⇒ |px〉

= i√
2

(|m = 1〉 + |m = −1〉), (A4)

we may write the matrix representation of the rotation opera-
tor in the subspace |m = ±1〉

ˆRz(θt ) =
[

e−iθt 0
0 eiθt

]
, (A5)

and, in this basis, |py〉 and |px〉 are written as

|py〉 = − 1√
2

[
1

−1

]
, (A6)

|px〉 = i√
2

[
1
1

]
. (A7)

Finally, applying Eq. (A5) to Eq. (A6) we obtain the following
expression

R̂z(θ ) |py〉 = cos θt |py〉 + sin θt |px〉 , (A8)

and thus, the interlayer hopping energies can be
determined by

Vxy′ = cos(θt )Vxy + sin(θt )Vxx. (A9)

APPENDIX B: n-BAND GAP EQUATION AND
PAIR PROPAGATORS

1. n-band gap equation

The Hamiltonian for a n-band 2D superconductor under
perpendicular magnetic fields is given by [60]

H = Hi + Hint, (B1)

with

Hi =
∑

i

{
− 1

2mi

∑
σ

∫
	

†
iσ (r)[∇ − ieA(r)]2	iσ (r)dr

−Vii

∫
	

†
i↑(r)	†

i↓(r)	i↓(r)	i↑(r)dr

}
, (B2)

and

Hint =
∑
i = j

[
− Vi j

∫
	

†
i↑(r)	†

i↓(r)	 j↓(r)	 j↑(r)dr + H.c.

]
,

(B3)
where i, j label the bands, mi is the mass of i-band electrons,
and 	

†
iσ (r)(	iσ (r)) creates (annihilates) a i-band electron

with spin σ and charge e at position r. Vii and Vi j are, respec-
tively, the intraband and interband pairing interactions and
A(r) is the magnetic vector potential.

From Eq. (B1), in the case of a one-band system, one ob-
tains the usual differential equations for the Green’s functions
in real space, defined in Refs. [66,67], and these equations

remain unchanged in the case of a n-band system [60] (with a
generalized expression for the gap functions) and are given by(

iω + 1

2mi
[∇r − ieA(r)]2 + μi

)
G HS

i,ω (r, r′)

+
∫

d r̃�i(r, r̃)F †
i,ω(r̃, r′) = δ(r − r′), (B4)

and (
− iω + 1

2mi
[∇r + ieA(r)]2 + μi

)
F †

i,ω(r, r′)

−
∫

d r̃�∗
i (r, r̃)G HS

i,ω (r̃, r′) = 0, (B5)

where the Green’s function G HS
i,ω describes the superconduct-

ing state in a magnetic field F †
i,ω is the anomalous Green’s

function, and the n-band energy gap �i is given by [60]

�∗
i (r, r) = kBT

[
ViiF

†
i,ω(r, r) +

∑
j =i

Vi jF
†
j,ω(r, r)

]
. (B6)

In order to derive the n-band gap equation, one may follow
the following steps, laid out in the works [39,60]. The normal
state Green’s function G H

i,ω satisfies the following equation(
iω + 1

2mi
[∇r′ + ieA(r′)]2 + μ

)
G H

i,ω(r, r′) = δ(r − r′),

(B7)

which can be used to rewrite Eqs. (B4) and (B5) into

G HS
i,ω (r, r′)=G H

i,ω(r, r′) −
∫

d r̃dlG H
i,ω(r, l)�i(l, r̃)F †

i,ω(r̃, r′),

(B8)
and

F †
i,ω(r, r′) =

∫
d r̃dlG H

i,−ω(l, r)�∗
i (l, r̃)G HS

i,ω (r̃, r′). (B9)

Since the energy gap is very small in the vicinity of the
upper critical transition curve, one can expand F †

i,ω(r, r) in
powers of �. In order to obtain the band gap equation, one
linearizes Eq. (B9), replace G HS

i,ω by G H
i,ω, and substitutes it in

Eq. (B6). Note that in the absence of magnetic field, the gap
function only depends on the relative position of the pair, i.e.,
�(r, r′) → �(r − r′). In the particular case of a local pairing
interaction, V (r − r′) = V δ(r − r′), one obtains the usual s-
wave gap function, �(r, r′) = �δ(r − r′). In the presence of
a magnetic field it comes that

�(r, r′) = �(r)δ(r − r′), (B10)

and the band gap equation becomes

�i(r) = Vii

∫
dr′KH

βi(r
′, r)�i(r′)

+
∑
j =i

Vi j

∫
dr′KH

β j (r
′, r)� j (r′), (B11)

with i = 1, ..., n, and where KH
βi (r

′, r) is the pair propagator
defined by

KH
βi (r

′, r) = 1

β

∑
ω

G H
i,−ω(r′, r)G H

iω (r′, r). (B12)
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Under the semiclassic approximation (for not high enough
magnetic fields, the effects resulting from these fields can be
included into the electronic behavior in a semiclassic way)
[66–68] one has

KH
βi (r

′, r) = Kβi(r′ − r)e(i 2e
h̄c A(r).(r′−r)), (B13)

where Kβi(r) is the fermion pair propagator in real space at
a temperature kBT = 1/β, in the absence of external fields,
intraband, and interband pairing interactions. The supercon-
ducting transition for a 2D system in an external magnetic
field can then be described by the following semiclassical
linearized n-band gap equation

�i(r) = Vii

∫
dr′Kβi(r′)ei2A(r).(r′−r)�i(r + r′)

+
∑
j =i

Vi j

∫
dr′Kβ j (r′)ei2A(r).(r′−r)� j (r + r′),

(B14)

where the geometrized unit system, i.e., h̄ = c = e = kB =
μB = 1, was used.

In the 2D symmetric gauge A = 1
2 H × r, Eq. (B14) be-

comes

�i(r) = Vii

∫
dr′Kβi(r′)ei r×r′

l2 �i(r + r′)

+
∑

j

Vi j

∫
dr′Kβ j (r′)ei r×r′

l2 � j (r + r′),

(B15)

where l is related to the magnetic field by H = φ0(2π l2)−1,
with φ0 = hc/e being the flux quantum. The highest eigen-
value of this linear equation determines the upper critical field.

2. Pair propagator for an isotropic
2D conventional superconductor

The retarded Green’s function for an isotropic 2D conven-
tional superconductor, with energy-band dispersion εk − μ =
vF (k − kF ), is given by

GR(k, ω) = 1

ω − vF (k − kF ) + i0+ , (B16)

where ω is the frequency energy. The spectral function, in the
real space, is given by the following [39]

A(r, ω) = − 1

2vF

( ω

kF
+ kF

)
J0

[
r

(
ω

kF
+ kF

)]
θ (ω + vF kF )

≈ − 1

4vF

√
2kF

πr
cos

[
r

(
ω

kF
+ kF

)
− π

4

]
,

(B17)

where J0 is the Bessel function Jn(x) for n = 0. After some
math, and using Eq. (B12), one obtains the pair propagator
for an isotropic 2D conventional superconductor

Kβ (r) =
(

kF

2πr

)−1 1

v2
F β

1

sinh
(

2πr
βvF

) . (B18)

3. Pair propagator for a high-density quasi-1D superconductor

The energy-band dispersion for an anisotropic high-density
quasi-1D superconductor is given by

εk − μ = vF (|kx| − kF ) − 2ty cos(ky), (B19)

which is associated to an open Fermi surface (for ty = 0
one recovers the expression for the isotropic 2D conventional
superconductor). The retarded Green’s function is then given
by [39]

GR(k, ω) = 1

ω − vF (|kx| − kF ) − 2ty cos(ky)
, (B20)

and the real spectral function by

A(ω, x, y) = A1D(ω, x)e−iyπ/2, (B21)

where −A1D(ω, x)/π is the spectral function of the noninter-
acting 1D Tomonaga model

A1D(ω, x) = − 1

vF
cos

[(
ω

vF
+ kF

)
x

]
. (B22)

The corresponding pair propagator is given by

Kβ (x) = K1D
β (x, y)J2

y

[
2tyx

vF

]
, (B23)

where

K1D
β (x, y) = 1

v2
F β

1

sinh
[

2πr
βvF

] . (B24)

4. Pair propagator for a superconductor with an isotropic band
with a van-Hove singularity

The energy-band dispersion for an isotropic band with a
van-Hove singularity (with the vHS being pinned at the Fermi
level) is given by εk − εvh = a × sign(q)|q|b. In this case, the
retarded Green’s function is the following

GR(k, ω) = 1

ω − a × sign(q)|q|b , (B25)

and the spectral function is given by [49,52,53]

A(r, ω) = − 1

2ab

( |ω|
a

)(1/b)−1

×
√

2kF

πr

× cos

[
r

(( |ω|
a

)1/b

sign ω + kF

)
− π

4

]
, (B26)

where a and b are constant parameters that control the exten-
sion of the saddle point. The corresponding pair propagator is
given by

Kβ (r) = r (b−3)F

[(
βa

2

)1/b

/r

]
, (B27)

with

F [X ] = 2kF

π2

1

ab

∫ ∞

0
dω

tanh [(ωX )b]

ωb−1

{
1

2
sin (2ω)

+
b−1

2∑
n=1

e−ω sin (2π/bn )

× sin

[
ω

(
1 + cos

(
2π

b
n

))
+ 2π

b
n

]}
. (B28)
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APPENDIX C: BAND GAP EQUATION IN THE MIXED REPRESENTATION AND DEGENERACY OF THE GAP SOLUTIONS

Band gap equation in the mixed representation

In this section we derive the n-band gap equation in the mixed representation. We generalize the gap equation in Ref. [39] for
the case of n bands. We use this representation due to the anisotropic nature of the pair propagator given in Eq. (B23). In such a
case, it is easier to find the numerical solutions of the gap equations by including the effects of the magnetic field as a phase term
ei(A(r)+A(r′ )), due to the symmetric form of those phases. In the case of the Landau gauge A = (0, Hx, 0), the pair propagator can
be written as

KH
βi (r

′, r) = Kβi(r′ − r)eiH (x+x′ )(y′−y), (C1)

and the gap equation (B15) becomes

�i(x, y) = Vii

∫
dx′

∫
dy′Kβi(x

′ − x, y′ − y)eiH (x+x′ )(y′−y)�i(x
′, y′)

+
∑
i = j

Vi j

∫
dx′

∫
dy′Kβ j (x

′ − x, y′ − y)eiH (x+x′ )(y′−y)� j (x
′, y′),

(C2)

or, upon the variable change x′ − x = x′,

�i(x, y) = Vii

∫
dx′

∫
dy′Kβi(x

′, y′)eiH (2x+x′ )y′
�i(x + x′, y + y′)

+
∑
i = j

Vi j

∫
dx′

∫
dy′Kβ j (x

′, y′)eiH (2x+x′ )y′
� j (x

′ + x′, y + y′).
(C3)

By using the Fourier transformation in y and noting that

1√
2π

∫
dy�i(x + x′, y + y′)e−ikyy = 1√

2π

∫
dy�i(x + x′, y)e−iky (y−y′ ) = eikyy′

�i(x + x′, ky), (C4)

we obtain the following

�i(x, ky) = Vii

∫
dy′

∫
dx′Kβi(x

′, y′)ei(ky+H (2x+x′ ))y′
�i(x + x′, ky)

+
∑
i = j

Vi j

∫
dy′

∫
dx′Kβ j (x

′, y′)ei(ky+H (2x+x′ ))y′
� j (x + x′, ky).

(C5)

Using the proof of the degeneracy of �(x, ky) (this proof can be found for instance in Ref. [39]; note that in that proof, it was
assumed that

∫ r′

r drA(r) ≡ A(r)(r′ − r), but that should not matter), we obtain

�i(x, ky = 0) = Vii

∫
dx′Kβ,i(x

′, ky = −H (2x + x′))�i(x + x′, ky = 0)

+
∑
i = j

Vi j

∫
dx′Kβ, j (x

′, ky = −H (2x + x′))� j (x + x′, ky = 0),
(C6)

or equivalently

�i(x, 0) = Vii

∫
dx′Kβ,i(x

′ − x, ky = −H (x + x′))�i(x
′, 0)

+
∑
i = j

Vi j

∫
dx′Kβ, j (x

′ − x, ky = −H (x + x′))� j (x
′, 0),

(C7)

where �i(x, 0) is the y integrated gap function and Kβ (x, ky) are the Fourier transforms of Kβ (x, y)

Kβ (x, ky) ∼
∫

dω

∫
d py tanh(βω/2)A(x, py + ky, ω)B(x,−py,−ω), (C8)

where

A(x, ky, ω) = 1

2π

∫
dkxeikxxImGR(k, ω), (C9)

and

B(x, ky, ω) = 1

2π

∫
dkxeikxxReGR(k, ω). (C10)
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APPENDIX D: NUMERICAL LANCZOS SOLUTIONS OF
THE GAP EQUATION

1. Discretization of the gap equation

The determination of the Hc2 curve by analytically solving
Eq. (C7) is a hard task to achieve. Instead, we transform the
gap equation into a vector equation, making the determination
of Hc2 as simple as solving an eigenvalue problem. In order to
do that, following the procedure in Refs. [38,39] (and gener-
alizing it for the n-band system), we make a discretization of
the gap equation in one of the directions transforming it in a
vector equation. In that case, Eq. (C7) can be written as

(�i )n = Vii

∑
m

(Kβi )nm(�i )m +
∑
i = j

Vi j

∑
p

(Kβi )np(�i)p,

(D1)

where the index n labels the discrete coordinates. In the case
of a two-band system, the two-band-gap equation in the vec-
torial form is the following

�a
i = g

[
V a

∑
j

Ka
i j�

a
j + V ab

∑
j

Kb
i j�

b
j

]
(D2)

�b
i = g

[
V b

∑
j

Kb
i j�

b
j + V ab

∑
j

Ka
i j�

a
j

]
, (D3)

where gV a(V b) is the intraband pairing interaction in the band
a(b) and gV ab is the interband pairing interaction. Ka

i j (K
b
i j )

and �a
j (�

b
j ) are, respectively, the pair propagator and the gap

function of the band a(b).
We can write Eqs. (D2) and (D3) as a single vector equa-

tion [
�a

i

�b
i

]
= gMi j

[
�a

j

�b
j

]
, (D4)

where

Mi j =
[

V aKa V abKb

V abKa V bKb

]
. (D5)

In this case, the upper critical field is obtained from the highest
eigenvalue of the matrix Mi j . This eigenvalue was obtained by
applying the Lanczos method [39], and the respective eigen-
state gives the gap function. The numerical determination of
the highest eigenvalue of the matrix Mi j changes the gap
equation to the following simple equation

0 = f (Hc2, T ) − 1

g
, (D6)

which can be solved by applying a secant method.

2. Lanczos method

The Lanczos method is a numerical algorithm suitable to
determine, approximately, extreme eigenvalues and eigenvec-
tors of large sparse matrices in a considerably lower time
when compared to the direct diagonalization of the same

matrices [69]. In this section, we present the Lanczos method
following Ref. [69].

The states with the lowest energy are found by applying a
step-descent algorithm to a generic initial state. The energy E
of an eigenvector ψ of a matrix H is given by

E |ψ〉 = H |ψ〉 ⇔ E 〈ψ |ψ〉 = 〈ψ |H |ψ〉 ⇔ E = 〈ψ |H |ψ〉
〈ψ |ψ〉 ,

(D7)
and this energy is minimized for ψ = ψ0, with E (ψ0) = E0.

Step-descent:

∂E [ψ]

〈ψ | = H |ψ〉 − E [ψ] |ψ〉
〈ψ |ψ〉 = |ψ〉a (D8)

with E [ψ − αψa] < E [ψ], where a is a positive constant.
We want to minimize E [ψ − αψa], and that is equivalent to
determining the lowest eigenvalue of the matrix formed by the
orthogonal (and orthonormal) space spanned by the base vec-
tors |ψ〉 and |ψa〉. In turn, that space is identical to the space
spanned by the vectors |ψ〉 and H |ψ〉, i.e., span(|ψ〉 , |ψa〉) =
span(|ψ〉 , H |ψa〉).

So, the first vector is v0 = |ψ〉√〈ψ〉 , and the second vector |v1〉
is obtained by orthogonalizing H |v0〉 to |v0〉

|ṽ1〉 = H |v0〉 − |v0〉 〈v0|H |v0〉, (D9)

and normalizing the resulting vector

|v1〉 = |ṽ1〉√〈ṽ1|ṽ1〉
= |ṽ1〉

b1
⇔ |ṽ1〉 = b1 |v1〉 , (D10)

where b1 = √〈ṽ1|ṽ1〉. We can rewrite Eq. (D9) as

H |v0〉 = a0 |v0〉 + |ṽ1〉 (D11)

or

H |v0〉 = a0 |v0〉 + b1 |v1〉 , (D12)

where an = 〈vn|H |vn〉. Applying 〈v1| to Eq. (D12),

〈v1|H |v0〉 = b1. (D13)

Thus, the Hamiltonian in the base of vectors spanned by |ψ〉
and H |ψ〉, in the matricial form, is then given by

Hv0,v1 =
[

a0 b1

b1 a1

]
, (D14)

and the lowest eigenvalue and the respective eigenstate of
Eq. (D14) are given by

λ− = (a0 + b1) −
√

a0
2 + b1

2 + 4b1
2 − 2a0b1

2
(D15)

and

vλ− =
(

− (−a0 + b1) +
√

a0
2 + b1

2 + 4b1
2 − 2a0b1

2b1
, 1

)
.

(D16)
In our work, H = Mi j .
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