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Absence of a T 2/3 specific heat anomaly in a U (1) spin liquid with a large spinon Fermi surface
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Effective gauge theories based on slave particle construction are widely used to describe quantum number frac-
tionalization in strongly correlated electron systems. However, even setting aside the debates on the confinement
issue of the slave particles, there are still significant conflicts between theory and experiment. In particular, a T 2/3

specific heat anomaly has been predicted to be the smoking-gun signature of low-lying gauge fluctuation in a
U (1) spin liquid with a large spinon Fermi surface, which has, however, never been observed. Here we show that
such an anomaly is actually an artifact of a Gaussian approximation and is absent when the no-double-occupancy
constraint on the slave particles is strictly enforced. We also show that projective construction based on slave
particle representation provides a unified understanding of the mechanism of spin fractionalization in one- and
two-dimensional spin liquids.
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I. INTRODUCTION

Quantum spin liquids are exotic states of matter hosting
fractionalized excitation [1,2], a novel object that has been
suggested to provide an exotic interpretation of the anoma-
lous dynamical behavior observed in many quantum magnets,
which are hard to explain within the traditional spin wave
theory framework [3–7]. It also offers a novel mechanism
for the non-Fermi liquid behavior observed in cuprate su-
perconductors [8]. Effective gauge theory based on slave
particle construction is the most widely used theoretical tool
to describe quantum number fractionalization in strongly cor-
related electron systems.

The U (1) spin liquid with a large spinon Fermi surface is a
particular example of a system showing quantum number frac-
tionalization. Such a state can be understood roughly as the
descendant of a metallic state near a Mott transition, in which
electron correlation has already opened a charge gap while
leaving the electron Fermi surface intact. An insulator with
a large Fermi surface is exotic in the sense that the gapless
excitation on the Fermi surface should carry only the spin and
not the charge quantum number of an electron and is intrin-
sically fractionalized. Indeed, in organic Mott insulators with
a triangular lattice, people do find evidence of the existence
of such a quantum spin liquid near the Mott transition [9–12].
Magnetic susceptibility and specific heat measurement at low
temperature on such systems exhibit typical behavior of a
Fermi liquid metal with a finite density of states on the Fermi
surface. Such a picture is also supported by theoretical studies.
Variational studies find that when the multispin exchange is
strong enough, which is expected near a Mott transition, a
U (1) spin liquid state with a large spinon Fermi surface is
the best variational ground state of a quantum antiferromagnet
defined on the triangular lattice [13]. An effective field theory
study based on slave particle construction also arrived at the
same conclusion in the saddle point approximation [14].

However, one encounters serious problems when trying
to go beyond the saddle point approximation. The effective
theory of the above U (1) spin liquid has the form of a compact
U (1) gauge field coupled to fermionic slave particles that
form a large Fermi surface [12]. It is well known that in
2+1 dimensions a pure compact U (1) gauge field is always
confining as a result of the proliferation of the singular gauge
field configuration called an instanton [15]. Whether the in-
stanton effect can be suppressed by dissipative coupling to a
gapless fermion system and whether the gauge non-neutral
slave particle can appear in a physical spectrum [8,16–26]
have been strongly debated. Even if the instanton effect can,
indeed, be suppressed, there are still strong conflicts between
theory and experiment. The noncompact U (1) gauge field in
the Gaussian effective theory, which has no intrinsic dynamics
of its own, will acquire a relaxational dynamics with a dynam-
ical exponent z = 3 as a result of the dissipative coupling to
the current of the gapless fermionic slave particles [8,27]. In
two dimensions, such an ultraslow dynamics in the gauge fluc-
tuation will result in a T 2/3 anomaly in the low-temperature
specific heat [28]. This smoking-gun signature of the Gaus-
sian effective theory, however, has never been observed in
any serious experimental investigation [12]. These unresolved
issues cast serious doubt on our identification of the organic
Mott insulators as U (1) spin liquid materials [29–33].

We note, however, confinement of slave particles does not
necessarily imply the instability of a U (1) spin liquid and the
forbiddance of spin fractionalization. For example, it is well
known that in one dimension, in which gauge non-neutral
particles are always confined, fractionalized spin excitations
can emerge as domain walls in the spin correlation pattern.
Most theorists think this mechanism of spin fractionalization
is fundamentally different from the mechanism of decon-
finement of slave particles since the slave particles are local
objects, while the domain wall excitations are topological in
nature [19,34,35]. However, one still cannot help wondering
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whether there is any unrevealed connection between the slave
particles and the physical spinons in this special case. After
all, the two share the same Fermi surface in the U (1) spin
liquid state.

In this paper, we reinvestigate these issues by combing
effective field theory analysis and variational construction. We
show that the Gaussian approximation to the gauge fluctua-
tion in the effective theory of a U (1) spin liquid is invalid
as singular gauge field configurations always proliferate. We
find that the dissipative coupling between the transverse U (1)
gauge field and the current of the slave particles is prohibited
when the time component of the U (1) gauge field is exactly
integrated out. We find further that the dynamics of the trans-
verse gauge fluctuation in the U (1) spin liquid is determined
by its coupling to the scalar spin chirality, which features a
large characteristic energy throughout the Brillouin zone. The
T 2/3 specific heat anomaly predicted by the Gaussian effec-
tive theory is thus absent. We also show that the Gutzwiller
projection will transform the slave particle into a genuine
nonlocal object, which a physical spinon should be, thanks to
the Friedel sum rule and Anderson’s theorem of orthogonality
catastrophe. This unifies our understanding of spin fraction-
alization in one-dimensional (1D) and two-dimensional (2D)
spin liquids.

This paper is organized as follows. In the next section,
we review the effective gauge theory of the U (1) spin liquid
with a large spinon surface constructed from a slave particle
representation of the spin operator. We show that the Gaussian
approximation on the time component of the U (1) gauge field
always fails as a result of proliferation of the singular gauge
fluctuation configuration. In Sec. III, we construct an effective
theory for the gauge fluctuation around the U (1) spin liquid
saddle point with the time component of the U (1) gauge field
exactly integrated out. We show that the T 2/3 specific heat
anomaly predicted by the Gaussian effective field theory is
absent in our theory. In Sec. IV, we present a unified picture
of the mechanism of spin fractionalization in one- and two-
dimensional spin liquids. We show that Gutzwiller projection
on slave particle excitation can recover correctly the nonlocal
nature of a physical spinon. We conclude our work in Sec. V
and discuss possible extensions of this work to other strongly
correlated systems in which effective field theory based on
slave particle construction is employed. Some technical de-
tails of the paper can be found in the three Appendixes.

II. THE FAILURE OF THE GAUSSIAN EFFECTIVE GAUGE
THEORY OF A U (1) SPIN LIQUID

We start from the standard U (1) gauge field formulation
of a quantum antiferromagnet. For illustrative purposes, we
consider the spin- 1

2 antiferromagnetic Heisenberg model on
the triangular lattice,

H = 2J
∑
〈i, j〉

�Si · �S j . (1)

Here the sum
∑

〈i, j〉 is over nearest-neighbor bonds. In real
materials, additional terms are needed to stabilize the U (1)
spin liquid state. Such terms will not change the discussion
that follows, and we will include them at a later time.

To introduce the gauge field formulation of the problem,
we represent the spins in terms of the fermionic slave particles
as

�Si = 1

2

∑
α,β

f †
i,α �σα,β fi,β . (2)

To preserve the spin algebra, the slave particle should satisfy
the constraint of no double occupancy of the form∑

α

f †
i,α fi,α = 1. (3)

This representation has a built-in U (1) gauge redundancy
since the spin operator is unaffected when we perform a U (1)
gauge transformation of the form

fi,α → eiφi fi,α, (4)

where φi is an arbitrary U (1) phase.
In terms of the slave particles, the Hamiltonian can be

rewritten as

H = −J
∑
〈i, j〉

χ̂
†
i, j χ̂i, j, (5)

with

χ̂i, j =
∑

α

f †
i,α f j,α. (6)

After the standard Hubbard-Stratonovich transformation on
χ̂i, j and assuming a uniform saddle point value χ for the
magnitude of χi, j (namely, assuming |χi, j | = χ ), which is
believed to be gapped, the partition function of the system can
be written as

Z = Z0

∫ ∏
i,μ,τ,α

D f †
i,α (τ )D fi,α (τ )Da0

i (τ )Daμ
i (τ )e−S, (7)

where

S =
∫ β

0
dτ

[∑
i, j,α

f †
i,α (τ )G−1

i, j (τ ) f j,α (τ ) − i
∑

i

a0
i (τ )

]
. (8)

Z0 is an unimportant constant.

G−1
i, j (τ ) = [

∂τ + ia0
i (τ )

]
δi, j − Jχeiaμ

i (τ ) (9)

is the inverse propagator of the slave particles in the presence
of the auxiliary fields aμ

i and a0
i , which should be interpreted

as the spatial and temporal components of a compact U (1)
gauge field. We note that a0

i (τ ) is a Lagrange multiplier in-
troduced to enforce the no-double-occupancy constraint. The
above form involves integration over a huge number of pure
gauge degree of freedoms. We can fix the gauge for aμ

i and
rewrite the partition function as

Z = Z ′
0

∫ ∏
i,x,τ,α

D f †
i,α (τ )D fi,α (τ )Da0

i (τ )D
x(τ )e−S (10)

(Z ′
0 differs from Z0 by powers of the gauge volume). Here


x(τ ) is the gauge flux enclosed in a triangle centered at x
and at the imaginary time τ . It is related to the scalar spin
chirality on the triangle by

sin 
x ∝ 〈Ĉx〉 = 〈�Si · (�S j × �Sk )〉. (11)
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In the Gaussian approximation, we approximate ia0
i (τ ) =

λ. The fluctuation of a0
i (τ ) around λ is argued to be screened

by the density response of the fermion system and is neglected
at low energy [8]. We are then left with a free-fermion system
coupled to the transverse U (1) gauge field at low energy.
When the fermion degree of freedom is integrated out, the
transverse gauge field will acquire a relaxational dynamics
with a dynamical exponent z = 3 at low energy as a result
of its dissipative coupling to the spinon current. In two di-
mensions, such an ultraslow dynamics would imply a T 2/3

anomaly in the low-temperature specific heat [28].
However, the treatment of a0

i (τ ) outlined above is not jus-
tified from either a physical or a mathematical point of view.
When the no-double-occupancy constraint is strictly enforced
by the integration over a0

i (τ ), the spinon current should vanish
identically. Thus, the coupling between the spinon current and
the transverse gauge field is unphysical. At the same time, the
projection to the subspace of no double occupancy is achieved
by destructive interference between the contributions to Z
from different gauge paths a0

i (τ ). One thus should not expect
any single gauge path to dominate the partition function. To
illustrate this point, we have calculated the contributions to
Z from different gauge paths by discretizing the imaginary
time into Nτ slices. We find such contributions are unbounded
in magnitude and strongly fluctuating in phase. For example,
the contribution from the gauge path a0

i (τ ) = Nτ φ/β to Z is
found to be given exactly by

C = eiNsNτ φ
∏

k

[
1 +

(
1 + iφ − βεk

Nτ

)Nτ
]2

, (12)

where εk denotes the mean-field eigenvalue of the saddle point
Hamiltonian and Ns is the number of lattice sites. In the large-
Nτ limit(with φ kept finite), we find

C � eiNsNτ φ (1 + iφ)2Nτ Ns . (13)

Such a contribution obviously diverges in the large-Nτ

limit(see Appendix B for more details on this point). The
saddle point approximation in such unbounded contributions
is thus meaningless.

III. THE DYNAMICS OF GAUGE FLUCTUATION
ON A U (1) SPIN LIQUID WITH A LARGE

SPINON FERMI SURFACE

Anticipating the inadequacy of the Gaussian approxima-
tion, we now integrate out a0

i (τ ) exactly. This leaves us with
an effective theory for the gauge flux 
x(τ ), which takes the
form of

Z =
∫ ∏

x,τ

D
x(τ )e−S̃[
], (14)

where

e−S̃[
] = Z ′
0

∫ ∏
i,τ,α

D f †
i,α (τ )D fi,α (τ )Da0

i (τ )e−S. (15)

Thus, the effective action of the transverse gauge field is deter-
mined by the response of a projected fermion system. To make
further progress, we apply the saddle point approximation to
the physical gauge flux 
x(τ ) and assume 
x(τ ) = 0 at the

saddle point. This saddle point corresponds to the U (1) spin
liquid state with a large spinon Fermi surface. To study the
fluctuation effect around such a saddle point, we expand S̃[
]
around 
x(τ ) = 0 to the second order. The expansion reads

S̃[
] � S̃[0] +
∫

dτdτ ′ ∑
x,x′


x(τ )Kx,x′ (τ, τ ′)
x′ (τ ′). (16)

As will be shown below, to the lowest order in χ , what
survives the exact integration over a0

i (τ ) is a linear coupling
between the U (1) gauge flux 
x(τ ) and the scalar spin chiral-
ity. We thus have

Kx,x′ (τ, τ ′) ∝ −〈TτĈx(τ )Ĉx′ (τ ′)〉, (17)

where

Ĉx = �Si · (�S j × �Sk ) = (Pi jk − Pik j )/4i (18)

is the scalar spin chirality on the triangle centered at x. i, j,
and k are the three sites of the triangle, and

Pi, j,k =
∑
α,β,γ

( f †
i,α f j,α )( f †

j,β fk,β )( f †
k,γ

fi,γ ) (19)

is the three-spin ring exchange operator on the triangle.
This form is drastically different from that derived from the
Gaussian effective theory, in which the gauge dynamics is
determined by the current response of a free-fermion system.

To see this more clearly, we again discretize the imaginary
time into Nτ slices and rewrite the fermion path integral rep-
resentation of e−S̃[
] in the form of a trace over a series of
fermion Fock bases, which is given by

e−S̃[
] = Z ′
0 Tr

Nτ∏
iτ =1

〈{niτ +1}|PGe−�τHχ
iτ PG|{niτ }〉. (20)

Here |{niτ }〉 denotes a fermion Fock basis at time τ = iτ�τ ,
and Tr indicates summation over all possible fermion Fock
bases |{niτ }〉 that satisfy the condition |{nNτ+1}〉 = |{n1}〉. The
integration over the Lagrange multiplier a0

i (τ ) has been re-
placed by the Gutzwiller projection PG on the Fock bases. Hχ

iτ
is given by

Hχ
iτ

= −J2χ
∑

〈i, j〉,α

(
eiaμ

i (τ ) f †
i,α f j,α + H.c.

)
. (21)

Here we emphasize that an effective theory for 
x(τ ) is mean-
ingful only when the magnitude of the Resonating Valence
Bond order parameter χi, j becomes well defined, namely, only
for excitation energy smaller than the characteristic energy of
the fluctuation in |χi, j |, which is of the order of J2. We thus
should have J2�τ � 1.

We now seek a quadratic approximation for S̃[
] around
the U (1) spin liquid saddle point 
x(τ ) = 0. Denoting
Z[
] = e−S̃[
], the kernel of the quadratic approximation for
S̃[
] is given by

Kx,x′ (τ, τ ′) = − δ2 ln Z[
]

δ
x(τ )δ
x′ (τ ′)
. (22)
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To find the kernel K , we expand e−�τHχ
iτ in 
x(τ ). The lowest-

order term in the expansion is given by

H1 = −J2�τχ
∑
i,μ

aμ
i (τ ) jμi , (23)

in which

jμi = −i
∑

α

( f †
i,α f j,α − H.c.) (24)

is the fermion current. However, such a term does not survive
the Gutzwiller projection PG in Eq. (20). We find that when
the Gutzwiller projection is taken into account, to the lowest
order in χ , the expansion of PGe−�τHχ

iτ PG in 
x(τ ) is given by

H3 = −2(J2�τχ )3

3

∑
x


x(τ )Ĉx, (25)

with the scalar spin chirality Ĉx defined in Eq. (18). We note
that while the second-order term in the expansion survives the
Gutzwiller projection, it does not experience the gauge flux.
This reasoning leads us to Eq. (17).

A computation of the full spectrum of Ĉx for the projected
fermion system is difficult. However, the center of gravity of
the spectrum can be obtained easily from a sum rule analysis
and is given exactly by

Eq = 1

2

〈G|[[Ĉq, H], Ĉ†
−q]|G〉

〈G|ĈqĈ†
−q|G〉 , (26)

where

Ĉq = 1

N

∑
eiq·xĈx (27)

is the density of scalar spin chirality at momentum q and |G〉 is
the ground state of the system in the saddle point approxima-
tion, which is nothing but the Gutzwiller projected Fermi sea
state. We note that with Eq we can already judge the validity of
the Gaussian effective theory, which predicts that the charac-
teristic energy for long-wavelength gauge fluctuation should
vanish like q3. If the Gaussian theory is indeed valid, one
should expect Eq to vanish in the same way. More generally,
in the Gaussian effective theory Eq should always vanish in
the q → 0 limit as a result of the U (1) gauge symmetry of the
Gaussian effective action.

To check this point, we calculate Eq for the projected Fermi
sea state on the triangular lattice assuming the following
Hamiltonian:

H = J2

∑
〈i, j〉

Pi j + J4

∑
[i, j,k,l]

(Pi jkl + Pilk j ). (28)

Here Pi j = 2�Si · �S j + 1/2 is the Heisenberg exchange cou-
pling. Pi jkl is the four-spin ring exchange around a rhombus
[i, j, k, l].

∑
[i, j,k,l] denotes the sum over all elementary

rhombi of the triangular lattice. As found by Motrunich [13],
when J4 � 0.3J2, the projected Fermi sea state is the best
variational state of the model. Here we set J4 = 0.3J2.

The result of Eq is shown in Fig. 1. In stark contrast to
the prediction of the Gaussian effective theory, Eq is found to
be strongly gapped throughout the Brillouin zone. This result
can be understood from an inspection of the structure factor of

-1
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0

2

4

6

-1

0

1

E
q

(J
2)

q y

q
x

FIG. 1. The dispersion of Eq in the projected Fermi sea state
on the triangular lattice. Shown here is the result for the acoustic
mode in which the scalar spin chiralities in the up and down triangles
fluctuate in phase. We have adopted the convention �q = qx �G1/2 +
qy �G2/2 for momentum, where �G1,2 are the two reciprocal vectors of
the triangular lattice.

the scalar spin chirality, which is shown in Fig. 2. We find that
the correlation of Ĉx in real space is extremely short range and
the corresponding structure factor is almost featureless around
q = 0. We note that the short-range nature of the correlation
in Ĉx was also mentioned by Motrunich [13].

A nonzero Eq does not necessarily imply a gapped gauge
fluctuation spectrum. In Appendix C, we present a mean-field
analysis of the fluctuation spectrum of the scalar spin chirality
operator Ĉx in the U (1) spin liquid state. It is found that the
scalar spin chirality operator can excite either one, two, or,
at most, three pairs of particle-hole excitations on the spinon
Fermi sea, whose spectral weights vanish as ω, ω3, and ω5 at
low energy. However, as is shown there, such local excitations
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0.0000
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x  

FIG. 2. The structure factor of the scalar spin chirality in the
projected Fermi sea state on the triangular lattice. Shown here is the
result for the acoustic mode.
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can contribute, at most, a T 2 correction to the specific heat at
low temperature. The T 2/3 specific heat anomaly predicted by
the Gaussian effective theory is absent.

IV. A UNIFIED PICTURE OF SPIN FRACTIONALIZATION
IN 1D AND 2D SPIN LIQUIDS

The above result implies that the Gaussian effective theory
for the U (1) spin liquid is invalid and the physical spinon
cannot be understood as a deconfined slave particle. A natural
question is then how the two are related. After all, they share
the same Fermi surface in this U (1) spin liquid state. This
question was addressed by Mudry and Fradkin more than two
decades ago [34,35]. They argued that, at least in one dimen-
sion, the two are fundamentally different objects since the
physical spinon is then a topological object that corresponds to
an antiphase domain wall in the spin correlation pattern, while
the slave particle is a local object. Here we show that while the
physical spinon should not be understood perturbatively as a
dressed slave particle as we do in the Gaussian approximation,
the Gutzwiller projection will transform the slave particle into
a nonlocal object that corresponds just to such an antiphase
domain wall. We note that it is not our purpose here to prove
the generally accepted opinion that a physical spinon should
be understood as a nonlocal object, but rather to show how
the Gutzwiller projection will transform the slave particle into
such a nonlocal object.

The Gutzwiller projected Fermi sea state, namely,

|G〉 = PG

∏
|k|<kF

f †
k,↑ f †

k,↓|0〉 = PG|FS〉, (29)

is known to be a very accurate description of the ground state
of the spin- 1

2 antiferromagnetic Heisenberg chain model [36].
For example, the relative error in the ground state energy cal-
culated from PG|FS〉 is smaller than 0.2%. In fact, one should
not be surprised by such accuracy from the gauge field theory
perspective since the only gauge field component in the case,
a0

i (τ ), has been exactly integrated out through Gutzwiller
projection (we note that the fluctuation in the amplitude of
the bond variable |χi, j |, which is believed to be unimportant
for long-wavelength physics, is still only treated at the saddle
point level).

On a 1D ring with N = 4l + 2 sites and with the periodic
boundary condition (the boundary condition is so chosen to
guarantee a closed-shell structure at half filling), the wave
function of |FS〉 is given by

ψFS({im, jn}) = ψs

∏
m<m′

(
Zim − Zim′

) ∏
n<n′

(
Zjn − Zjn′

)
, (30)

where {im, jn} indicates the sets of coordinates for the up and
down spin electrons, Zim = exp( i2π im

N ) is the chord coordinate
of a lattice site on the ring [37] (see Fig. 3 for an illustration),
and ψs = (

∏
m,n Z∗

im Z∗
jn )l . For this wave function, it can be

shown that the change in phase when we exchange an up spin
electron at site i1 and a down spin electron at site j1 is given
by Ncπ , where Nc is the total electron number between site i1
and site j1 [38]. When |FS〉 is projected to the subspace of no
double occupancy, this phase structure reproduces the Mar-
shall sign rule structure of the antiferromagnetic Heisenberg
chain [39,40]. More specifically, the change in the phase of

FIG. 3. The chord coordinate on a ring and the meaning of θα
i, j .

the wave function during such an exchange process is given
by

�
 = arg

[∏
α>1

Ziα − Zj1

Ziα − Zi1

∏
l>1

Zjl − Zi1

Zjl − Zj1

]
. (31)

Since |Zim | = 1, the chord coordinates are complex numbers
living on a unit circle. Then

θα
i1, j1 = arg

[
Ziα − Zj1

Ziα − Zi1

]
(32)

is nothing but the angle in the segment Zi1 − Zj1 in the unit
circle (see Fig. 3 for an illustration). Noting the fact that in a
circle the angles in the same segment equal one another and
the sum of the opposite angles of quadrilaterals equals π , we
easily find that �
 = Ncπ , where Nc denotes the number of
electrons between site i1 and site j1. Taking into account the
sign due to fermion exchange, we find the change in the phase
of the wave function is in accordance with the Marshall sign
rule, which claims that the phase of the wave function should
change by π if we exchange two spins in different sublattices.

We now excite a pair of spinons in the ground state. Since
the ground state of the system is constructed by Gutzwiller
projection of the mean-field ground state, one would naturally
expect that Gutzwiller projection of the mean-field excited
state to provide a reasonable description of the physical ex-
cited state. Such logic has been followed successfully by many
groups in the literature [3,41–55]. Following this logic, the
variational state for a pair of spinons excited at sites i and j
should have the form

|i, j〉 = PG f †
i,↑ f j,↓|FS〉. (33)

As a result of the Gutzwiller projection, the wave function
of |i, j〉 in the Fock basis is given by the amplitude in |FS〉
with site i empty, site j doubly occupied, and all other sites
singly occupied. In other words, a spinon acts effectively as an
impurity that generates either one more or one less available
state than the singly occupied background. According to the
phase structure we proved for ψFS, spin exchange across site
i or site j (but not both) in the spin chain would pick up an
additional phase shift of π . This π phase shift corresponds
just to an antiphase domain wall in the spin chain.
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To extend this reasoning to two dimensions, we note that
the above π phase shift can actually be understood as the man-
ifestation of the Friedel sum rule in one dimension [56], which
claims that with the appearance of each additional available
fermion state within a 1D region, the phase of the scattering
amplitude across the region will change by π . In two dimen-
sions, the Friedel sum rule equates the scattering phase shift
on the Fermi surface with π times the number of additional
fermion states generated by the impurity potential below the
Fermi energy. Thus, each spinon will contribute a phase shift
of π on the spinon Fermi surface and exert nonlocal influence
on the surrounding spin state. More specifically, according
to Anderson’s orthogonality theorem [57–59], we expect the
spin state surrounding a spinon to be orthogonal to the ground
state in the thermodynamic limit. This can be checked by
computing the overlap between the two states. Since spinons
can be excited only in pairs whose total contribution to the
phase shift on the Fermi surface is zero, we expect the overlap
to vanish only when the separation between the two spinons
is infinite. This is what we call the orthogonality catastrophe
upon the excitation of a pair of spinons.

Now we calculate such an overlap. We first rewrite the state
with a pair of spinons excited at sites i and j more explicitly
as

|i, j〉 = f †
i,↑ f j,↓Pi

0P j
2

∏
i′ �=i, j

Pi′
G|FS〉 = f †

i,↑ f j,↓Pi
0P j

2 |FS′〉, (34)

where Pi
0, Pi

2, Pi
↑, and Pi

↓ are the projection operators into the
subspace of the empty, doubly occupied, up spin, and down
spin states on site i. Pi

G is the Gutzwiller projection operator
on site i:

|FS′〉 =
∏

i′ �=i, j

Pi′
G|FS〉. (35)

We note that what concerns us here is the overlap between the
spin state surrounding sites i and j in |i, j〉 and PG|FS〉, rather
than |i, j〉 and PG|FS〉 themselves. As a result of the conser-
vation of total Sz, only two components in PG|FS〉, namely,
|↑,↓〉 = Pi

↑P j
↓|FS′〉 and |↓,↑〉 = Pi

↓P j
↑|FS′〉, can have a

nonzero overlap with |i, j〉 in the region surrounding sites
i and j. Using inversion symmetry of PG|FS〉, it is easy to
show that these two components generate the same spin state
surrounding sites i and j. The overlap that we are looking for
can thus be expressed as

O(i, j) = 〈↑,↓| f j,↑ f †
j,↓|i, j〉√〈↑,↓|↑,↓〉 √〈i, j|i, j〉

= 〈FS′| Pi
↑P j

↓ f †
i,↑ f j,↑ Pi

0P j
2 |FS′〉√

〈FS′|Pi
↑P j

↓|FS′〉
√

〈FS′|Pi
0P j

2 |FS′〉
. (36)

Using the identities f †
i,↑Pi

0 = PG
i f †

i,↑ and f j,↑P j
2 = PG

i f j,↑ and
the conservation of total Sz, the numerator in Eq. (36) can be
simplified to

〈FS|PG f †
i,↑ f j,↑|FS〉. (37)

Using the translational symmetry of the system, it reduces
further to

G(i, j) × 〈FS|PG|FS〉. (38)
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FIG. 4. The behavior of the function p0,2 and p↑,↓. The calcula-
tion is done on a 36 × 36 lattice. The inset shows the 2kF oscillation
in p↑,↓ on a magnified scale.

Here

G(i, j) =
∑

|k|<kF

eik·(Ri−Rj ) (39)

is the correlator of the free fermion, which satisfies

G(i, j) ∼ 1

|Ri − Rj |2 (40)

in the large-distance limit in two dimensions.
Thus, the overlap we are seeking can be expressed as

O(i, j) = G(i, j)√
p0,2 p↑,↓

, (41)

where

p0,2 = 〈FS′| Pi
0P j

2 |FS′〉
〈FS| PG|FS〉 , p↑,↓ = 〈FS′| Pi

↑P j
↓|FS′〉

〈FS| PG|FS〉 . (42)

Since the spin correlation approaches zero in PG|FS〉 in the
large-distance limit, p↑,↓ should approach 1

4 in the same limit.
What is less obvious is the long-range behavior of p0,2. At
the mean-field level, we find p0,2 = p↑,↓ = 1

4 + G(i, j), and
both approach 1

4 in the large-distance limit. To go beyond
the mean-field treatment, we have calculated p0,2 and p↑,↓
by the variational Monte Carlo method. The result is shown
in Fig. 4. One finds both p0,2 and p↑,↓ approach a finite
(but now different) value in the large-distance limit. Thus,
the overlap we are seeking is proportional to G(i, j) and will
vanish as |Ri − Rj |−2 in the large-distance limit. This proves
the claimed orthogonality catastrophe upon spinon excitation
in the U (1) spin liquid state. We note that according to our
construction, p0,2 can actually be interpreted as the probability
to separate a pair of spinons to the distance |Ri − Rj |. A
nonvanishing value of p0,2 in the large-distance limit is thus
consistent with the existence of free spinons.
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V. CONCLUSIONS AND OUTLOOK

In conclusion, we have shown that the Gaussian approx-
imation of the gauge fluctuation is, in general, invalid in
effective gauge theories of spin liquids based on slave particle
construction. In particular, we found that the U (1) spin liquid
state with a large spinon Fermi surface on the triangular lattice
is robust and the fluctuation in the transverse gauge field on
this state features a large characteristic energy throughout
the Brillouin zone. The T 2/3 anomaly in the specific heat
predicted by Gaussian effective theories simply does not exist.
We also found that projective construction based on the slave
particle representation provides a unified understanding of the
mechanism of spin fractionalization in 1D and 2D spin liquids
and of the nonlocal nature of a physical spinon.

Since effective gauge theory based on slave particle con-
struction is so widely used in the study of strongly correlated
electron systems, there are many extensions of the current
work to other problems. In a recent work [60], we showed
that a bosonic spin liquid state can emerge continuously from
a collinear Néel ordered phase and can be locally stable with
respect to gauge fluctuation [61]. Other possible extensions
of our work range from the fate of the Dirac spin liquid state
with an internal U (1) gauge symmetry [62] and the nature
of a half-filled Landau level system [63] to the origin of the
non-Fermi liquid behavior in the normal state of optimally
doped cuprates [8].
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APPENDIX A: DERIVATION OF THE U (1) EFFECTIVE
GAUGE THEORY OF THE SPIN- 1

2 QUANTUM
ANTIFERROMAGNET ON THE TRIANGULAR LATTICE

We now derive an effective gauge field theory for the model
introduced in the main text, which is given by [13]

H = J2

∑
〈i, j〉

Pi j + J4

∑
[i, j,k,l]

(Pi jkl + Pilk j ). (A1)

Here Pi j = 2�Si · �S j + 1/2 is the Heisenberg exchange cou-
pling, and Pi jkl is the four-spin ring exchange around a
rhombus.

∑
[i, j,k,l] denotes the sum over all elementary

rhombi on the triangular lattice. In terms of the slave particles,
the Hamiltonian can be written as

H = J2

∑
〈i, j〉

( f †
i,α fi,β )( f †

j,β f j,α )

+ J4

∑
[i, j,k,l]

[( f †
i,α fi,β )( f †

j,β f j,γ )( f †
k,γ

fk,δ )( f †
l,δ fl,α ) + H.c.].

(A2)

Here and in the following, summation over repeated indices
is assumed. The slave particles should be subjected to the no-
double-occupancy constraint to be a faithful representation of
the spin algebra.

In the coherent state path integral formulation, the partition
function of the system can be written as

Z =
∫ ∏

i,τ,α

D f †
i,α (τ )D fi,α (τ )Da0

i (τ )e−S, (A3)

in which the action S is given by

S =
∫ β

0
dτ { f †

i,α (τ )∂τ fi,α (τ )

+ H + ia0
i (τ )[ f †

i,α (τ ) fi,α (τ ) − 1]}. (A4)

Here a0
i (τ ) is a Lagrange multiplier introduced to enforce the

no-double-occupancy constraint.
We define the bond variable χ̂i, j = f †

i,α f j,α and decouple
the Heisenberg exchange term with the standard Hubbard-
Stratonovich transformation on χ̂i, j . The partition function
after the transformation reads

Z =
∫ ∏

i,τ,α

D f †
i,α (τ )D fi,α (τ )Da0

i (τ )Dχi, j (τ )e−S, (A5)

in which the action S is given by

S =
∫ β

0
dτ

[
f †
i,α (τ )G−1

i, j (τ ) f j,α (τ )

+ H4 − i
∑

i

a0
i (τ ) − J2|χi, j (τ )|2

]
. (A6)

Here

G−1
i, j (τ ) = [

∂τ + ia0
i (τ )

]
δi, j − J2χi, j (τ ) (A7)

is the inverse propagator of the slave particle in the presence
of the auxiliary field χi, j (τ ) and a0

i (τ ), and H4 is the four-spin
exchange term that is left untouched. In the U (1) spin liquid
state, we can assume that the fluctuation in the amplitude of
χi, j is gapped and can be neglected in low-energy physics. It is
then reasonable to assume χi, j � χeiaμ

i , where χ is a constant
and aμ

i is the phase of χi, j . We thus have

Z = Z0

∫ ∏
i,μ,τ,α

D f †
i,α (τ )D fi,α (τ )Da0

i (τ )Daμ
i (τ )e−S, (A8)

where

S =
∫ β

0
dτ

[
f †
i,α (τ )G−1

i, j (τ ) f j,α (τ ) + H4 − i
∑

i

a0
i (τ )

]
. (A9)

The above form involves integration over a huge number
of pure gauge degrees of freedom. We can fix the gauge for
the transverse gauge field and rewrite the partition function as

Z = Z ′
0

∫ ∏
i,x,τ,α

D f †
i,α (τ )D fi,α (τ )Da0

i (τ )D
x(τ )e−S, (A10)

where 
x is the U (1) gauge flux enclosed in a triangle cen-
tered at x. According to a well-known identity [64], 
x is
related to the expectation value of the scalar spin chirality
Ĉx = �Si · (�S j × �Sk ) on a triangle by

sin 
x ∝ 〈 �Si · (�S j × �Sk ) 〉, (A11)

where i, j, and k are the three sites of the triangle.
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APPENDIX B: FAILURE OF THE SADDLE POINT
APPROXIMATION ON a0

i (τ )

To begin, we first demonstrate the failure of the saddle
point approximation on a0

i (τ ) for a two-site toy model of the
form H = 2�S1 · �S2. Following the general rule outlined above,
we find the action of the system is given by

S =
∫ β

0
dτ

{
f †
1,α (τ )

[
∂τ + ia0

1(τ )
]

f1,α (τ )

+ f †
2,α (τ )

[
∂τ + ia0

2(τ )
]

f2,α (τ )

−χ [eia1(τ ) f †
1,α (τ ) f2,α (τ ) + H.c.] − ia0

1(τ ) − ia0
2(τ )

}
.

(B1)

In the saddle point approximation, ia0
i (τ ) plays the role of a

chemical potential. As a result of the particle-hole symmetry
of the action, the chemical potential is always zero at half
filling. For our toy model, the spatial component of the gauge
field a1(τ ) can be gauged away [note that this is also true for
a 1D spin chain with an open boundary, for which a0

i (τ ) is
the only gauge field component that we need to consider].
Thus, the partition function of the toy model in the saddle
point approximation is simply that of a two-level free-fermion
system with eigenvalues χ and −χ .

Now we discretize the imaginary time into Nτ segments
and calculate the contributions to the partition function from
different gauge paths a0

i (τ ). For illustrative purposes, we will
calculate the contributions to Z from gauge paths of the form
a0

i (τ ) = z(i, τ )Nτπ/β, where z(i, τ ) = 0 or 1 is a random in-
teger defined on the sites of the space-time lattice. The reason
to choose such a special form can be understood as follows. As
a result of the Pauli principle, the total number of fermions on
a given site can only be 0, 1, or 2. Thus, the projection into the
singly occupied subspace can also be achieved by a discrete
sum over all possible z(i, τ ) configurations, rather than by an
integration over the continuous Lagrange multiplier a0

i (τ ).
The contribution of a given gauge path a0

i (τ ) to the parti-
tion function is given by [65]

C
[
a0

i (τ )
] = η[DetS]2, (B2)

where

S =
(

S1 Sχ

Sχ S2

)
(B3)

is a 2Nτ × 2Nτ matrix and η = ±1 is a sign determined by
the parity of the sum A = ∑

i,τ z(i, τ ). The submatrices S1,
S2, and Sχ are given by

Si =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 ai,1

−ai,2 1 0 . . . 0

0 . . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −ai,Nτ
1

⎞
⎟⎟⎟⎟⎟⎠

0 100 200 300 400
0

200

400

600

800

1000

Ln
 ( 

| C
 | 

)

A

FIG. 5. The dependence of ln(|C|) on the sum A = ∑
i,iτ

z(i, τ )
for 1000 randomly chosen gauge paths. Here we set Nτ = 200, β =
1, χ = 1.

for i = 1, 2 and

Sχ = −βχ

Nτ

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −1

1 0 0 . . . 0

0 . . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎠,

where ai,iτ = 1 + iz(i, τ )π .
When z(i, τ ) = 0, we should recover the contribution to

the partition function from the saddle point, which is given by

C[z(i, τ ) = 0] = 4[1 + cosh(βχ )]2. (B4)

For Nτ = 200, we find the truncation error in C[z(i, τ )] is
about 5 × 10−3 at βχ = 1. For a random gauge path z(i, τ ),
we find the contribution to the partition function is strongly
fluctuating in phase and unbounded in magnitude. In fact, we
find that the amplitude of such contributions increases almost
exponentially with the sum A = ∑

i,τ z(i, τ ), as is illustrated
in Fig. 5 for 1000 randomly chosen gauge paths. The max-
imum of |C[z(i, τ )]| is found to be achieved at z(i, τ ) = 1,
which is more than 400 orders of magnitude larger than the
saddle point contribution for Nτ = 200. In fact, we can show
that the contribution from this gauge path is given exactly by

C = (−1)A

[
1 +

(
1 + βχ

Nτ

+ iπ

)Nτ
]2

×
[

1 +
(

1 − βχ

Nτ

+ iπ

)Nτ
]2

, (B5)

which diverges as (1 + iπ )4Nτ for large Nτ . More generally,
we note that in the Nτ → ∞ limit, the details in Sχ becomes
immaterial to the value of the determinant DetS, which can
then be approximated by

Det S �
∏

i=1,2

{
1 +

∏
iτ =1,Nτ

[1 + iz(i, τ )π ]

}
. (B6)

This explains the approximate exponential increase of |DetS|
with A shown in Fig. 5.
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The same reasoning can easily be extended to the case of a
general lattice model. For example, the contribution from the
gauge path a0

i (τ ) = Nτ φ/β to Z is found to be given exactly
by

C = eiNsNτ φ
∏

k

[
1 +

(
1 + iφ − βεk

Nτ

)Nτ
]2

, (B7)

where εk denotes the mean-field eigenvalue of the saddle
point Hamiltonian and Ns is the number of lattice sites. In the
large-Nτ limit, we find C � eiNsNτ φ (1 + iφ)2Nτ Ns . Such a con-
tribution also diverges in the large-Nτ limit. More generally,
for an arbitrary gauge path a0

i (τ ) = Nτ φi(τ )/β, the details of
the Hamiltonian are again immaterial if φi(τ ) remain finite in
the Nτ → ∞ limit. We thus find

C
[
a0

i (τ )
] � ei

∑
i,iτ

φi (τ )
∏

i

{
1 +

∏
iτ =1,Nτ

[1 + iφi(τ )]

}2

. (B8)

This is obviously unbounded in magnitude and strongly fluc-
tuating in phase. The saddle point approximation on such
contributions is meaningless.

In the Nτ → ∞ limit, a gauge path with finite φi(τ ) is
singular. Such singular gauge field configurations are related
(but not equivalent) to instantons of the U (1) gauge field.
For example, a gauge path of the form a0

i (τ ) = 2πNτ

β
δ(τ −

τ0)θ (y − y0) corresponds to a Dirac string of strength 2π

running in the x direction, which can be understood as the
remnant of a pair of oppositely charged instantons when they
are annihilated after traversing the x circumference of the
system once.

APPENDIX C: A MEAN-FIELD ANALYSIS OF THE
FLUCTUATION SPECTRUM OF THE SCALAR SPIN

CHIRALITY OPERATOR IN THE U (1) SPIN LIQUID STATE

Unlike the current fluctuation in a free-fermion system,
the fluctuation in the scalar spin chirality has a nonvanishing
characteristic energy in the q → 0 limit. To illustrate this
point, we have calculated the spectral function of Ĉx in the
U (1) spin liquid state at the mean-field level. In general, the
scalar spin chirality operator Ĉx can excite, at most, three pairs
of particle-hole pairs on the Fermi sea state. This can be seen
more directly by rewriting Ĉx as the sum of normal-ordered
operators with respect to the Fermi sea state. The expansion is
given by

Ĉx =: Ĉ(1)
x : + : Ĉ(2)

x : + : Ĉ(3)
x :, (C1)

where

: Ĉ(1)
x := 3χ2

16i
: (χ̂i, j + χ̂ j,k + χ̂k,i − H.c.) : (C2)

is proportional to the sum of the fermion current around the
triangle in the counterclockwise manner.

: Ĉ(2)
x : = χ

4i
: (χ̂i, jχ̂k,i + χ̂ j,kχ̂i, j + χ̂k,iχ̂ j,k − H.c.) :

− χ

8i
: (χ̂i,iχ̂ j,k + χ̂ j, j χ̂k,i + χ̂k,kχ̂i, j − H.c.) :,

(C3)
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FIG. 6. The spectral weight (left panel) and the real part (right
panel) of the response function of Ĉx on the Fermi sea state from
the excitation of (a) one, (b) two, and (c) three pairs of particle-
hole pairs. Shown here is the result for scalar spin chirality on the
up triangles. We set the hopping integral of the fermion between
neighboring sites as the unit of energy and adopted the convention
�q = qx �G1/2 + qy �G2/2 for momentum. Here �G1,2 are the two recip-
rocal vectors of the triangular lattice. The momentum is chosen to
be q = (qx, 0), with qx = 0, π/24, π/12, π/6, and π/3. The calcu-
lation of A(1)(ω) is done in the thermodynamic limit. The calculation
of A(2)(ω) is done on a 48 × 48 lattice. The calculation of A(3)(ω)
is done on a 24 × 24 lattice, and qx = π/24 is inaccessible in this
case.

165123-9



TAO LI PHYSICAL REVIEW B 104, 165123 (2021)

where χ̂i,i = ∑
α f †

i,α fi,α is the particle number operator on
site i.

: Ĉ(3)
x := 1

4i
: (χ̂i, j χ̂ j,kχ̂k,i − H.c.) : . (C4)

These terms excite, respectively, one, two, and three pairs of
particle-hole pairs on the Fermi sea state. A simple phase
space argument indicates that the spectral weights correspond-
ing to : Ĉ(1)

x :, : Ĉ(2)
x :, and : Ĉ(3)

x : should vanish as ω, ω3,
and ω5 at low energy. In particular, the spectral weight cor-
responding to : Ĉ(1)

x : should be proportional to ω
vF q at low

energy and should have an upper cutoff at vF q in the long-
wavelength limit as a result of the Pauli principle. Here vF is
the Fermi velocity on the Fermi surface. On the other hand,
the excitations corresponding to : Ĉ(2)

x : and : Ĉ(3)
x : do not

suffer from as strong a phase space limitation. Their spectral
weights can thus extend to large energy even at q = 0 and
should depend only weakly on q. These arguments are illus-
trated in Fig. 6, where we plot the spectral weight and the
corresponding real part of the response function for : Ĉ(1)

x :,
: Ĉ(2)

x :, and : Ĉ(3)
x : separately. From Fig. 6 we see in the

long-wavelength limit the main spectral weight of Ĉx comes
from : Ĉ(2)

x : and : Ĉ(3)
x :, both of which are characterized by

a large energy scale and are only weakly momentum de-
pendent. As a result, the real part of the response function
of Ĉx is dominated by the contributions from : Ĉ(2)

x : and
: Ĉ(3)

x : at low energy and is almost momentum and frequency
independent.

There is one more detail about the excitation by : Ĉ(1)
x :.

On the triangular lattice, there are two inequivalent triangles
in each unit cell, namely, the up and down triangles. We
thus should consider both the in-phase (acoustic) and out-of-
phase (optical) fluctuations of Ĉx on these triangles. We note
that the excitation of one particle-hole pair in the acoustic
channel is suppressed by an additional factor of q2 in the
long-wavelength limit compared to that in the optical channel
since the sum of : Ĉ(1)

x : over all triangles of the triangular
lattice is identically zero.

With these understandings in mind, we can write down the
asymptotic form of the inverse gauge propagator K (q, ω) in

the low-energy regime as

K (q, ω) � K (q, 0) + iα(q)ω

vF q
. (C5)

Here K (q, 0) is the response function of Ĉx at zero frequency.
According to the discussion above it should be a weakly q
dependent real number and can be treated as a constant in
the low-energy regime. α(q) is a coupling constant. For the
acoustic mode, α(q) ∝ q2 in the q → 0 limit. For the optical
mode, α(q) should be approximately a constant in the q → 0
limit. We thus expect the gauge fluctuation in the acoustic and
optical channels to contribute T 4 and T 2 corrections to the
low-temperature specific heat, which are both dominated by
the linear in T contribution from single-spinon excitation at
low temperature.

We now go beyond the mean-field treatment and consider
the fluctuation spectrum of Ĉx on the Gutzwiller projected
Fermi sea state. Since Ĉx is a gauge-invariant quantity (it
conserves the fermion number on a given site), it commutes
with the Gutzwiller projection operator, namely,

ĈxPG|FS〉 = PGĈx|FS〉. (C6)

We thus have

ĈqPG|FS〉 = PG : Ĉ(1)
q : |FS〉

+ PG : Ĉ(2)
q : |FS〉 + PG : Ĉ(3)

q : |FS〉. (C7)

Therefore, the excitation picture of Ĉx on the Gutzwiller
projected Fermi sea state is exactly the same as what we
have described above in the mean-field treatment, although
we should replace the mean-field excited states with their
Gutzwiller projected counterparts. Thus, the fluctuation spec-
trum of scalar spin chirality on the projected Fermi sea state
should be qualitatively the same as the mean-field prediction.
We note that the mean-field eigenstates will, in general, no
longer be orthonormal after the Gutzwiller projection [44].
However, the mean-field energetics will be qualitatively pre-
served after the projection.
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