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Subdimensional criticality: Condensation of lineons and planons in the X-cube model
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We study quantum phase transitions out of the fracton ordered phase of the ZN X-cube model. These phase
transitions occur when various types of subdimensional excitations and their composites are condensed. The
condensed phases are either trivial paramagnets, or are built from stacks of D = 2 or 3 deconfined gauge theories,
where D is the spatial dimension. The nature of the phase transitions depends on the excitations being condensed.
Upon condensing dipolar bound states of fractons or lineons, for N � 4 we find stable critical points described
by decoupled stacks of D = 2 conformal field theories. Upon condensing lineon excitations, when N > 4 we
find a gapless phase intermediate between the X-cube and condensed phases, described as an array of D = 1
conformal field theories. In all these cases, effective subsystem symmetries arise from the mobility constraints
on the excitations of the X-cube phase and play an important role in the analysis of the phase transitions.
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I. INTRODUCTION AND SUMMARY

Fracton phases [1–7] are an exciting class of states of
matter in three dimensions which defy many expectations for
the types of behavior one expects to see in zero-temperature
quantum systems. They have subextensively large ground-
state degeneracy, excitations whose motions are restricted to
lie along low-dimensional submanifolds of space, and provide
examples of gapped phases not described within the context of
conventional topological quantum field theory.1

Fracton phases can be separated into two types, depending
on the nature of their excitations [4]. Type-I fracton phases
possess mobile excitations, which are typically lineons or
planons that can move along one- or two-dimensional sub-
manifolds of space, respectively. One paradigmatic example
of a type-I fracton phase is the X-cube (XC) model [4].
Type-II phases by contrast do not have any nontrivial mobile
excitations, with Haah’s code [2] being the classic example.

An important question in fracton physics is where fracton
phases may arise in the phase diagrams of various systems.
One way of approaching this problem is to examine what sorts
of continuous quantum phase transitions can occur between
a phase with fracton order and a more conventional phase
of matter. This question has already been partially addressed
in the literature. Previous works have identified first-order
quantum phase transitions out of fracton ordered phases via
a range of techniques [8–10], and studied the breakdown of
fracton order in series expansions [11]. Reference [12] ex-

1We will not attempt a review of the many interesting recent ad-
vances in the field of fractons; for an introduction to the literature,
the reader may consult the reviews [6,7] and the references therein.

ploited a duality to three-dimensional (3D) ZN gauge theory
to propose a continuous transition between the ZN XC phase
and a trivial gapped phase; we comment on this proposal in
Sec. VI. (Here and throughout the paper, we refer to spatial
dimension rather than space-time dimension, unless explicitly
stated otherwise.) A recent work introduced the notion of
hybrid fracton orders, which combine the fully mobile exci-
tations of 3D topological orders with the restricted-mobility
excitations of fracton phases, and found continuous phase
transitions between such hybrid phases and fracton-ordered
phases [13]. However, fracton order is present on both sides
of these phase transitions. Other recent works have stud-
ied continuous quantum phase transitions in two-dimensional
systems with subsystem symmetry but without fracton order
[14–16].

In this work, our focus will be on continuous phase tran-
sitions out of fracton orders, where the continuous nature
and stability of the phase transitions may be demonstrated
rigorously. We will study both critical points, which can
be accessed by tuning a single parameter, as well as stable
gapless phases proximate to fracton orders. Given that the
excitations in a fracton phase have restricted mobility, it is
natural to imagine that any putative critical point would neces-
sarily involve a rather unconventional field-theory description,
perhaps of a similar flavor to the novel types of field theories
that have appeared when analyzing fracton phases themselves
[17–25].

The easiest place to start when thinking about continuous
phase transitions out of fracton phases is to examine phase
transitions in type-I fracton phases where certain types of
excitations with restricted mobility are condensed. In these
types of phase transitions, it is, however, not clear whether or
not one should expect a critical point characterized by scale
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FIG. 1. A schematic of the phase transitions we consider. Tuning
a parameter g drives a quantum phase transition between the ZN

X-cube model and a condensate of nontrivial lineon or planon excita-
tions. The resulting condensed phase is either trivial or is some form
of deconfined gauge theory. A critical point or intermediate gapless
phase can be described as a stack of 2D or 1D CFTs.

invariance, and to what extent the standard theory of critical
phenomena should be applicable.

In this paper we will make some first steps towards ad-
dressing these questions. We will focus on what appear to be
the simplest examples of continuous phase transitions out of
fracton orders, viz., various types of condensation transitions
in the ZN X-cube (XC) model [4,12]. The nature of the con-
densed phase varies depending on which type of excitation is
condensed. In some of the phase transitions, the condensed
phase is trivial, while in others it possesses topological or
fracton order (distinct from that of the ZN X-cube phase).

Taking inspiration from the many approaches which con-
struct fracton phases by coupling various well-understood
lower-dimensional phases together [12,18,26–31], our ap-
proach to studying phase transitions in these models will be
to look for critical points, or intermediate gapless phases,
which can be understood within the context of one- or two-
dimensional (1D or 2D) critical phenomena. These critical
points and gapless phases arise when condensing planon or
lineon excitations of the ZN XC model, and can be described
as stacks (arrays) of familiar 2D (1D) conformal field theories
(CFTs) (see Fig. 1 for a schematic).

An interesting feature of the critical points and gapless
phases we study is the emergence of effective subsystem sym-
metries. By definition, subsystem symmetries are those which
act on degrees of freedom lying only in a subspace, which may
be a line, a plane, or even a fractal. Subsystem symmetries
are interesting in their own right and also play a variety of
important roles in the theory of fracton phases. The effective
subsystem symmetries in the theories we study arise from the
gauge structure of the ZN X-cube phase, and are robust to
arbitrary perturbations, even though such symmetries are not
assumed to be present microscopically.

A summary of this paper is as follows. We start in Sec. II
by reviewing some facts about the ZN XC model which will
be relevant for the following sections. In Sec. III we study
what happens when dipoles of fractons, which are planons,
are condensed. In order to identify the resulting condensed
phases we employ a dual representation of the XC model

TABLE I. The phases obtained when condensing various types
of excitations in the ZN XC model. ea denotes a lineon mobile in
the a direction, while da

e and da
m are dipolar bound states of lineons

and fractons, respectively, with dipole moment in the a direction;
see Sec. II for more details. ZN,d denotes a deconfined ZN gauge
theory in d spatial dimensions, a “stack” refers to a decoupled set of
theories, and “trivial” refers to a paramagnet lacking any topological
order. We have identified continuous phase transitions involving li-
neon condensation provided that N > 4, and continuous transitions
involving dipole condensation provided that N > 3. “Anisotropic
model” refers to the model of lineons and planeons discussed in
Ref. [32].

Sector Condensate Condensed phase

Lineon ez ZN,2 stack
ey,z Trivial
dz
e Two ZN,2 stacks

d
y,z
e ZN,3 + ZN,2 stack

d
x,y,z
e Z2

N,3

Fracton dz
m Anisotropic model

d
y,z
m ZN,2 stack

d
x,y,z
m ZN,3

in terms of a generalized gauge theory, which is detailed in
Sec. III A. Condensing fracton dipoles allows single fractons,
which in the XC model are immobile, to move freely in
directions parallel to the moments of the condensed dipoles.
When dipoles with a single direction of dipole moment are
condensed, the resulting phase is an anisotropic model studied
in Ref. [32], when two orthogonal directions of dipoles are
condensed one finds a stack of deconfined 2D ZN gauge theo-
ries, and when all dipoles are condensed the resulting phase is
a deconfined ZN gauge theory, with single fractons serving
as the gauge charges. In Sec. III C we examine the nature
of the condensation transition. When N < 4 the condensation
transitions are likely to be generically first order, while when
N � 4 continuous phase transitions exist, and are described
by stacks of critical 2D XY models.

Section IV is analogous to the previous section, except we
instead consider the condensation of lineon dipoles. When
lineon dipoles condense the mobility restrictions on single
lineons are relaxed, and single lineons become capable of
moving freely in two or three dimensions. When a single
orientation of lineon dipole condenses the resulting phase is
two interpenetrating stacks of 2D ZN gauge theories, when
two orientations of dipoles condense one obtains a 3D ZN

gauge theory and a stack of 2D ZN gauge theories, and when
all dipoles condense the result is a 3D Z2

N gauge theory.
These results are summarized in Table I, and are obtained by
utilizing a generalized gauge theory which makes the nature of
the condensed phases very explicit, and which is explained in
detail in Sec. IV A. The condensation phase transitions in this
case are exactly the same as those that occur when condensing
fracton dipoles.

In Sec. V we discuss the slightly simpler problem of con-
densing lineons. When only one type of lineon condenses the
resulting phase is a stack of 2D ZN gauge theories, while if
more condense one obtains a trivial paramagnet. In Sec. V A
we introduce yet another generalized gauge theory, which is
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FIG. 2. A graphical representation of the terms in the Hamilto-
nian of the ZN XC model.

used to obtain a field-theory description of lineon conden-
sation. In Secs. V B and V C we show that for N � 4 the
condensation transition is likely to always be first order, while
for N > 4 it is possible for an intermediate gapless phase
to exist in-between the X-cube and condensed phases. This
gapless phase is described by an array of strongly coupled
Luttinger liquids, and is related to the 3D sliding phases
discussed in Ref. [33]. The stability of this gapless phase is
somewhat delicate, and we argue that (1) by adding interchain
derivative couplings the phase can be made stable down to
very low temperatures and (2) a truly stable phase with more
complicated interchain couplings should exist in principle.

Finally, Sec. VI contains a conclusion and a brief discus-
sion of some remaining open questions.

II. PRELIMINARIES

Before starting in earnest, we will quickly summarize a few
important properties of the ZN X-cube (XC) model [4,12], as
well as some of the notation that we will be making frequent
use of. Z, X will denote ZN clock and shift operators, which
obey the relations

ZX = e2π i/N XZ, Z†X = e−2π i/N XZ†, (1)

where N will be inferred from context. When discussing mi-
croscopic Hamiltonians, we will be making use of various
dual representations. These dual representations will be in
terms of discrete ZN matter spins and discrete ZN gauge
fields. The clock and shift operators for the matter fields will
always be written in serif font (z, x), while those for the gauge
fields will always be in mathcal (Z,X ).

The Hilbert space of the ZN XC model is built from ZN

spins placed on the links of a 3D cubic lattice. We will write
the Hamiltonian for the commuting projector limit of the XC
model as

HXC = −g
∑

i

(
Ax

i + Ay
i + Az

i

) − K
∑

c

Bc + H.c., (2)

where the sums over i and c run over the sites and minimal
cubes of the lattice, respectively. The operators Aa

i are defined
as products of Z operators over the 4 links touching a given
vertex i, while the Bc operators are defined as products of X
operators over the 12 links of the cube c. Half of the X and
Z operators appearing in the Aa

i and Bc terms are Hermitian
conjugated in the manner shown in Fig. 2, which ensures that
all of the terms in (2) commute, and that

Ax
i Ay

i Az
i = 1 (3)

at every site i.

Sometimes it is convenient to refer to links of the lattice in
an oriented manner. We imagine that each link comes with
a given orientation in the +x, +y, or +z direction. Then,
denoting by 〈i j〉 a pair of nearest-neighbor sites, and letting
â be the unit vector pointing from i to j, we define X〈i j〉 = X
if â is parallel to the link’s given orientation, and X〈i j〉 = X † if
â is antiparallel to the given orientation. Note that X〈i j〉 = X †

〈 ji〉.
The same notation and conventions are used to define Z〈i j〉. For
simplicity, we will use l to denote links when keeping track of
the orientation is not necessary.

The excitations of the Hamiltonian (2) are divided into two
sectors. The first sector consists of lineon excitations and their
composites. Single lineons correspond to violations of two of
the Aa

i terms, and come in three species, which we will denote
as ex, ey, ez. An ex excitation at a given site i corresponds to a
violation of the two terms Ay

i and Az
i , and similarly for ey, ez.

Our convention is that acting on a ground state with X〈i j〉,
where, e.g., 〈i j〉 is directed along the positive or negative x
direction, creates an ex

i lineon at site i and a (ex
j )

† antilineon
at site j. Each isolated ea lineon may only move along the â
direction; any attempts to move it along the directions normal
to â necessarily result in the creation of additional excitations.
String operators for the lineons are formed from products of
X〈i j〉 operators in their direction of motion. Due to the relation
(3), the lineons obey the fusion rule

ex
i e

y
i e

z
i = 1. (4)

Because of this fusion rule, a lineon ex moving along the
x̂ direction may split into an (ey)† antilineon and an (ez )†

antilineon, and likewise for the other two species.
The mobility of individual and multiple lineons can be

understood by viewing ea as carrying a unit ZN charge in each
of the two lattice planes that intersect at the a axis along which
ea is free to move. (This was discussed in Ref. [34] for the Z2

X-cube model; the generalization to ZN is straightforward.)
The ZN charge in each plane is conserved in the sense that
it cannot be changed by any local operator. This gives rise
to effective planar ZN subsystem symmetries that will be
important in understanding critical points where lineons and
their composites condense.

Another interesting feature of the XC model is the behavior
of dipolar2 bound states of lineons. Consider a bound state of
a pair of eb and (eb)† lineons separated by a given distance
in the â direction, where a �= b. Because the two lineons
cannot move in the â direction, they cannot move together
and annihilate to vacuum, and indeed it can be shown that an
isolated dipole of this sort is stable, in the sense that it cannot
be destroyed by any local process.3 One consequence of the
fusion rule (4) is that such dipolar bound states may move
freely within the plane perpendicular to â, as they may change
the direction of their motion within the plane by having their

2Since lineons are ZN objects, the “dipole moment” of two lineons
is rather ill defined. In what follows we will, however, abuse ter-
minology and refer to a bound state of two lineons on neighboring
vertices as a lineon “dipole.”

3By contrast, if lineon and antilineon are separated in the b̂ direc-
tion, they can annihilate, and such an excitation is trivial.
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FIG. 3. An example of a string operator which moves a dz
e lineon

dipole (the lattice is not shown for ease of visualization). The pattern
of Hermitian conjugates can be determined by comparing to the
pattern appearing in the definition of the Bc operator.

constituent charges exchange an ea lineon. However, motion
parallel to â is not possible, and consequently such dipolar
bound states are planon excitations.

We will denote a “minimal-strength” lineon dipole by da
e,

where â is the normal vector to the plane of motion. Each
da
e is built of an eb and an (eb)† separated by one lattice

spacing in the â direction, where b �= a. There are no local
processes which turn a da

e dipole into a db�=a
e dipole. The string

operators which move lineon dipoles in their planes of motion
are “wireframe operators” and are given by products of X〈i j〉
operators along the edges of rectangular prismlike shapes. The
best way to understand the geometry of these string operators
is with a picture (see Fig. 3 for an example). In terms of planar
ZN charges as described above, da

e carries ZN charges +1 and
−1 in the two planes normal to â in which the constituent
lineon excitations reside.

The second sector of excitations consists of fractons and
their composites. Isolated fractons arise as violations of a
single Bc term in HXC, and are created with Z〈i j〉 operators.
Acting with Z〈i j〉 on a ground state creates a configuration of
four fractons at the cubes that contain 〈i j〉 as an edge, with
the ZN charges of the fractons arranged in a “quadrupolar”
pattern. More generally, acting with a product of Z〈i j〉 opera-
tors over all links 〈i j〉 dual to a rectangular membrane M of
dual-lattice plaquettes creates one fracton at each of the four
corners of the membrane M, as shown in Fig. 4. A membrane
operator supported on M obeys ZN commutation relations
with lineon string operators that intersect M; this fact enables
certain types of statistical braidinglike processes to be defined
between fractons and lineons [34].

A single isolated fracton cannot move without creating
additional excitations. In more detail, and more generally, the
mobility of any collection of fractons can be understood by
thinking of each fracton as carrying a conserved ZN charge
in the three planes normal to x̂, ŷ, and ẑ that intersect at its
position [4,34]. As for lineons, local operators carry vanishing
planar ZN charges. It is important to note that the planar
charges carried by lineons and fractons are distinct; these are
two independent sectors of excitations.

Similarly to the lineon sector, dipolar4 bound states of
fractons can freely move in the plane normal to their dipole
moment. More specifically, by a fracton dipole we mean a

4As with lineons, we will continue to abuse terminology by refer-
ring to these bound states as “dipoles.”

FIG. 4. A membrane operator supported on the green membrane
M, which is formed as a product of Z〈i j〉 operators on the links
marked by the purple circles. Acting on a ground state, this operator
creates four fractons living on the shaded cubes. Blue cubes have
charge +1, and red cubes have charge −1 (mod N).

pair of fracton and antifracton excitations separated along the
x, y, or z axis. The separation between the two constituent
excitations cannot change by a local process, and moreover
the dipole cannot move along the direction of its moment.
We will denote a “minimal-strength” fracton dipole capable of
moving in a plane normal to â as da

m. The constituent fracton
and antifracton excitations in da

m are separated by a single
lattice spacing along the â direction. There is no local process
which can convert a da

m dipole to a d
b�=a
m dipole. Fracton

dipoles are moved using products of Z〈i j〉 operators along links
lying within the plane of their motion, with an example shown
in Fig. 5. Moreover, just as for lineon dipoles, da

m carries +1
and −1 planar ZN charges in the planes normal to â that
contain the constituent fracton and antifracton excitations. As
a consequence, the mobility restrictions on fracton and lineon
dipoles, if no other types of excitations are present, are exactly
identical.

Due to the relation between the XC model and coupled
layers of ZN gauge theories [12,26], we will refer to lineon
excitations and their composites as “electric” excitations, and
fracton excitations and their composites as “magnetic” excita-
tions.

FIG. 5. An example of a string operator which moves a dz
e fracton

dipole from one location to another.
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FIG. 6. An example of a string operator which moves an isolated
fracton along the x̂ direction in the presence of a condensate of dx

m

dipoles.

III. FRACTON DIPOLE CONDENSATION

We now turn to discussing the condensation of fracton
dipoles in the ZN XC model. We will first identify the phases
that result upon condensing the fracton dipoles, using a rather
explicit generalized gauge theory construction with some sim-
ilarities to the membrane-net model of Ref. [18]. Later in
Sec. III C we will examine the critical points that occur at the
condensation transition.

A. Condensed phases and dual gauge theories

Before getting into details, let us ask on general grounds
what types of phases we expect to obtain upon condensing
various types of fracton dipoles, while leaving single fractons
uncondensed.

Consider first condensing all three types of fracton dipoles.
Since fracton dipoles have nontrivial statistical phases with
lineons which move in their plane of motion, all of the lineons
will be confined in the condensed phase. Nevertheless, the
resulting phase is not trivial. Indeed, single isolated fractons
remain as well-defined deconfined excitations, as there re-
mains no local process which can create an isolated fracton.
Furthermore, by absorbing dipoles from the condensate, iso-
lated fractons may now move freely in all three dimensions,
via processes like the one shown in Fig. 6. It is therefore
natural to identify the resulting phase with deconfined 3D ZN

gauge theory.5

We can also contemplate condensing only a certain subset
of the da

m dipoles. First, consider condensing just dz
m. The

condensate allows isolated fractons to move in the ẑ direction,
so that they become lineons. The condensate confines ex and
ey lineons, while ez lineons remain deconfined. As before, the
ez lineons can pair into d

x,y
e dipoles, which are planons.

Next, consider condensing both dx
m and d

y
m. This conden-

sate leaves dz
e dipoles deconfined, but confines the rest of the

lineon sector. In the fracton sector, isolated fractons can move
in both the x̂ and ŷ directions, but remain immobile in the ẑ
direction. The deconfined excitations are thus single fractons
and dz

e dipoles, both of which are capable of moving only

5In fact, in this case standard 3D ZN gauge theory is the only
possibility: the set of 3D topological orders with bosonic gauge
charges which have fusion rules given by a group G are fully
enumerated by 3D Dijkgraaf-Witten G-gauge theories (aka twisted
G-gauge theories) [35], which in the case of G = ZN are classified by
H 4(ZN ;U (1)) = H5(ZN ;Z) = Z1, meaning that ZN gauge theory is
the only possibility.

within planes normal to ẑ. Since both of these excitations are
bosons, the excitation content of the phase obtained this way
is the same as a stack of 2D deconfined ZN gauge theories,
with the fractons corresponding to the e excitations and the dz

e

dipoles corresponding to the m excitations. We will see later
that this is indeed the correct identification of the condensed
phase.

Now we will show how these expectations can be demon-
strated explicitly. For simplicity of notation, in what follows
we will specialize to the N = 2 case. The case of general N
is similar, and is presented in Appendix A. We will first focus
on the case where all species of fracton dipoles condense.

Since in the condensed phase fractons become deconfined
mobile particles, it is helpful to reformulate the XC model
as a generalized gauge theory, where fractons are the gauge
charges. To do this it is convenient to perform a duality map-
ping on the XC model, with the dual representation being
formulated in terms of spins living on the dual lattice. In what
follows, we will use sans serif symbols to denote elements of
the dual lattice, with i, l, p, and c standing for dual vertices,
links, plaquettes, and cubes, respectively. Our duality map-
ping involves matter qubits xi, zi living on the vertices of the
dual lattice, and gauge qubits Xp,Zp living on the plaquettes
of the dual lattice. Sometimes it will be convenient to use l
to refer to a unit vector along the given link, and p to refer
to a unit vector normal to the given plaquette, so that for
instance l ‖ ẑ denotes a link parallel to ẑ, while p ‖ ẑ denotes
a plaquette with normal in the ẑ direction.

The duality works in much the same way as that between
the Z2 toric code and Z2 gauge theory coupled to Ising matter
[36], with the operators mapping as

Xl → Xp, Zl → Zp

∏
i∈p

zi, (5)

where p is the dual lattice plaquette dual to l , and the product
is over the four corners of p. In the dual formulation, there is
a Gauss’ law constraint at each vertex i,

xi =
∏
p�i

Xp, (6)

where the product is over the 12 dual plaquettes meeting i at a
corner. The Hamiltonian in this representation is

H ′
XC = −K

∑
i

xi − g
∑
c,a

Aa
c. (7)

Here Aa
c is a product of Zp over four of the six plaquettes in the

cube c, excluding the two plaquettes normal to the â direction.
We will now modify this model to include a separate field

for fracton dipoles. As such dipoles naturally live on the links
of the dual lattice, we introduce a qubit on each link with Pauli
operators Xl, Zl (not to be confused with the Pauli operators in
the original formulation of the XC model, which live on the
direct lattice), where Xl is the dipole number operator and Zl
creates a fracton dipole at the link l.

Since single fractons carry gauge charge, a dipole at l
should carry gauge charge on the vertices at the two ends of l.
We therefore modify the Gauss law constraint to be

xi

∏
l�i

Xl =
∏
p�i

Xp, (8)
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FIG. 7. Conventions for indexing the links on plaquettes. All
plaquettes with a given unit normal are labeled identically.

where the products are over all the links and plaquettes
neighboring the vertex i. With this Gauss law two fractons
at adjacent vertices can be converted into a dipole via the
gauge-invariant operator ziZ〈ij〉zj, and two dipoles with parallel
dipole moments can be created on opposite edges l, l′ of a
plaquette p via the gauge-invariant operator ZlZpZl′ .

To analyze what happens when we condense the dipoles,
it will be notationally helpful to fix a standard set of links
l1, . . . , l4 for each plaquette of a given orientation. Our con-
ventions for each plaquette are shown in Fig. 7, and are such
that for any plaquette l1 is always parallel to l2, and l3 is always
parallel to l4.

We now consider the following Hamiltonian:

Hcon = −K
∑

i

xi − g
∑
i,a

Aa
i

− h
∑

l

Xl − λ
∑

p

(
Zl1ZpZl2 + Zl3ZpZl4

)
. (9)

The last term proportional to λ is a kinetic energy term for the
dipoles, and allows dipoles on links parallel to â to move in
planes normal to â.

When h/λ 
 1, we are in the regime where both the
dipoles and fractons are gapped, and the gauge field Z is
deconfined. In this limit we are clearly in the same phase as
HXC. In the following we will instead be interested in the limit
h/λ � 1, as in this limit the dipoles are condensed. In this
limit the second term in (9) can be dropped without changing
the low-energy physics. This is because Aa

i can be obtained
by taking products of the dipole kinetic terms, so that if these
terms are set to 1 then so are the Aa

i terms.
We will now show that in the phase where dipoles are

condensed, the Hamiltonian (9) can be transformed into the
standard Hamiltonian of Z2 gauge theory, plus an unimportant
decoupled paramagnet arising from the plaquette gauge fields.
For simplicity and to work at a solvable point within the
dipole-condensed phase, we set h = g = 0. Note that if we
ignore the plaquette variables Xp, the Gauss law (8) becomes
the ordinary Z2 gauge theory Gauss law constraint. Our strat-

egy will therefore be to arrive at the Z2 gauge theory by
performing a unitary transformation designed to eliminate the
Xp variables appearing in (8).

To begin, for each plaquette, define the CNOT-like operators

Up ≡
(

1 + Zl1 Zl2

2

)
+

(
1 − Zl1 Zl2

2

)
Xp. (10)

Note that Up = U †
p is unitary, and is not gauge invariant, thus,

we can use it to transform both the Hamiltonian and the gauge
constraint.

The unitary Up conjugates the various Pauli operators as

UpZpUp = ZpZl1 Zl2 ,

UpXl1,2Up = Xl1,2Xp,

UpXl3,4Up = Xl3,4 ,

(11)

with other conjugations trivial.
Noting that [Up,Up′ ] = 0, we now perform a unitary con-

jugation by the operator

U ≡
∏

p

Up. (12)

While the support of Up operators on adjacent plaquettes does
overlap, U can be written as a depth-two quantum circuit
by dividing the plaquettes into two subsets. The transformed
Hamiltonian then takes the form

H ′
con = UHconU

= −K
∑

i

xi − λ
∑

p

Zp − λ
∑

p

Zp

∏
l∈p

Zl.
(13)

Here the first term proportional to λ comes from conjugating
terms which hop dipoles between l1 and l2 links, while the
second comes from terms which hop dipoles between l3 and
l4 links. The product in the final term is over the four links in
the perimeter of p.

To compute the transformation of the gauge constraint,
note that for a given vertex i, for each of the 12 plaquettes
meeting i, one of the links l1, l2 has i as an end point. When the
Xl operator on this link is conjugated by U , it produces by (11)
an Xp operator, which cancels one of the Xp’s appearing in the
Gauss law. The transformed gauge constraint is therefore

xi =
∏
l�i

Xl, (14)

which is obtained by conjugating both sides of (8) by U . This
is exactly the gauge constraint of Z2 gauge theory.

It only remains to deform H ′
con to the standard solvable

Hamiltonian for the deconfined phase of Z2 gauge theory.
This can obviously be done without closing the gap simply by
freezing out the now gauge-invariant Zp degrees of freedom in
(13), which are gapped and have no dynamics. More precisely,
we may introduce a parameter s ∈ [0, 1] and write

H ′
con(s) ≡ −K

∑
i

xi − λ
∑

p

Zp

− λ
∑

p

[(1 − s)Zp + s]
∏
l∈p

Zl. (15)
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Clearly at s = 0 we have H ′
con(0) = H ′

con, the ground state
does not change as a function of s, and the gap remains open.
At s = 1 we have

H ′
con(1) = −K

∑
i

xi − λ
∑

p

Zp − λ
∑

p

∏
l∈p

Zl. (16)

This is nothing but the usual Z2 gauge theory in its deconfined
phase, stacked with a trivial paramagnet.

Note that the gauge field variables in the condensed phase
are precisely the dipole creation operators. This can be argued
intuitively: in the condensed phase, single fractons can only
move with the help of string operators built from dipoles,
and in the gauge theory description these strings become the
Wilson lines which render isolated fractons gauge invariant.

B. Condensing a subset of fracton dipoles

Identifying the nature of the phases obtained when con-
densing only a subset of the fracton dipoles can be done
similarly. We give the details here in the case N = 2.

1. Condensing a single orientation of dipoles

Suppose first that we condense dipoles with only a single
orientation of dipole moment, which given our conventions is
most conveniently chosen to be ẑ. This can be done simply
by using the Hamiltonian (9), but only including Xl, Zl dipole
fields, and the corresponding hopping terms, for links parallel
to ẑ. We thus consider the Hamiltonian

Hcon;z = −K
∑

i

xi − g
∑

c

(
Ax

c + Ay
c
)

− λ
∑
p⊥ẑ

Zl1ZpZl2 , (17)

where we have left out Az
c in the second term on the grounds

that it can be written as a product of dipole kinetic energy
terms, and where the last term involves a sum over plaquettes
with normal vectors perpendicular to ẑ. Note that the pairs
l1, l2 are parallel to ẑ for both orientations of plaquettes with
p ⊥ ẑ; see Fig. 7. The Gauss’s law constraint is an appropriate
anisotropic version of (8), viz.,

xi

∏
l‖ẑ�i

Xl =
∏
p�i

Xp, (18)

where the product over l on the left-hand side is over the two
z-axis links l that touch the vertex i.

We now perform a unitary transformation with the operator
Uz = ∏

p⊥ẑ Up, which is the same as the operator U defined
above, except for the omission of plaquettes with unit normal
along ẑ. After this conjugation, we have

H ′
con;z = UzHcon;zUz

= −K
∑

i

xi − g
∑

c

(
Ax

c + Ay
c
) ∏

l‖ẑ∈c

Zl − λ
∑
p⊥ẑ

Zp.

(19)
Importantly, the second term is modified by the transforma-
tion, which adds a product of Zl over the four z-axis links l

contained in the cube c. This can clearly be deformed to

H ′′
con;z =−K

∑
i

xi − g
∑

c

⎡⎣ ∏
p‖ẑ∈c

Zp

⎤⎦⎡⎣ ∏
l‖ẑ∈c

Zl

⎤⎦−λ
∑
p⊥ẑ

Zp,

(20)
where the first product in the second term is over the two
plaquettes on the boundary of the cube c with normal vectors
along ẑ. Under conjugation by Uz, the Gauss’s law transforms
to

xi

∏
l‖ẑ�i

Xl =
∏
p‖ẑ�i

Xp. (21)

Here the product on the right-hand side is over the four pla-
quettes with normals along ẑ that meet i at a corner.

The Hamiltonian (20) together with the above Gauss con-
straint is nothing but the “anisotropic model with lineons and
planons” discussed in Sec. 5.7 of Ref. [32] (mapped to a
generalized gauge theory in the usual way), with the two types
of lineon excitations identified in Ref. [32] corresponding here
to single fractons and ez lineons.

2. Condensing two orientations of dipoles

Consider now condensing dipoles with dipole moments
oriented along ẑ and x̂. By exchanging dipoles with the con-
densate, the fractons in the condensed phase will be able
to move along both the ẑ and x̂ directions, and hence the
natural expectation is to identify the condensed phase with a
decoupled stack of Z2 gauge theories.

This is indeed what happens. We include Xl, Zl for l parallel
to ẑ and x̂, but not ŷ. The Gauss’s law is thus

xi

∏
l‖ẑ,x̂�i

Xl =
∏
p�i

Xp, (22)

where the product on the left-hand side is over the x and z links
touching i. For the Hamiltonian we take (9) and include only
kinetic terms for dipoles oriented along the ẑ, x̂ directions. We
have, referring to Fig. 7,

Hcon;zx = −K
∑

i

xi − λ
∑
p‖x̂,ẑ

Zl1ZpZl2

− λ
∑
p‖ŷ

Zp
(
Zl1 Zl2 + Zl3 Zl4

)
. (23)

We have again set h = g = 0, noting that the Aa
c terms can be

obtained as products of the dipole kinetic energy terms that
are present. Conjugating with U as in the analysis of the case
where all dipoles condense, we obtain

UHcon;zxU = −K
∑

i

xi − λ
∑

p

Zp − λ
∑
p‖ŷ

Zp

∏
l∈p

Zl, (24)

while the Gauss law becomes

xi =
∏

l‖ẑ,x̂�i

Xl. (25)

After eliminating the now-trivial Zp degrees of freedom, this
indeed describes a set of decoupled deconfined Z2 gauge
theories, stacked along the ŷ direction.
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C. Phase transitions

We now turn to studying the critical points that occur
between the ZN X-cube phase and the condensed phases
described above. We will first focus on what happens when
we only condense fracton dipoles with a single orientation of
dipole moment, which we take to be along ẑ.

To analyze the critical points, we can ignore the fracton
matter spins x, z, as single fractons remain gapped across the
transition. In addition, excitations of the generalized gauge
field are gapped across the transition, so we may also ignore
fluctuations of the generalized gauge field Zp. Indeed, we
may set Zp = 1 and focus on an effective Hamiltonian for the
dipole matter alone, provided that we remember to only con-
sider correlation functions of gauge-invariant operators. Since
for now we are only interested in condensing dz

m dipoles, we
only need to retain the corresponding kinetic terms. Thus, we
can consider the Hamiltonian

Hstack = −h
∑
l‖ẑ

Xl − λ
∑
p⊥ẑ

Z†
l1

Zl2 + H.c., (26)

where the l1, l2 links are parallel to ẑ (see Fig. 7), and where
we are again working with ZN spins. Since only the spins on
the links parallel to ẑ enter into the above Hamiltonian, we see
that Hstack is simply a decoupled stack of 2D ZN clock models,
with one clock model at each z coordinate of the lattice.

In this effective matter theory, the ZN planar conservation
laws governing mobility of lineons (see Sec. II) lead to a
subsystem symmetry. In particular, the number of dipoles in
each xy plane is separately conserved modulo N .6 From a
formal perspective, this symmetry arises from the fact that any
local term in the matter theory can be consistently coupled
to the generalized gauge field if and only if it is symmetry
invariant.

The critical point of the Hamiltonian (26) is then the same
as a decoupled stack of critical 2D ZN clock model layers,
with the added restriction, coming from gauge invariance,
of the effective subsystem symmetry. The allowed operators
are precisely those that are invariant under independent ZN

transformations on each layer.

1. N = 2

What happens at the critical point depends on the value
of N . First, consider the case of N = 2. Here the decoupled
critical point is built from Ising∗ CFTs on each layer, where
as usual the ∗ denotes the restriction to the Z2-neutral part of
the spectrum. The most relevant way to couple different layers
together is through their energy operators, via a perturbation
to the fixed-point action of the form

δS =
∑
α �=β

gα,β

∫
d2x dτ εαεβ, (27)

6Strictly speaking, this conservation only holds for local terms;
nonlocal processes that add a dipole to every plane are allowed,
because each dipole carries two opposite-sign ZN charges in neigh-
boring xy planes. A more general statement is the difference in
number of dipoles between any two planes is conserved.

where εα is the energy operator on layer α. Since the scaling
dimension of the energy operator in the 2D Ising model is
	ε ≈ 1.41 < 3/2 [37], these couplings are slightly relevant at
the decoupled fixed point. In Appendix B we argue that there
is in fact no stable fixed point to this RG flow, with the result
being an instability towards a first-order transition.

2. N = 3

When N = 3, we have a three-state Potts model on each
layer. The transition in the three-state Potts model in three
space-time dimensions is well known to be first order, and
hence we do not obtain any stable fixed points in this case.

3. N = 4

The case of N = 4 can be understood by noting that the
Z4 clock model can be mapped to a pair of two decoupled
Ising models, written in terms of two Z2 spins Z1, Z2 (see, e.g.,
[38]).7 The (gauged) Z4 symmetry acts in this representation
as

Z4 : Z1 → Z2, Z2 → Z1X1, (28)

and as such at the critical point it exchanges the two energy
operators ε1 and ε2. The operator ε1 + ε2 is therefore gauge
invariant, and since the Ising models are decoupled ε1 + ε2

has the same dimension as the energy operator in a single Ising
model. Therefore, according to the discussion of the N = 2
case above, the decoupled fixed point is again unstable.

4. N > 4

When N > 4, we describe the critical point on each layer
with the action

S =
∫

dτ d2x
(
|∂ψ |2 + t |ψ |2 + u

4
|ψ |4

+ g�4−N

N!
(ψN + (ψ∗)N ) + · · ·

)
, (29)

with ψ a complex scalar field. It is known from Monte Carlo
simulations that the ZN anisotropy term is irrelevant as long
as N > 4 [39,40], so that the phase transitions on each layer
are in the universality class of the (2 + 1)D XY∗ model. The
most relevant gauge-invariant coupling between the layers is
the energy-energy coupling. The energy operator in this case
is known to have scaling dimension [37]

	ε ≈ 1.51 > 3/2, (30)

7To see this, we write the Z4 clock matrix Z in terms of two Z2

Pauli matrices Z1 ≡ σ z ⊗ 1, Z2 ≡ 1 ⊗ σ z as

Z = 1√
2

(eiπ/4Z1 + e−iπ/4Z2).

The real matrix X + X † also has a simple representation in terms of
X1 ≡ σ x ⊗ 1 and X2 = 1 ⊗ σ x , with

X + X † = X1 + X2.

It is then easy to check that in terms of the Z2 variables, the Z4 clock
model Hamiltonian splits as H1 + H2, where H1 (H2) is an Ising chain
Hamiltonian for the Z1 (Z2) variables.
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and so the decoupled fixed point consisting of a decoupled
stack of (2 + 1)D XY∗ models is (barely) stable.

5. No particle-hole symmetry

For N > 2, the discussion above strictly speaking pertains
only to models which possess a Z2 particle-hole symmetry C,
which acts on the spins of the ZN clock models (as well as on
the original spins of the XC model) by conjugation with the
N × N matrix C, where

C =

⎛⎜⎜⎝
1

1
...

1

⎞⎟⎟⎠, CzC = z†, CxC = x†. (31)

In terms of the coarse-grained field ψ employed above in (29),
this sends C : ψ → ψ∗.

This symmetry can be broken for N > 2 by letting the
parameters h, λ in (26) be complex. We are then prompted
to consider an action on each layer of the form

S =
∫

dτ d2x
(
ψ∗∂τψ + 1

2m
|∇ψ |2 + t |ψ |2 + u

4
|ψ |4

+ g�4−N

N!
[ψN + (ψ∗)N ] + · · ·

)
, (32)

where the C-breaking first term, which leads to nonrelativistic
z = 2 scaling, is included instead of |∂τψ |2 on the grounds
of it being more relevant. Since (2 + 1)D is the upper critical
dimension for the above model, the RG flow can be accurately
computed through a perturbative analysis of the above action
(32).

The nonrelativistic nature of the theory means that the one-
loop computation of the β functions is exact,8 giving

βu = −u2/2, βg = (4 − N )g − ug/2. (33)

The anisotropy is therefore relevant at N = 3, marginally
irrelevant at N = 4, and irrelevant for N > 4. When N = 3
Ginzburg-Landau theory predicts a first-order transition due
to the shape of the potential for ψ , and so this case can be
ignored. For N � 4, however, we obtain a nontrivial critical
theory describable by the nonrelativistic XY∗ model.

We therefore need to understand the stability of a decou-
pled stack of nonrelativistic XY∗ models.9 The most relevant
gauge-invariant couplings are again those which couple the
energy operators on different layers; in the present notation
they read as

δS =
∑
α,β

gα,β

∫
dτ d2x |ψα|2|ψβ |2. (34)

8For example, in momentum-shell regularization with a cutoff �,
the only diagrams depending on ln(�) are those built from concate-
nations of one-loop bubbles, meaning that the full beta functions are
determined by the one-loop terms.

9This story is very similar to the analysis of stacks of Fermi liquid
↔ orthogonal metal phase transitions studied in Ref. [41].

The beta function for gα,β is similarly exactly computable
from the one-loop term, which gives

βgα,β
= − 1

2 (gα,β )2. (35)

Due to the nonrelativistic nature of the theory, none of the gα,β

mix with each other. As a result, the decoupled fixed point is
stable, provided that all of the gα,β are positive.10

Before moving on, we add a brief aside about a subtlety in
the above discussion of stability. In the argument above, we
have restricted our attention only to the gα,β couplings, which
are marginal. In principle, however, the irrelevant operators
we have neglected may drive some of the gα,β negative during
the initial stages of the RG flow. If this occurs generically,
the stability of the proposed fixed point would be called into
question.

This worry is not a serious issue in the present context,
however. First, note that due to the nonrelativistic scaling,
the only irrelevant operators which can renormalize gα,β are
those containing ψ∗

αψαψ∗
βψβ and no other field operators, the

least irrelevant of which is (ψ∗
α∇iψα )(ψ∗

β∇iψβ ), which has
an RG eigenvalue of −2. Unless the bare value of this term is
significantly larger than that of gα,β , gα,β will never be driven
negative during the flow. Therefore, if we make the (rea-
sonable) assumption that the bare values of these irrelevant
operators are not significantly larger than the bare values of
the appropriate gα,β , the above fixed point is indeed stable.11

6. Condensing multiple species of dipoles

So far we have only been concerned with condensing a
single species of dipole, but the same analysis can be applied
when simultaneously condensing multiple species. The start-
ing point for the critical theory is simply multiple decoupled
stacks of critical ZN clock models, with one stack oriented
along the dipole moment vector of each of the condensing
dipoles. The effective matter theory again has a subsystem
symmetry, where (for local terms) the number of z dipoles is
conserved modulo N in each xy plane, and similarly for x and
y dipoles. Dipoles with different orientations of dipole mo-
ment are separately conserved because they carry ZN planar
charges in distinct planes. The discussion of stability of the
decoupled critical point is not modified because the couplings
between perpendicular planes are always less relevant than the
couplings between parallel planes.

10Note that getting a stable fixed point does not require fine tuning:
we just need to that gα,β > 0 for all α, β; we do not require that each
of the gα,β be tuned to any one particular value.

11It is instructive to compare the story here with the Kohn-Luttinger
instability that occurs in Fermi liquids [42]. In that scenario, irrele-
vant operators lead to instabilities by renormalizing certain marginal
couplings. This occurs, however, only due to the fact that the bare
values of certain marginal terms are naturally exponentially smaller
than the bare values of the irrelevant operators which renormalize
them. In the present setting, by contrast, the bare values of the
irrelevant terms and of the marginal terms they renormalize both
scale similarly with the distance between the α and β layers.
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ex

(ex)†

X† X

FIG. 8. An illustration of a string operator moving an ex exci-
tation in the ẑ direction in the presence of a dz

e condensate. The
extra excitations created by the middle part of the string may all be
absorbed into the condensate.

IV. LINEON DIPOLE CONDENSATION

In this section we discuss what happens when lineon
dipoles are condensed. The analysis is similar in many re-
spects to the case of fracton dipoles treated in the previous
section, although the phenomenology is slightly richer due to
fact that there are three different types of lineons, as opposed
to only a single type of fracton. As in the previous section,
we will proceed by first using a generalized gauge theory to
identify the nature of the condensed phases, and then later turn
to discussing the nature of the phase transitions.

A. Condensed phases and dual gauge theories

Before discussing concrete Hamiltonians, let us assess our
expectations for the condensed phases. First consider con-
densing a single species of dipole, say dz

e. In the electric sector,
ex and ey lineons now become capable of moving along the ẑ
direction, as they can do so by absorbing dipoles from the con-
densate. An example of a string operator implementing this
type of process is shown in Fig. 8, where an ex lineon moves
in the ẑ direction by absorbing dz

e dipoles from the condensate.
The ex and ey lineons still remain distinct excitations, however,
as there continues to be no local process which converts an
isolated ex into an isolated ey. The electric sector thus consists
of two types of ZN charges, each of which are free to move in
planes normal to the x̂ and ŷ directions.

In the magnetic sector, the condensate gives a tension to
the membrane operators creating fractons at their corners in
a rather subtle way. For such membrane operators lying in an
xz plane, the string operators of the condensed dz

e dipoles only
fail to commute with the membrane near its edges running
along the x direction; an example of such a process is shown
in the left panel of Fig. 9. This means that the x edges of the
membrane acquire a line tension. Similarly, the y edges of
membranes lying in a yz plane also get a line tension from
the condensate. On the other hand, membranes lying in xy
planes get a surface tension because the string operators of
condensate dipoles lying in the same xy plane anticommute
with the membrane operator, if the dipole turns a corner any-
where within the area of the membrane; an example is shown
in the right panel of Fig. 9. These results imply that isolated

(a) (b)

FIG. 9. Processes which give tension to fracton membranes in
the presence of a dz

e condensate. In both panels, purple links denote
the support of fracton membrane operators, while orange links de-
note the support of condensed lineon dipole strings. (a) A process
giving line tension to a membrane in an xz plane. (b) A corner-turning
process giving surface tension to a membrane in an xy plane.

fractons, as well as dz
m dipoles, are confined. However, the dx,y

m

dipoles remain deconfined.
The deconfined excitations of the theory are thus the same

as that of two stacks of deconfined 2D ZN gauge theories,
with one stack oriented along ŷ and another along x̂. We will
see later that the condensed theory is indeed given by two
interpenetrating stacks of 2D ZN gauge theories.

Now consider condensing a second species of dipole, say
d

y
e. Since d

y
e is a bound state of the gauge charges in two

adjacent layers in the gauge theory stack oriented along ŷ,
condensing d

y
e will turn this stack into a single 3D gauge

theory, while leaving the stack oriented along x̂ unchanged.
We therefore obtain a 3D ZN gauge theory (with gauge charge
ex) and a stack of 2D ZN gauge theories oriented along the x̂
direction (with gauge charges given by ey on each layer).

Finally, consider the phase obtained when all the da
es are

condensed. Each ea is now free to move in all three directions,
and since there is still no local process turning an ex into
an ey, a natural assumption is that the condensed phase is a
deconfined 3D Z2

N gauge theory.
The above logic gives plausible identifications for the con-

densed phases in each case, but is not completely rigorous.
For example, while the electric sector in the phase where all
da
e condense is the same as that of Z2

N gauge theory, it is
not obvious how the magnetic degrees of freedom in the XC
model end up organizing themselves into a Z2

N ’s worth of loop
excitations.

To conclusively demonstrate that these expectations are
borne out, we will employ a generalized gauge theory
construction similar to that used when discussing the conden-
sation of fracton dipoles.

We will first focus on the case where all orientations of
dipoles condense. We will furthermore specialize to the Z2

case for simplicity of notation; the generalization to ZN is
done using the same methods as employed in Appendix A.
According to the discussion above, we expect that the result-
ing phase will be a deconfined Z2

2 gauge theory. To show this,
it is helpful to realize the XC model as a particular limit of
a Hamiltonian defined in a larger Hilbert space. Since we
are aiming for a Z2

2 gauge theory, we will want to have two
degrees of freedom on each link. In fact, we will find it more
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FIG. 10. Representations of the gauge field terms appearing in
the generalized Gauss laws. The operators Aab are defined as products
of pairs of X cX d operators over each of the black links, with c, d
indicated by the pairs of letters.

convenient to work with a model containing three qubits on
each link, together with a single constraint reducing the total
number of degrees of freedom on each link to two.

We thus start with a Hamiltonian defined on a Hilbert
space with three qubits on each link of the direct lattice, with
Pauli operators X a

l , Za
l (a = x, y, z), which are subject to the

constraint

Zx
l Zy

l Zz
l = 1 (36)

for each link l . Within this Hilbert space, we can write a
Hamiltonian that reduces to HXC as

H ′
XC = −g

∑
i

∑
a �=b

Aab
i − K

∑
c

∏
l∈c

Zl
l − h

∑
l

X a
l X b

l , (37)

where Zl
l means Za

l with â ‖ l , and where in the last term a �=
b with â, b̂ ⊥ l . The operators Aab

i , a �= b, are defined as

Aab
i =

∏
l⊥â�i

X b
l

∏
l ′⊥b̂�i

X a
l ′

∏
l ′′⊥ĉ�i

X c
l ′′ , (38)

where c is neither a nor b, and where for instance the first
product is over the four links touching i that are perpendicular
to â. Note that Aab

i = Aba
i . An illustration of the three different

types of Aab operators is given in Fig. 10. H ′
XC preserves the

constraint (36) since each term contains an even number of
X a

l operators on each link. Moreover, all the terms in H ′
XC

commute with one another.
To see why H ′

XC is equivalent to HXC, we work in the
ground-state subspace of the h term, where we have the addi-
tional local constraint X a

l X b
l = 1 on each link. (Again, a �= b

and â, b̂ ⊥ l .) We thus have a single effective qubit on each
link, with Pauli operators

X eff
l = X c

l X a
l = X c

l X b
l (39)

and

Zeff
l = Zc

l = Za
l Zb

l , (40)

where ĉ ‖ l . The remaining g and K terms of H ′
XC are easily

expressed in terms of X eff
l and Zeff

l , and reduce to HXC.
As in the case of fracton dipole condensation, in order to

condense lineon dipoles while keeping single lineons gapped,
it is convenient first to map H ′

XC to a generalized gauge theory.
The gauge theory is constructed by placing three qubits on
each vertex and on each link of the lattice. We first discuss
the site variables, whose Pauli operators are denoted xa

i , za
i on

each vertex i, and a = x, y, z. We will see that za
i creates an

ea lineon at the vertex i. In accordance with the lineon fusion
rules, we impose the constraint

zx
i z

y
i z

z
i = 1 (41)

at each site.
On each link, the Hilbert space is the same as in the con-

struction of the ungauged model H ′
XC, except that we denote

the Pauli operators for the three qubits by X̃ a
l , Z̃a

l . We impose
the same constraint on each link, namely, Z̃x

l Z̃y
l Z̃ z

l = 1. We
define operators Ãab

i in terms of the X̃l by the same formula
as (38).

To reduce down to the original number of degrees of
freedom, we then impose, for each a �= b, the Gauss law
constraints

xa
i xb

i = Ãab
i . (42)

Note that this is compatible with the constraint (41). More-
over, only two of the three equations in (42) are independent
because taking the product of all three equations gives the
triviality 1 = 1.

The mapping is established by the following dictionary
between the operators in H ′

XC and those in the generalized
gauge theory:

X a
l X b

l �→ X̃ a
l X̃ b

l (any pair a �= b), (43)

Za
〈i j〉 �→ za

i Z̃a
〈i j〉z

a
j (â ‖ 〈i j〉), (44)

Zb
〈i j〉 �→ zc

i Z̃b
〈i j〉z

c
j (b̂, ĉ ⊥ 〈i j〉, b �= c). (45)

Under this mapping, the modified X-cube Hamiltonian H ′
XC

becomes

H̃ ′
XC = −g

∑
i

∑
a �=b

xa
i xb

i − K
∑

c

∏
l∈c

Z̃ l
l − h

∑
l

X̃ a
l X̃ b

l . (46)

The operator dictionary tells us that, on a link 〈i j〉 ‖ â, the
non-gauge-invariant operator Z̃b

〈i j〉 creates an excitation in the
same superselection sector as the dz

e lineon dipole zc
i z

c
j , where

b̂, ĉ ⊥ 〈i j〉 and b �= c. This is so because the gauge-invariant
local operator zc

i Z̃b
〈i j〉z

c
j necessarily creates a trivial, locally

creatable excitation. We also observe that acting with Z̃b
〈i j〉

violates the h term in H̃ ′
XC, and no other terms, so that h can

be understood as setting the energy gap for lineon dipoles.
Since g controls the gap for single lineons, we can control
the single-lineon and lineon-dipole gaps independently in this
formulation, as desired. We note that, by the same reasoning
as above, acting with Z̃a

〈i j〉 (â ‖ 〈i j〉) creates an excitation in
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FIG. 11. An illustration of the operators Bab
p . The indices on each

link l denote the corresponding Z̃a
l operators.

the same sector as a pair of ea lineons separated in the â
direction; however, as discussed in Sec. II, such a pair is a
trivial excitation.

Now we introduce operators that, when added to the
Hamiltonian, will play the role of kinetic energy for the lineon
dipoles. Recall that a lineon dipole is a planon, moving in the
plane perpendicular to its dipole moment. On each plaquette
p lying in the ab plane, we define two operators, Bab

p and Bba
p .

Bab
p hops a da

e dipole along b̂, where the dipole consists of a
pair of eb excitations. Similarly, Bba

p hops a db
e (consisting of a

pair of ea’s) along â. More concretely, we define

Bzx
p = Z̃y

l1
Z̃x

l3 Z̃x
l4 Z̃y

l2
, (47)

Bxz
p = Z̃y

l3
Z̃z

l1
Z̃z

l2
Z̃y

l4
, (48)

Bzy
p = Z̃x

l1 Z̃y
l3

Z̃y
l4

Z̃x
l2 , (49)

Byz
p = Z̃x

l3 Z̃z
l1

Z̃z
l2

Z̃x
l4 , (50)

Bxy
p = Z̃z

l1
Z̃y

l3
Z̃y

l4
Z̃z

l2
, (51)

Byx
p = Z̃z

l3
Z̃x

l1 Z̃x
l2 Z̃z

l4
. (52)

These operators are displayed graphically in Fig. 11. The
indexing of links in each plaquette is exactly as illustrated
for dual lattice plaquettes in Fig. 7. These operators are easily
checked to be gauge invariant. In each term, the two factors
of Z̃a

l written on the outside of the product create or destroy
lineon dipoles, while the two factors of Z̃a

l written on the
inside are needed to make the term gauge invariant. We see
that for â ‖ l , Z̃a

l plays the role of a gauge field, while for

â ⊥ l , Z̃a
l is a matter field creating a lineon dipole. By taking

products for instance of Bzx
p and Bzy

p operators, we can obtain
string operators for a dz

e dipole moving along an arbitrary path
in the xy plane. Whenever the dipole turns a corner, the string
operator contains a factor of Z̃z

l with l ‖ ẑ, corresponding to
the two constituent particles converting from ex’s to ey’s (or
vice versa) by exchanging an ez.

The following solvable Hamiltonian condenses all species
of lineon dipoles, while keeping single lineons gapped:

Hcon = −g
∑

i

∑
a �=b

xa
i xb

i − λ
∑
a �=b

∑
p‖â×b̂

(
Bab

p + Bba
p

)
. (53)

Here, in the last term, the sum is over plaquettes p lying in the
ab plane. In addition to adding the kinetic energy term to H̃ ′

XC,
we have set h = 0 to allow the lineon dipoles to condense
and obtain a solvable Hamiltonian. Moreover, we have also
set K = 0, as the K term can be obtained as a product of the
Bab

p kinetic energy operators.
It turns out that Hcon is the Z2

2 gauge theory we expected
to find. To see this, we first recall that given the constraint
Z̃x

l Z̃y
l Z̃ z

l = 1, we effectively have two qubits on each link. We
define Z1,2

l , X 1,2
l Pauli operators for these two qubits, where

the upper index will label the two Z2 gauge theories. Specifi-
cally, we choose

Z1
l = Z̃z

l , Z2
l = Z̃y

l (l ‖ x̂), (54)

Z1
l = Z̃y

l , Z2
l = Z̃x

l (l ‖ ŷ), (55)

Z1
l = Z̃x

l , Z2
l = Z̃z

l (l ‖ ẑ). (56)

From this choice it follows that X 1
l = X̃ z

l X̃ x
l and X 2

l = X̃ y
l X̃ x

l
for l ‖ x̂, with similar choices for the two other orientations of
l . For the lineon matter fields, we define

x1
i = xx

i xy
i , x2

i = xx
i xz

i , (57)

z1
i = zy

i , z2
i = zz

i . (58)

With these choices the Gauss law equations for ab = xy
and ab = xz become

Ãxy
i = A1

i = x1
i , (59)

Ãxz
i = A2

i = x2
i , (60)

where A1,2
i = ∏

l�i X 1,2
l is a product over the six links touch-

ing i. Similarly defining B1,2
p = ∏

l∈p Z1,2
l , the Hamiltonian

becomes

Hcon = −g
∑

i

(
x1

i + x2
i

) − λ
∑
p‖x̂

(
B1

p + B2
p

)
− λ

∑
p‖ŷ

(
B2

p + B1
pB2

p

) − λ
∑
p‖ẑ

(
B1

p + B1
pB2

p

)
. (61)

This is not quite the standard Hamiltonian for two decoupled
Z2 gauge theories, due to the presence of the B1

pB2
p terms.

However, acting on the ground state we clearly have B1
p =

B2
p = 1, so the ground state is the same as that of the standard

Hamiltonian. Moreover, it is trivial to deform this Hamiltonian
to the standard one by the obvious linear interpolation, so Hcon
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is indeed in the same phase as the standard deconfined Z2
2

gauge theory.

B. Condensing a subset of lineon dipoles

We can similarly consider what happens when only a sub-
set of the lineon dipoles condense. First consider condensing
only a single orientation of dipole, say with dipole moment
along ẑ. To treat this case, we modify (53) as follows:

Hcon;z = −g
∑

i

∑
a �=b

xa
i xb

i − λ
∑

p‖ẑ×x̂

Bzx
p − λ

∑
p‖ẑ×ŷ

Bzy
p

− h
∑
l‖x̂

X̃ y
l X̃ z

l − h
∑
l‖ŷ

X̃ x
l X̃ z

l . (62)

Here we include the kinetic energy terms only for dz
e dipoles,

and retain the h terms on x and y links, which keep d
x,y
e dipoles

gapped. The K term is not included as it can be obtained as
a product of kinetic energy terms. A similar analysis to that
above shows that, in the ground-state subspace of the h term,
Hcon;z is precisely two independent stacks of 2D Z2 gauge
theories, stacked along the x̂ and ŷ directions.

Now consider condensing dipoles with moments along
both ẑ and x̂. In this case we consider

Hcon;z = −g
∑

i

∑
a �=b

xa
i xb

i − λ
∑

p‖ẑ×x̂

(
Bzx

p + Bxz
p

)
− λ

∑
p‖ẑ×ŷ

Bzy
p − λ

∑
p‖x̂×ŷ

Bxy
p − h

∑
l‖ŷ

X̃ x
l X̃ z

l . (63)

This includes kinetic energy terms for dx,z
e dipoles, while

keeping d
y
e dipoles gapped. Again, a similar analysis shows

that this model is in the same phase as a 3D Z2 gauge theory
plus a stack along ŷ of 2D Z2 gauge theories, as expected.

The generalization of these constructions to the ZN case is
straightforward, and can be done in much the same manner as
described in Appendix A for the case of fracton dipoles. All
the prescriptions for adding Hermitian conjugates to operators
are the same as in that case, and as such we will omit the
details.

C. Phase transitions

Because we are again condensing excitations that can move
in 2D planes, with the number of excitations in each plane
separately conserved modulo N (for local processes), the crit-
ical points to analyze are the same as those that appeared
in Sec. III C. The stability analysis of the critical points is
identical to the previous fracton dipole case, and so we will
not repeat ourselves.

V. LINEON CONDENSATION

In this section we will discuss what happens when we
condense one or more species of the lineons ex,y,z. We will see
that when we condense a single species of lineon the resulting
phase is a stack of deconfined 2D ZN gauge theories, while
if more species are condensed the resulting phase is trivial. If
N > 4, we find that the system enters an intermediate gapless
phase upon condensation of lineons, described as an array of
strongly coupled Luttinger liquids. The transition from the XC

phase into the gapless phase is expected to be of Berezinskii-
Kosterlitz-Thouless (BKT) type.

A. Condensed phases and dual Hamiltonians

Before getting into details let us discuss our expectations
for the condensed phases. Consider first condensing a single
type of lineon, for example, ez. In the electric sector, the fusion
rule exeyez = 1 means that the condensed phase contains a
single type of electric excitation ex ∼ (ey)†, which is able to
move in both the x and y directions by fusing with the ez

condensate. In the magnetic sector, the ez condensate leads to
confinement of fractons. Consider first fracton membrane op-
erators lying in the xy plane. Such operators do not commute
with string operators of the condensate ez lineons, and thus
acquire a surface tension. Naively, xz- and yz-plane fracton
membrane operators do not acquire any tension, and indeed
they do not feel the ez condensate. However, in the presence of
the condensate, the edges of such membranes running along
the z direction become locally detectable, via processes that
create, e.g., a pair of ex lineons, and move one of them in a
small loop encircling the edge before annihilating the lineons
to vacuum (the movement around the loop creates no addi-
tional excitations due to the presence of the ez condensate).
Nothing prevents adding terms to the Hamiltonian that effect
such processes, giving a line tension to the z-direction edges
of the xz- and yz-membrane operators. These effects result in
confinement of dx,y

m dipoles, while leaving dz
m dipoles decon-

fined. The excitation content is thus the same as a stack of 2D
ZN gauge theories oriented along the ẑ direction. Indeed, we
will see momentarily that this is the correct identification.

When we further condense a second species of lineon,
all of the lineons become condensed due to the fusion rule
exeyez = 1, and consequently the magnetic sector is entirely
confined. We therefore obtain a trivial paramagnet.

Now we will see how these expectations are borne out at
the level of explicit Hamiltonians. To condense lineons we
may simply add the kinetic energy term

Hλ = −
∑

a

λa
∑
l‖â

(Xl + X †
l ). (64)

To identify the phase that results upon condensing ez lineons,
we take only λz �= 0 with λx = λy = 0. Moreover, we drop
the Ax

i and Ay
i terms in HXC, which tend to gap out ez lineons

and do not commute with the λz kinetic energy term. We thus
arrive at

Hcon;z = −g
∑

i

Az
i − K

∑
c

Bc − λz
∑
l‖ẑ

Xl

− K ′ ∑
p‖ẑ

Bp + H.c. (65)

Here we have also added a term with coefficient K ′, where
Bp is a product of Xl and X †

l over the four links in the xy-
plane plaquette p, as shown in Fig. 12. This term corresponds
precisely to a process where a pair of ex lineons are created,
one is moved around a small xy-plane loop, and then the pair
is annihilated. As discussed above, such a process detects the
edges of fracton membrane opeators parallel to ẑ, and so the
K ′ term gives these edges a line tension. Moreover, if the K ′
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FIG. 12. An illustration of the operator Bp appearing in Hcon;z

of (65).

term is not added, then an undesirable unstable ground-state
degeneracy remains.

To analyze Hcon;z, we first observe that all the terms in-
cluded commute with one another. We can then set Xl = 1 for
l ‖ ẑ, upon which Bc = BpB†

p′ , where p (respectively p′) is the
bottom (respectively top) face of c. We see that the K term is
redundant and can be dropped in favor of the K ′ term, giving
a stack of ZN toric codes as expected.

Now suppose we condense both ez and ex lineons. This is
achieved by the following Hamiltonian:

Hcon;zx = −K
∑

c

Bc − λz
∑
l‖ẑ

Xl − λx
∑
l‖x̂

Xl . (66)

Here we have completely dropped the g term to allow both
species of lineons to condense. Setting Xl = 1 for l ‖ x̂, ẑ
reduces Bc to a product of Xl over the four links along ŷ.
The resulting model is thus a stack of 2D Ising plaquette
models (see, e.g., Ref. [4]) along the ŷ direction. There is
a ground-state degeneracy associated with breaking of sub-
system symmetries, but since we are not imposing these
symmetries microscopically, the degeneracy is not robust.
Indeed, we can resolve the degeneracy by adding the term
−λy

∑
l‖ŷ(Xl + H.c.), which results in a trivial gapped phase

with a unique ground state. Not coincidentally, this term is
the kinetic energy for ey lineons, which are automatically
condensed, given the fusion rule exeyez = 1.

To discuss the lineon condensation phase transitions, it is
convenient to work in a dual description in terms of ZN spins
more directly associated to the lineon excitations, following
a logic similar to that used when discussing condensation of
fracton and lineon dipoles. We will begin by fractionalizing
X〈i j〉 in terms of dual spins that create ea lineons.12 We do this
by writing, for each link 〈i j〉 ‖ â,

X〈i j〉 = za
i Z〈i j〉

(
za

j

)†
, Z〈i j〉 = X〈i j〉, (67)

where za
i is to be thought of as creating an ea lineon on site i,

and where the Z〈i j〉,X〈i j〉 are dual gauge field variables. The
dual representation of X〈i j〉 is shown in Fig. 13. As in Sec. IV,
in accordance with the lineon fusion rules, at each site we
impose the constraint

zx
i z

y
i z

z
i = 1. (68)

12See Ref. [43] for a similar type of duality.

Z〈ij〉

i j

zi z†j

X〈ij〉

i j

→

FIG. 13. The dual representation of the operator X〈i j〉 in terms of
a gauge field Z〈i j〉 and two matter spins zi, z j . The arrows denote the
orientations of their parent links.

The dual representation and the constraint (68) are invari-
ant under the ZN gauge transformations

za
i �→ ζ b

i (ζ c
i )∗za

i ,

Z〈i j〉‖â �→ (
ζ b

i

)∗
ζ c

i Z〈i j〉ζ b
j

(
ζ c

j

)∗
,

(69)

where the ζ a
i are valued in the N th roots of unity and a, b, c

are all distinct. The Gauss laws originating from this gauge
redundancy are, for each a �= b,

xa
i

(
xb

i

)† = X〈i,i+â〉X †
〈i,i−â〉X

†
〈i,i+b̂〉X〈i,i−b̂〉, (70)

where the terms on the right-hand side are precisely the duals
of the Aa

i operators appearing in HXC (cf. Fig. 2).
There are two types of gauge-invariant operators that create

lineons which will be important in what follows. The first
is the dual representation of the X〈i j〉 operators, which hop
ea lineons along the â direction. The next-simplest term is a
“ring-exchange” operator

Ra
i = za

i Z〈i,i+b̂〉
(
za

i+b̂

)†Z†
〈i+b̂,i+b̂+ĉ〉z

a
i+b̂+ĉ

×Z†
〈i+ĉ,i+b̂+ĉ〉

(
za

i+ĉ

)†Z〈i,i+ĉ〉, (71)

where as usual a, b, c are all distinct. This operator creates
four ea lineons at the corners of a plaquette normal to â and
with a corner at the site i, and will be seen to play an important
role in our analysis of the condensation transition.

The Hamiltonian can now be written as

Hcon = −g
∑
a �=b

(
xa

i

)†
xb

i − K
∑

c

Bc

−
∑

a

λa
∑
〈i j〉‖â

za
i Z〈i j〉

(
za

j

)† + H.c., (72)

where Bc is Bc but with Z〈i j〉 operators instead of X〈i j〉 oper-
ators. Magnetic excitations are gapped, so as in the previous
examples we can ignore fluctuations of the Z〈i j〉 generalized
gauge field, which indeed are not present in (72).

If we set Z〈i j〉 = 1, we obtain an effective matter theory
for the lineons, which is valid when considering correlation
functions of local, gauge-invariant operators. This effective
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matter theory enjoys planar ZN subsystem symmetries, arising
from the planar ZN conservation laws for lineons in the X-
cube phase discussed in Sec. II. Concretely, the Hamiltonian
and any perturbations are required to be invariant under the
transformation

za
i → ζ b

i ζ c
i za

i , (73)

where a, b, c are all distinct, and where ζ b
i and ζ c

i are constant
within planes normal to b̂ and ĉ, respectively.

B. Phase transitions for N � 4

We now examine the nature of the phase transitions that
occur when the lineons condense. We will first consider only
the simplest case when a single species of lineon condenses,
which as in the previous section we will take to be ez. We will
therefore take λa = (0, 0, λ), and consider the condensation
transition that occurs as a function of g/λ.

In this limit, xx, xy both commute with the Hamiltonian
(72), and to study the phase transition we may work in the
xx = xy = 1 subspace. In this subspace the Hamiltonian (72)
clearly reduces to an array of 1D ZN clock model wires
oriented along the ẑ direction, all of which are coupled to the
(nonfluctuating) ZN gauge field Z〈i j〉. In this limit, the critical
point is simply described by a decoupled array of 1D critical
clock models, with the critical fluctuations occurring on each
wire independently.

Of course, the limit where the ZN chains are completely
decoupled is very finetuned, and we are interested in the
fate of the decoupled fixed point under generic perturbations
respecting the effective subsystem symmetry. This can be
determined by performing an RG analysis: if all of the per-
turbations which couple different chains are irrelevant, the
decoupled fixed point will correctly describe the phase tran-
sition in a finite region of parameter space. If some of the
perturbations are relevant, they may drive the system into a
nontrivial coupled fixed point, or may lead to the transition
being driven first order. Using our knowledge of the critical
properties of the 1D ZN clock model, the RG analysis can
be performed straightforwardly. Two classes of terms need to
be considered, those which are (a) invariant under separate
ZN transformations on each wire or are (b) built from the
ring-exchange terms of (71).

1. N = 2

First, consider the case where N = 2. The decoupled crit-
ical point is then described by an array of critical Ising
CFTs. Energy-energy interactions are an important class of
couplings between pairs of chains. Labeling the chains by w

and assuming translation symmetry, these couplings give us a
perturbation to the decoupled fixed point which can be written
as

δSε =
∑
w �=w′

Cw−w′

∫
dz dτ εwεw′ , (74)

where εw is the energy operator on the chain w (note that
since there is no ε2 operator in the 1D Ising CFT, we only
sum over w′ �= w). Since the critical fluctuations are only
in the z-τ space-time plane, the relevance of δS is obtained

by comparing the scaling dimension of εwεw′ to 2. Since the
dimension of the energy operator in the 1D Ising model is 1,
the couplings Cw,w′ are all marginal at tree level.

However, it is unnecessary to actually compute the beta
functions for the Cw−w′ couplings. This is because there is
another gauge-invariant coupling which is relevant, which as
we will see destabilizes all of the decoupled critical points
when N � 4. This is the ring-exchange term (71), which at
the critical point is written as (dropping the Z gauge fields
as they do not affect calculations of scaling dimensions at the
critical point)

δSr = r
∑
i,a

∫∫
dz dτ Ra

i

→ r
∑

w1,...,4∈�

∫
dz dτ σw1σw2σw3σw4 , (75)

where σw is the spin operator on wire w and the notation
w1,...,4 ∈ � means a sum over configurations of four wires
w1,...,4 whose x, y coordinates form the corners of a square
with unit normal along ẑ. Since the scaling dimension of σ is
	σ = 1

8 , the scaling dimension of the above term is

	r = 4	σ = 1
2 < 2, (76)

which is very relevant. Higher-order contributions to the beta
function for r do not lead to fixed points accessible at small
couplings. We therefore conclude that the transition is likely
generically first order, in agreement with suggestions from nu-
merics [9]. The same conclusion holds when multiple species
of lineons condense simultaneously.

2. N = 3

Now consider N = 3. In this case, the putative decoupled
critical point corresponds to an array of Z3 clock models. At
the critical point of the Z3 chain, the scaling dimension of the
spin operator σ is 	σ = 2

15 , while that of the energy operator
is 	ε = 4

5 [44]. Therefore, both the ring-exchange term and
the energy-energy couplings are relevant, and the transitions
are again expected to be first order.

3. N = 4

Next up is N = 4. While in this case there is a one-
parameter critical line of fixed points (the Ashkin-Teller line),
the scaling dimension of the spin operator on each chain is
always 	σ = 1

8 [45]. As such the ring-exchange term is again
relevant, and destabilizes the decoupled critical point.

C. Phase transitions for N > 4

For N > 4, the 1D chains are more conveniently dealt with
using a continuum XY description [46]. We do this by writing
the zz and xz variables as exponentials of slowly varying fields
�w(z) and �w(z), so that in the IR near the phase transition
we have the approximate identifications

zz
(w,z) ∼ exp [i�w(z)],

xz
(w,z) ∼ exp

(
i

1

N
∂z�w(z)

)
= exp

(
i
2π

N
π�w

(z)

)
,

(77)
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where π�w
= 1

2π
∂z�w is the momentum conjugate to �w, and

where a suitable continuum limit is taken in the ẑ direction,
assuming a continuous transition. The ZN nature of the prob-
lem can be accounted for by including a ZN anisotropy term
cos(N�w ) in the action.

The most general action for the putative fixed point can
then be written as S = S0 + SI , where SI contains interactions
and where the first term represents a noninteracting quadratic
fixed point:

S0 = 1

4π

∑
w,w′

∫
dz dτ (2δw,w′∂τ�w∂z�w′

+ gw−w′∂z�w∂z�w′ + ηw−w′∂z�w∂z�w′ ), (78)

where we have assumed translation invariance for the inter-
chain derivative couplings gw−w′ , ηw−w′ .

SI contains the ZN anisotropy and further cosines in
�w,�w allowed by gauge invariance, with the most important
ones for the present problem being

SI = a−2
∫

dz dτ

[
u

∑
w

cos(N�w )

+ r
∑

w1,...,w4∈�
cos

(
�w1 − �w2 + �w3 − �w4

)
+ s

∑
w

cos(�w ) + · · ·
]
, (79)

where a is the lattice spacing. Despite the fact that we naively
need u → ∞ to enforce the ZN nature of the problem, u can
in fact be treated perturbatively.13

1. Decoupled limit

Let us first compute the scaling dimensions of the terms
in SI in the case where there are no interchain derivative
couplings, i.e., let us first consider setting

gw−w′ = gδw,w′ , ηw−w′ = ηδw,w′ . (80)

The scaling dimensions of the most relevant gauge-invariant
cosines are then found to be

	u = N2

2R2
,

	r = 2

R2
,

	s = R2

2
,

(81)

where we have defined

R2 ≡
√

η/g. (82)

The relevance of a given term in SI is determined by com-
paring the appropriate scaling dimension to two. When the
field term is small, so that the lineons are not condensed, R2 is
also small. Here the cos(�w ) operators are relevant, pinning

13This can be shown by requiring that the known physics of the XY
model be recovered in the N → ∞ limit; see Refs. [47,48].

the values of the �w fields. This regime occurs for R2 < 4.
In the limit of large field where the lineons are condensed,
R2 is large, and here the cos(N�w ) term is relevant. This
happens for R2 > N2/4. In the absence of the ring-exchange
term this would give an intermediate massless regime for
4 < R2 < N2/4 with no relevant perturbations. However, we
see that the ring-exchange term is relevant for all R2 > 1,
meaning that there is in fact no choice of R2 for which all
three terms in (81) are irrelevant.

It remains to understand the nature of the intermediate R2

regime when the ring-exchange term is the dominant relevant
perturbation. What happens in this case is explained in Ap-
pendix C. In brief, we find that the ring-exchange term leads to
a putative fixed point corresponding to an anisotropic version
of the exciton Bose liquid [14,20,21,49], but that the three-
dimensional nature of the problem produces an instability
with respect to lineon dipole condensation. We then conclude
that when the ring-exchange term dominates, the transition is
expected be first order.

2. General derivative couplings

That the decoupled fixed point is destabilized by the ring-
exchange terms does not necessarily mean that there do not
exist stable fixed points described by the quadratic action
(78); it only means that any such fixed point must owe its
existence to interchain derivative couplings which frustrate
ring-exchange processes. In this section we show numerically
that a relatively simple choice for the derivative couplings can
be made which renders the Gaussian fixed point stable with
respect to low-body finite-range cosines. Whether or not the
chosen couplings ensure stability with respect to all possible
deformations is a more complicated question, which we leave
to future work. However, we also argue that there exist other,
more complicated, choices of interchain couplings that result
in a truly stable fixed point.

We begin by Fourier transforming in the x, y directions
normal to the chains, writing S0 as

S0 = 1

4π

∫
d2q

(2π )2

∫
dz dτ

[
2∂τ�

∗
q∂z�q

× vq

(
1

R2
q
∂z�

∗
q∂z�q + R2

q∂z�
∗
q∂z�q

)]
, (83)

where the qx and qy momentum integrations run over [0, 2π )
(with the interchain spacing set to unity), and where we have
defined

vq ≡ √
ηqgq, R2

q ≡ √
ηq/gq. (84)

For stability we require that the couplings be chosen so that
0 < R2

q < ∞ for all q; in what follows we will assume that
this is the case.

The scaling dimensions of perturbations to this fixed point
can be computed as various integrals of R2

q-dependent func-
tions. Therefore, to demonstrate the existence of a stable fixed
point, all that remains is to find an appropriate choice of R2

q
which renders all the allowed perturbations irrelevant. The
problem of finding such a function R2

q is very closely related
to the problem of constructing examples of “sliding Luttinger
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w

a

b

w + a

w + a + b

w + b

FIG. 14. An illustration of the geometry of a ring-exchange term
Rab. Here the vectors a, b are in the x-y plane and connect four wires
to form a rectangle as shown.

liquids” [33,50], which are anisotropic metallic phases built
from strongly coupled arrays of Luttinger liquids.

At the fixed point (83), general cosines of the � and �

variables have scaling dimensions

	cos(
∑

w αw�w ) = 1

2

∫
d2q

(2π )2

|αq|2
R2

q
,

	cos(
∑

w βw�w ) = 1

2

∫
d2q

(2π )2
R2

q|βq|2,
(85)

where αw, βw are integer-valued functions of the wire index
w, which are nonzero only for finitely many w.

The simplest gauge-invariant cosines are cos(N�w ),
cos(�w ), cos(�w − �w+a ), and cos(Rab), where now the
more general ring-exchange operator Rab is defined as (again
omitting the unimportant Z gauge field)

Rab = �w − �w+a + �w+a+b − �w+b, (86)

where a ⊥ b form the edges of a rectangle (see Fig. 14).
Using the above formula, we see that these have the scaling
dimensions

	cos(N�w ) = N2

2R2
0

, 	cos(�w ) = R2
0

2
,

	cos(�w−�w+a ) = 1

2

∫
d2q

(2π )2
R2

q[1 − cos(a · q)],

	cos(Rab ) =
∫

d2q
(2π )2

|1 − e−ia·q − e−ib·q + ei(a+b)·q|2
2R2

q
.

(87)

By taking N large enough we see that we can always make
the first term (the ZN anisotropy) irrelevant; hence, we can
ignore it for the time being. For the remaining terms, we see
that in order to make the above scaling dimensions large we
should take R2

q to be (a) everywhere nonzero, (b) small at
the wave vectors where the numerator in the integrand of the
expression for 	cos(Rab

� ) is small, and (c) large enough at other
wave vectors so that the cosines of � are kept irrelevant.

FIG. 15. A region of stability (shaded gray area) in the η1-η2

plane, where the fixed-point model has no relevant perturbations.
In the upper region marked “∃ rel couplings” there exist relevant
deformations to the fixed point, while in the lower region the model
is unstable, as there is always some q for which R2

q = 0.

We will not concern ourselves with a completely general
analysis of which functional forms of R2

q do the job, and
will be content with simply demonstrating that one particular
choice of R2

q works.
One such choice, which was employed in Ref. [33] in the

context of a slightly different problem, is

R2
q = η0{1 + η1[cos(qx ) + cos(qy)] + η2 cos(qx ) cos(qy)}2,

(88)
with η0 > 0. For stability R2

q must be nonzero for all q, which
ends up restricting η1, η2 to be such that

− 1
2 < η1 < 1

2 , 2|η1| − 1 < η2 < 1. (89)

The dimensions of the first two operators in (87) are easy to
compute, and are

	cos(�) = η0

2

(
1 + η2

1 + η2
2

4

)
,

	cos(N�) = N2

2η0
(
1 + η2

1 + η2
2/4

) . (90)

To figure out if there are any regions in the η1-η2 plane
where all of the scaling dimensions in (87) are greater than
2, we resort to a numerical search. For these purposes we
restrict the search to couplings involving fields up to 10th
nearest neighbors. We find small regions of stability near the
boundaries of the region in which R2

q is strictly positive; one
such region is shown as the gray shaded area in Fig. 15. In this
region cos(N�) is irrelevant for all N > 4. Note that although
the fixed points described here are very anisotropic, they are
nevertheless not completely decoupled (indeed, the coupling
is crucial for their stability), unlike the fixed points considered
in Sec. III C.

Of course, demonstrating that the scaling dimensions in
(87) are all greater than 2 does not actually guarantee stability,
as there may be more complicated higher-body and longer-
range operators which are relevant. Note that as a matter
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of principle it is always possible to construct a stable fixed
point with sufficiently complicated interchain interactions, as
was shown in Ref. [51]. In that work, authors showed that
a single quantum wire of interacting bosons has a stable
gapless “perfect metal” phase, where all cosine operators are
irrelevant, when the number of channels is 8k, with k � 3.
The action is quadratic and crucially involves interchannel
derivative couplings, as in S0 of (78). It was also pointed out
that arrays of such perfect metals give rise to stable gapless
phases in 2D and 3D. In the present case, we can employ
these results by bundling the wires of our model into groups
of 24 (which breaks full translation invariance), and choosing
interchain couplings within each bundle to put it in a perfect
metal phase. The resulting system of decoupled bundles is
then a stable gapless phase.

Even with the present choice of relatively simple inter-
chain couplings, any relevant cosines must necessarily involve
rather high-body interactions14 and/or involve very long-
range interchain couplings. Therefore, as in the case of the
“almost perfect metals” of Ref. [52], any relevant deforma-
tions are likely to have very small bare values, meaning that
the examples constructed above will only show instabilities at
very low temperatures.

With the aforementioned caveats about stability in mind,
we thus arrive at a scenario where the XC model is separated
from the condensed phase by a massless critical phase ex-
tending over a finite region of parameter space. The transition
from the XC phase to the intermediate massless region is
likely to be of BKT type since the operator which becomes
relevant in the XC phase is the cosine cos(�). The nature
of the transition from the massless region to the condensed
phase is not completely clear, and may depend on the type of
operator which becomes relevant at the transition.

Finally, we note that although in this section we have
only considered the transitions that occur as a single species
of lineon is condensed, the generalization to the case where
multiple species condense simultaneously is straightforward,
due to the fact that couplings between perpendicular wires
are always less relevant than those between parallel wires.
In particular, when multiple lineons condense we continue to
find no stable fixed points for N � 4.

VI. DISCUSSION

In this paper we have discussed various types of condensa-
tion transitions in the ZN XC model, with the phases on both
sides of the transitions described in terms of various types of
gauge theories. We have identified continuous condensation
phase transitions, and intermediate gapless phases, provided
that N > 4, although our analysis does not rule out the exis-
tence of continuous transitions for smaller N . Clearly, there is
a lot more work along these lines that may be done.

14The scaling dimensions of higher-body interactions of the �

fields are easy to check since R2
q only contains a handful of Fourier

modes. 1/R2
q on the other hand contains an infinite number of Fourier

modes, which makes a systematic search of the scaling dimensions
of the � cosines more difficult.

One obvious extension of this work is to consider similar
decoupled critical points in other fracton models, and to un-
derstand them using our existing knowledge of 1D and 2D
critical phenomena. This strategy is likely to yield many other
interesting examples.

One interesting question to ask is then whether or not
there exists a continuous phase transition between a fracton
phase and a phase without fracton order, where the critical
modes at the transition fluctuate in the full four-dimensional
space-time. In fact, one such critical point was proposed in
Ref. [12]. This work discussed the transition between the XC
model and decoupled stacks of two-dimensional ZN gauge
theories. Based on a duality between a model of coupled
ZN gauge theory layers and a 3D ZN gauge theory, it was
proposed that this transition is first order for N � 4, but that
there may be a continuous transition out of the XC phase for
N > 4. This transition is dual to that between the deconfined
phase of 3D ZN gauge theory and a massless Coulomb phase,
which was claimed to be continuous in early Monte Carlo
studies [53]. However, we believe that this transition is in fact
likely weakly first order. Indeed, starting from the Coulomb
phase, one may obtain the ZN gauge theory by condensing
electric particles with charge N . If we assume a second-order
transition, the critical point can presumably be described by a
charge-N Higgs field coupled to a U(1) gauge field. The Higgs
transition with n � 365 flavors in 3D is, however, generically
made first order by fluctuations [54], and hence the transition
from the XC model to the intermediate massless phase is also
likely to be weakly first order.

One possible route to a continuous transition with 3D char-
acter could potentially lie in Higgs transitions into the XC
phase, of the type studied in Refs. [55,56]. The nonstandard
dispersion of the matter fields in these examples may help
to stabilize against a fluctuation-induced first-order transition,
although the ultimate character of the phase transition may
also end up being quasi 2D. Another possible route lies in
finding a theory where the decoupled fixed point is unstable,
but can be shown to flow to a stable fixed point with nontrivial
couplings between different planes and chains. We leave a
more detailed treatment of these possibilities to future work.
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APPENDIX A: ZN FRACTON DIPOLE CONDENSATION

In this Appendix we discuss how the generalized gauge
theory employed in the discussion of fracton dipole con-
densation in Sec. III A is generalized to the ZN case. The
generalization is rather straightforward, with the difficulties
lying only in keeping track of the correct ways to take Hermi-
tian conjugates in various expressions.
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FIG. 16. A reference for the pattern of Hermitian conjugations
appearing in the Gauss law (A1). Links shaded in orange denote X †

l
operators, and those shaded in teal denote Xl operators. Each orange
plaquette denotes a X †

p operator, and the unshaded plaquettes denote
Xp operators.

As in Sec. III A we dualize the XC model by writing it
in terms of ZN matter qubits x, z on the vertices i of the
dual lattice, and ZN gauge qubits X ,Z on the plaquettes p
of the dual lattice. We then add additional ZN qubits X, Z on
the links of dual lattice which represent the dipole degrees of
freedom. The Gauss law reads as, in analogy to (8),

xi =
∏

l,p∈∂ iout

X †
p X †

l

∏
l′,p′∈∂ iin

Xp′Xl′ . (A1)

Here ∂ iout consists of the collection of outward-oriented pla-
quettes and links neighboring i, while ∂ iin consists of the
inward-oriented plaquettes and links. Here outward-oriented
(inward-oriented) plaquettes are those whose centers have
coordinates with respect to i which are all of the same sign
(of different signs), and are indicated as shaded (not shaded)
in Fig. 16. Outward-oriented links are those oriented parallel
to the coordinate axes (orange in Fig. 16), and inward-oriented
links are those oriented antiparallel (cyan in Fig. 16).

With this notation and the above Gauss law, the gauge-
invariant kinetic terms which hop dipoles across a given
plaquette are then ZpZl1 Z†

l2
and ZpZl3 Z†

l4
, together with their

Hermitian conjugates. The correct ZN generalization of the
Hamiltonian (9) is then

Hcon = −g
∑

i

xi − h
∑

l

Xl − λ
∑

p

Zp
(
Zl1 Z†

l2
+Zl3 Z†

l4

)
+ H.c., (A2)

where as before we have ignored the dual representation of
the Aa

i terms, which will not be important for discussing the
condensed phase.

To demonstrate that Hcon above is equivalent to the Hamil-
tonian for deconfined ZN gauge theory in the h/λ → 0 limit,
we again need to perform a unitary transformation which

decouples the plaquette degrees of freedom. This is done by
directly generalizing the analysis of the Z2 case.

To begin, define the operators

�pk = 1

N

∑
m∈ZN

(
Zl1 Z†

l2

)m
eikm, (A3)

which form a complete set of Hermitian projectors. Now
define the unitaries

Up =
∑

k

�pkX k
p , (A4)

and as before let U ≡ ∏
p Up. The unitary U conjugates oper-

ators as

U†XpU = Xp,

U†ZpU = Z†
l1

Zl2Zp,

U†Xl1U = XpXl1 ,

U†Xl2U = X †
p Xl2 ,

U†Xl3,4U = Xl3,4 ,

U†ZlαU = Zlα ,

(A5)

which can be verified using the orthogonality and complete-
ness of the �pk as well as the relations

Xl1�pk = �pk−1Xl1 ,

Xl2�pk = �pk+1Xl2 ,

Xl3,4�pk = �pkXl3,4 .

(A6)

Using these relations and referring to the pattern of Hermi-
tian conjugation in Fig. 17, one sees that under conjugation by
U , the Gauss law constraint maps to

xi =
∏

l∈∂ iout,l′∈∂ iin

XlX
†
l′ , (A7)

which is the desired Gauss law of ZN gauge theory.
By conjugating the kinetic term in H with U , one sees

that as in the Z2 case, the conjugation generates a set of
plaquette terms identical to that of the standard presentation
of ZN gauge theory, together with a trivial paramagnet coming
from the plaquette variables. After getting rid of the plaquette
degrees of freedom, the Hamiltonian is

H ′
con = U†HconU

= −g
∑

i

xi − λ
∑

p

Bp + H.c., (A8)

where the Bp terms are given by the operators appearing in
Fig. 18. This completes our identification of the condensed
phase with deconfined ZN gauge theory.

APPENDIX B: RG FLOW FOR STACKED ISING MODELS

In this Appendix we argue that L-stacked layers of critical
2D Ising models are always unstable with respect to interlayer
interactions that preserve the ZL

2 subsystem symmetry

ZL
2 : ψi �→ fiψi, fi ∈ {1,−1} (B1)

where ψi is the Ising field on layer i.
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FIG. 17. The kinetic terms employed when condensing dipoles
(plus their Hermitian conjugates, not shown). The standard labeling
of l1,...,4 for each orientation of plaquette is indicated in the left
column.

We will address this question within the context of the ε

expansion. Our starting point is then the critical action

S =
∫

d3x

(
1

2

L∑
i=1

(∂ψi )
2 + �

8

L∑
i, j=1

ψ2
i ψ2

j gi, j

)
, (B2)

where the couplings gi, j are symmetric and dimensionless, �

is a UV cutoff, and where the absence of mass terms denotes
tuning to the critical point.

Enumerating all the symmetric RG fixed points for even
moderately small L is essentially impossible since the sym-
metry group ZL

2 possesses many quartic invariants. However,
since we are only interested in symmetric fixed points which

Z

Z†

FIG. 18. The plaquette terms appearing in the ZN gauge theory
(Hermitian conjugates not shown).

are stable (viz., those which have no relevant quartic terms),
the situation becomes much more tractable. This is because
we may take advantage of powerful results about the proper-
ties of one-loop beta functions, which follow from interpreting
the RG flow as a gradient flow on the space of quartic cou-
plings.

In the following we will make use of two facts. The first
is that for any subgroup H ⊂ O(L) (we will be concerned
with H = ZL

2 ), there is at most one stable H-symmetric fixed
point [57,58]. The second is that the action of O(L) on the gi, j

couplings maps fixed points to fixed points since for the pur-
poses of calculating the beta functions O(L) transformations
are simply redundant relabelings of the fields.

These two facts mean that if the gi, j couplings describe
a stable symmetric fixed point, the gi, j must be invariant
under the action of any O(L) transformation which preserves
the ZL

2 symmetry (otherwise the fixed point would not be
unique). In particular, consider the action of σ ∈ SL ⊂ O(L)
on a given ZL

2 -invariant coupling gi, j . The action of σ takes
gi, j �→ gσ (i),σ ( j), and therefore a necessary condition for gi, j

to give a ZL
2 -stable fixed point is for gσ (i),σ ( j) = gi, j for all

σ ∈ SL. This means that any symmetric stable fixed point will
have couplings of the form

g∗
i, j = (g0 − h)δi, j + h (B3)

for some constants g0, h. If h �= 0 this set of couplings gives
very nonlocal interactions, as it contains all-to-all quartic
interlayer couplings. On physical grounds we may then be
justified in restricting our attention to h = 0. However, even
in the general case with nonzero h, we will see that no choice
of g0, h gives a stable fixed point.

Indeed, it is not hard to explicitly compute the one-loop
β functions at fixed points of the form (B3) and show that
as long as L > 4, none of them are stable (at least within the
context of the ε expansion). We find

βg0 = g0 − 9

2
g2

0 − L − 1

2
h2,

βh = h − 3g0h − L + 2

2
h2.

(B4)

There are three fixed points to these equations. One is the
decoupled fixed point where h = 0, which is unstable. The
other two are the O(N ) symmetric fixed point S and the cubic
fixed point C. The couplings at each are given by

(g∗
0, h∗) =

{C :
(

2
9 (1 − 1/L), 2

3L

)
,

S :
(

2
8+L , 2

8+L

)
.

(B5)

It is then straightforward to check that both fixed points are
unstable (provided that L > 4).

The above discussion has focused on the RG flows ob-
tained in a perturbative expansion about the free fixed point.
One might imagine a possible way out by first introducing a
strong deformation that drives the system to a different fixed
point, around which the RG analysis is modified. The simplest
possibility is to add the term

δS =
∑

i

gpair

∫
d2x dτ ε2iε2i+1. (B6)
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In the absence of further couplings between pairs of layers,
this term drives the system to a decoupled stack of 2D XY
models.15

This fixed point is, however, also unstable. Indeed, as
was mentioned in the main text, the energy operator εi,XY ∼
ε2i + ε2i+1 in the 2D XY model is known to have scaling
dimension 	ε ≈ 1.51 > 3

2 [37], and as such energy-energy
couplings between the XY layers are irrelevant. However, the
ZL

2 -invariant operators tXY
i = ε2i − ε2i+1 [which in a given

XY layer is ∼φ2 + (φ∗)2] has dimension 	t ≈ 1.24 < 3
2 [59],

and hence couplings between ti operators on neighboring lay-
ers are relevant, destabilizing the fixed point.

Therefore, while we do not have a rigorous proof, the phase
transition that occurs in the N = 2 case generically seems to
be driven first order by fluctuations, as was suggested by the
numerics of Ref. [9].

APPENDIX C: EFFECTS OF THE
RING-EXCHANGE TERM

In this Appendix we discuss what happens to the critical
point (78) in the limit where the chains are decoupled and
the ring-exchange term is the dominant relevant perturbation
(as discussed in Sec. V C, for N > 4 there is always a region
where the ring-exchange term is the only relevant perturbation
to the decoupled fixed point).

When the ring-exchange term is relevant, we are prompted
to expand the cosine as 1 − 1

2 a2(∂x∂y�)2, where now the field
� fluctuates in all four space-time directions. Doing this and
integrating out the �w fields16 then gives the continuum action

S = λ

∫
d3x dτ {a−2[(∂τ�)2 + (∂z�)2] + α(∂x∂y�)2},

(C1)
where � and α are dimensionless and λ is some nonuniversal
parameter. This is a variant of the Bose plaquette model ap-
pearing in the analysis of exciton Bose liquids [14,20,21,49],
which differs from the original model by the presence of an
extra spatial dimension and the (∂z�)2 term. In the original
model, the degeneracy of the dispersion along the kx = 0 and
ky = 0 axes in momentum space leads to strong IR diver-
gences which prevents ordering, leading to a stable massless
phase. As we will see, things are rather different in the present
case.

The symmetry-invariant operators we may consider corre-
lation functions of are polynomials in ∂z�, ∂τ�, and ∂x∂y�,
as well as exponentials of N�. On one hand, exponentials of
single N� operators have correlation functions which essen-
tially vanish. Indeed, looking at correlation functions along

15Indeed, two 2D Ising CFTs coupled by their energy operators
flow in the IR to the 2D XY fixed point, which can be derived either
from the ε expansion or from conformal perturbation theory, using
the known values [37] for the OPE coefficients at the Ising fixed
point.

16The vertex operators ei�w create vortices in � in the z-τ plane,
which are very energetically costly in the presence of gradient terms
in the x and y directions. As such, it is best to first integrate them out
and then work entirely in terms of the � fields.

the τ direction and setting α = 1 for simplicity, we calculate

〈�(τ )�(0)〉 = 2πa2

R2

∫
k,ω

eiτω

ω2 + k2
z + (akxky)2

= a2

2R2

∫
kx,ky

∫ ∞

a|kxky|
du

e−τu√
u2 − (akxky)2

= a2

2π2R2

∫
dkx dky K0(akxkyτ )

∼ a

4πR2τ
ln(L/a), (C2)

where L is an IR cutoff, with L/a → ∞ in the thermodynamic
limit. As such, the correlator

〈eiN�(τ )e−iN�(0)〉 ∼
( a

L

)ς (1−a/τ )
→ 0, (C3)

where ς = N2/4πR2 is ultra-short-ranged.
However, correlation functions of exponentials which cre-

ate N lineon dipoles on neighboring wires (which preserve
the subsystem symmetry due to the factor of N) do not vanish
in this way. In the continuum theory these operators map to
exponentials of N∂x� or N∂y�, and the derivatives are able
to eliminate the IR divergence encountered in the momentum
integration of (C2). For example, by a similar calculation as
above we find

〈
eiN[�(τ,x+a)−�(τ,x)]e−iN[�(0,x+a)−�(0,x)]

〉
∼ 〈

eiNa∂x�(τ )e−iNa∂x�(0)
〉

∼ exp

(
a3N2

2π2τR2

∫ 1/a

1/L
dkx kx

)
∼ exp

(
aN2

4π2τR2

)
, (C4)

which goes to a nonzero value in the limit τ/a → ∞ (the
same behavior occurs for correlation functions along different
space-time directions). The dispersion along the kz direction
is therefore enough to soften the IR divergences coming from
unusual dispersion in kx and ky, enabling the model to order
in the IR.

Indeed, upon adding the subsystem-symmetry-allowed
terms cos(Na∂x,y�) to the action, the above correlation func-
tion means that lineon dipoles condense. Fluctuations about
the condensate give rise to (∂x�)2, (∂y�)2 terms in the action,
which eliminates the IR divergences that prevent � from fully
condensing. Therefore, the relevance of the ring-exchange
term does not induce a flow to an intermediate massless phase,
so that the transition into the condensed phase is expected to
be first order.

While all of the above discussion has been within the con-
text of condensing a single species of lineon, the case when
multiple species condense can be treated in the same way,
as the most relevant interwire couplings continue to be those
dealt with above.
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