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Nonlocal Kondo effect and quantum critical phase in heavy-fermion metals

Jiangfan Wang1 and Yi-feng Yang 1,2,3,*

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

3Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

(Received 5 September 2020; revised 27 August 2021; accepted 27 September 2021; published 11 October 2021)

Heavy-fermion metals typically exhibit an unconventional quantum critical point or quantum critical phase
at zero temperature due to the competition of the Kondo effect and magnetism. Previous theories were often
based on certain local types of assumptions, and a fully consistent explanation of experiments has not been
achieved. Here we develop an efficient algorithm for the Schwinger boson approach to explore the effect of
spatial correlations on the Kondo lattice, and we introduce the concept of a nonlocal Kondo effect in the
quantum critical region with deconfined spinons. We predict a global phase diagram containing a non-Fermi
liquid quantum critical phase with a hidden holon Fermi surface and a partially enlarged electron Fermi surface
for strong quantum fluctuations but a single quantum critical point for weak quantum fluctuations. This explains
the unusual metallic spin liquid recently reported in the frustrated Kondo lattice CePdAl and resolves the Fermi
volume puzzle in YbRh2Si2. Our theory highlights the importance of nonlocal physics and provides a unified
understanding of heavy-fermion quantum criticality.
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The interplay of antiferromagnetic (AFM) transition and
f electron delocalization underlies many exotic properties
of Kondo lattice physics [1,2]. In particular, the recent dis-
covery of a non-Fermi liquid (NFL) quantum critical phase
in the frustrated Kondo lattice CePdAl has posed an urgent
challenge to clarify the nature of this intermediate state [3],
which is in stark contrast to the usual observation of a single
quantum critical point (QCP) in many heavy-fermion anti-
ferromagnets, such as YbRh2Si2 [4–7], CeRhIn5 [8,9], and
CeCu6−xAux [10–13]. In the latter case, the AFM QCP is
often thought to be accompanied by the full delocalization
of f electrons into a heavy Fermi liquid (HFL), possibly
manifested by an abrupt change in the electron Fermi surface
from “small” (no f electrons) to “large” (with f electrons).
In CePdAl, however, the two transitions are detached. The
intermediate phase spans over a broad range of the pressure-
magnetic field phase diagram and is neither magnetically
ordered nor a Fermi liquid. A similar intermediate phase was
observed previously in Ir- or Ge-doped YbRh2Si2 [14,15].
Its origin is unclear but is often attributed to magnetic
frustrations, low dimensionality, or large spin/orbital degen-
eracy [16–19].

The lack of a thorough microscopic understanding lies
in the extreme difficulty of simulating the Kondo lattice.
The widely used dynamical mean-field theory [20] and its
cluster extensions [21,22] can well capture local or short-
range correlations but fail to describe long-range quantum
critical fluctuations. Exact lattice simulations often require
extensive computational efforts and can be applied only under
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very special conditions on small lattices [23]. In this regard,
the recent development of the large-N Schwinger boson ap-
proach represents an important advance [24–29]. Compared
to the prevalent slave-boson method, the Schwinger boson
representation of spins allows for better treatment of local
moment antiferromagnetism and its interplay with Kondo
screening. However, its latest implementations on the Kondo
lattice have all predicted direct transitions between antifer-
romagnetism and HFL, showing no sign of an intermediate
phase [28,29].

The discrepancy comes from the local approximation
adopted in these calculations, which ignores the momen-
tum dependence of quasiparticle self-energies in order to
reduce the computational efforts [28,29]. To overcome this
issue, we go beyond the local approximation and develop
an efficient numerical algorithm to solve the Schwinger
boson self-consistent equations with full frequency and
momentum-dependent self-energies. This enables us to study
the low-energy charge and spin dynamics with both temporal
and spatial fluctuations. Our method is then applied to the two-
dimensional (2D) Kondo-Heisenberg model on the square
lattice and finds, in a certain parameter range, an emergent
intermediate state with gapless spinon and holon excitations
and a partially enlarged (or “medium”) electron Fermi surface
due to the generalized Luttinger sum rule [30,31], which is
forbidden in the local approximation. The phase diagram and
finite-temperature properties are controlled by the interplay of
a deconfined AFM QCP and a transition to the large electron
Fermi surface, which merge together into a single transition
for large spin size. Our key finding is a nonlocal Kondo effect
mediated by holons propagating on the lattice. Our results
explain the recent experiments in CePdAl and YbRh2Si2 and
provide a unified theory of heavy-fermion quantum criticality.
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We start with the following Hamiltonian:

H = t
∑

〈i j〉
c†

iαac jαa + JK

∑

i

Si · si + JH

∑

〈i j〉
Si · S j, (1)

where c†
iαa creates a conduction electron of spin α and channel

(orbital) a = 1, 2, . . . , K on site i, si is its spin operator, and
Si denotes the local spin. The Schwinger boson approach
enlarges the SU(2) spin group to the symplectic group Sp(N)
such that Si → Sαβ

i = b†
iαbiβ − α̃β̃b†

i,−βbi,−α , where biα rep-
resents the Schwinger boson (spinon), α = ±1, . . . ,±N/2,
and α̃ = sgn(α) [32]. A local constraint is then imposed to
reduce the enlarged Hilbert space to physical subspace, nb,i ≡∑

α b†
iαbiα = 2S, which may be implemented by introducing

the Lagrange multiplier,
∑

i λi(nb,i − 2S). A biquadratic ex-
change term, −ζJH

∑
〈i j〉(Si · S j )2, is often included to avoid

artificial first-order transitions at large N , which can be ab-
sorbed into the quadratic term under SU(2) symmetry [33].
Depending on the ratio of 2S/K , three distinct regions exist
where the local spins are underscreened (2S/K > 1), over-
screened (2S/K < 1), or exactly screened (2S/K = 1) [34].
We focus on the exactly screened case. The Kondo and
Heisenberg terms can be factorized using two auxiliary fields:

JK

N
Sαβ

i c†
iβaciαa → 1√

N
b†

iαciαaχia + H.c. + |χia|2
JK

,

JH

N
Sαβ

i Sβα
j → α̃b†

j,−αb†
i,α�i j + H.c. + N |�i j |2

JH
, (2)

where �i j denotes the spin-singlet valence bond on adjacent
sites and χ

†
ia can be viewed as a composite fermion of the

Kondo state formed by a conduction hole and a spinon. χ
†
ia is

also called the holon field since it carries a positive electric
charge and has no spin.

To proceed, we assume the mean-field variables λi = λ and
�i,i+x̂ = �i,i+ŷ = �. The former replaces the local constraint
nb,i = 2S by the average spinon occupation, and the latter
describes a candidate spin liquid energetically favored in the
Heisenberg model [35]. The rotational symmetry is preserved
under combined operation of lattice rotation and gauge trans-
formation [36]. In the large-N limit, the spinon and holon
self-energies are [37]

�b(p, iνn) = − κ

βV
∑

km

gc(p − k, iνn − iωm)Gχ (k, iωm),

�χ (p, iωm) = 1

βV
∑

kn

gc(k − p, iνn − iωm)Gb(k, iνn), (3)

where gc is the bare Green’s function of conduction electrons;
Gb and Gχ are the full Green’s functions of spinons and
holons, which will be self-consistently determined by their
self-energies; ωm (νn) are the fermionic (bosonic) Matsubara
frequencies; β is the inverse temperature; and V is the to-
tal number of lattice sites. The parameter κ ≡ 2S/N = K/N
controls the effective strength of quantum fluctuations. The
self-energy of conduction electrons is absent in the large-N
limit, thus preventing proper treatment of electric transport.
In previous calculations [27–29], a local approximation was
adopted to reduce the computational efforts by ignoring the
momentum dependence of the self-energies. This is equiv-

FIG. 1. (a) Illustration of the Kondo-Heisenberg model with in-
dependent electron baths where holons are not allowed to propagate
on the lattice (left) and a shared bath in this work (right). (b) The-
oretical phase diagram in the large-N limit on the κ and TK/JH

plane, showing four phases: the Néel state (AFM), the resonating
valence bond (RVB) state, the heavy Fermi liquid (HFL), and the
intermediate holon state (HS). The RVB state may turn into the
valence bond solid (VBS) at finite N . The AFM and HFL phase
boundaries are separated for small κ but merge together for κ � 0.47.
The intermediate HS region is missing under the local assumption
(inset). The dashed line inside the HFL marks a transition from � �=
0 (short-range magnetic correlations) to � = 0 (a local Fermi liquid).
The arrows indicate different routes of quantum phase transitions.
(c) The Feynman diagram of nonlocal Kondo scattering mediated by
propagating holons. (d) Experimental phase diagrams of CePdAl [3]
and Yb(Rh1−yIry )2Si2 [14]. The hatched area in the phase diagram
of CePdAl marks the region with linear-in-T resistivity. The arrows
mark possible correspondences with those in (b).

alent to assigning independent electron baths for each local
spin, as illustrated in Fig. 1(a). Under this approximation,
only direct phase transitions are allowed, as shown in the
inset of Fig. 1(b). To overcome this issue, we notice that the
momentum convolution can be turned into simple multiplica-
tion in the coordinate space, �b/χ (r) ∼ gc(r)Gχ/b(r), which
motivates us to develop an efficient algorithm based on the
fast Fourier transform and to solve the above equations in
coordinate space without approximation [37].

Figure 1(b) plots the resulting zero-temperature phase dia-
gram on the κ and TK/JH plane, where TK = De−2D/JK is the
single-ion Kondo temperature and D is the half bandwidth
of conduction electrons. TK/JH is also called the Doniach
ratio. The phase diagram contains four regions: the AFM Néel
order, the resonating valence bond (RVB) state with a small
electron Fermi surface, the HFL with a large electron Fermi
surface, and the intermediate holon state (HS) with gapless
spinon and holon excitations. Our result closely resembles the
experimental phase diagram of CePdAl [Fig. 1(d)], showing
different (narrow or wide) regions of intermediate NFL phase
tuned by pressure and magnetic field [3]. The intermediate
phase disappears for κ > 0.47 with weak quantum fluctua-
tions, where the AFM and HFL transitions merge together to
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give a single quantum critical point as in YbRh2Si2 tuned by
Ir doping [14]. Inside the HFL, short-range magnetic correla-
tions may vanish (� = 0) at large TK/JH , and we enter a local
Fermi liquid with independently screened spins.

The RVB, AFM, and HFL phases are already present in
the local approximation and can be largely understood by
two limits. In the Heisenberg limit (JK = 0), the spins are
decoupled from conduction electrons. At finite N , the RVB
state will turn into the valence bond solid (VBS) state due to
spinon confinement with the inclusion of monopoles [38,39].
The AFM Néel order is associated with spinon condensa-
tion. The transition between them marks a deconfined QCP
with divergent spinon confinement length, where monopoles
are irrelevant [40]. In this particular model, the VBS-AFM
and RVB-AFM transitions are described by the same crit-
ical theory with gapless spinons and emergent U(1) gauge
fields [41]. Our calculations reproduce the scaling of the stag-
gered susceptibility χst ∝ Te4πρs/T (ρs is the spin stiffness)
in the renormalized classical regime above the Néel order
and χst ∝ T −2+η in the quantum critical regime [42,43], with
the anomalous dimension η approaching unity at the critical
κ , reflecting deconfined free spinons [44]. In the limit of
κ → 0, both spinons and holons are localized, and the lattice
physics is reduced to a collection of decoupled spins (� = 0)
undergoing independent Kondo screening beyond a critical
TK/JH . For finite κ , the local approximation predicts direct
transitions between three states, supporting local quantum
criticality [45].

By contrast, our calculations with momentum-dependent
quasiparticle self-energies reveal an intermediate phase (HS)
with gapless spinon and holon excitations for κ < 0.47.
Importantly, we obtain the correct zero-temperature AFM in-
stability for both zero and finite JK , in agreement with the
Mermin-Wagner theorem [46], while the local approxima-
tion predicted incorrectly a finite-temperature transition for
nonzero JK [29]. Lattice propagations are crucial for both
results, which yield a dispersive holon band and a holon Fermi
surface determined by the poles of Gχ at the Fermi energy or,
equivalently, the effective Kondo coupling, J∗

K (p) ≡ [J−1
K +

Re�χ (p, 0)]−1. Physically, the momentum dependence of
J∗

K (p) implies an unusual nonlocal and cooperative scattering
process described by J∗

K (r j − ri )c
†
jaβb jβb†

iαciaα , in which a
conduction hole and a spinon form a spinless quasibound state
(holon) at ri, propagate to another site r j , and then unbind
themselves [see Fig. 1(c)]. Such a “nonlocal Kondo effect”
mediated by fractional quasiparticles underlies the emergent
NFL state (HS) between antiferromagnetism and HFL and
differs conceptually from an earlier proposal of partial Kondo
screening in which local spins and electrons are both in-
tact [18,23]. The presence of a holon Fermi surface may help
further stabilize the deconfinement by coupling the surface
to the U(1) gauge field at finite N and making monopole
fluctuations irrelevant [47,48], while the gauge field is either
“Higgsed” or confined in other three phases, forbidding frac-
tional excitations at low temperatures.

The holon Fermi volume, V χ

FS = V−1 ∑
p θ [−J∗

K (p)], is
gauge invariant and evolves continuously in the intermediate
state, as plotted in Fig. 2(b) for κ = 0.1. It satisfies the gener-
alized Luttinger sum rule, NV c

FS − V χ

FS = nc, where V c
FS is the

Fermi volume of conduction electrons and nc is the electron

FIG. 2. (a) Holon (left panel) and spin (right panel) excitation
spectra along the high-symmetry line of the Brillouin zone (inset)
at κ = 0.1 for TK/JH = 0.115, 0.15, and 0.164 (from top to bottom)
with different ground states as marked in (b). The color represents the
intensity of the spectral functions −C′′

nχ
(k, ω)/π and −C′′

S (k, ω)/π .
The spin spectra at M are also plotted for clarity. (b) Evolution of the
holon Fermi volume V χ

FS as a function of TK/JH at κ = 0.1. (c) The
spin spectral function at κ = 0.2 and TK/JH = 0.2 at a low, but finite,
T right above the AFM ground state. The white dashed lines are a
guide to the eye.

number per channel (orbital) [30]. The sum rule reflects the
electric charge conservation associated with the global U(1)
symmetry: χia → χiaeiφa , ciαa → ciαae−iφa . As a result, the
Fermi surface of conduction electrons is small (NV c

FS = nc) in
the RVB phase, large (NV c

FS = nc + 1) in the HFL, and “par-
tially” enlarged (or medium) in between, consistent with the
calculated electron Fermi surface with 1/N correction [37].
For the local approximation, holons have no dispersion, and
their Fermi volume is either zero or unity, thus preventing a
partially enlarged electron Fermi surface. We note that the HS
phase is different from the FL∗ phase discussed in Ref. [49].
The latter is characterized by decoupled spinons and a small
electron Fermi surface, similar to our RVB state. It is also dif-
ferent from a conventional two-band metal with no fractional
excitations and only (dispersive) intact f electrons [50].

More detailed information on the low-energy spin
and charge excitations in the intermediate state can
be extracted from the holon density-density correlation
function Cnχ

= − 1
K 〈nχ (ri, τ )nχ (r j, τ

′)〉c, where nχ (ri, τ ) =∑
a |χia(τ )|2, and the dynamic spin structure factor CS =

− 1
N 〈Sz

i (τ )Sz
j (τ

′)〉c, with Sz
i = ∑

α α̃b†
iαbiα . The subscript

c denotes that only connected diagrams are considered.
Figure 2(a) plots their imaginary parts in the energy-
momentum space at κ = 0.1 for specially chosen values of
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TK/JH . We find that both excitations are gapped in the RVB
(panel A) and HFL (panel C) phases. In the intermediate
state (panel B), the holons become gapless around � and M,
corresponding to particle-hole pairs from the same or different
parts of the holon Fermi surface. With increasing TK/JH ,
the holon bands Dχ become increasingly narrow, implying a
heavy effective mass as large as m∗

χ/me ∝ D/Dχ ≈ 104 near
the HFL boundary. Across the boundary, the holon Fermi
surface vanishes in the HFL state. Accordingly, conduction
electrons achieve a large Fermi surface following the Lut-
tinger sum rule. The spin excitation spectra in the intermediate
state are also gapless but highly damped. For the square lattice
model in the Heisenberg limit, the spectra are sharply defined
but gapped outside of the AFM phase. Here the coupling with
holons smears out the gap and results in gapless, but damped,
spin excitations. For comparison, Fig. 2(c) shows the results
for κ = 0.2 at low, but finite, temperature above the AFM
ground state. We find a sharp peak near zero energy that is
the precursor of spinon condensation. This distinguishes the
spinon dynamics inside the intermediate phase. At κ = 0.48,
the AFM QCP marks a direct transition to the HFL and
features both critical spinons and heavy holons [37]. Given
the gapless charge and spin excitations, the Kondo screen-
ing may exist in a critical way inside the HS. Its difference
from the fully Kondo screened HFL may also be reflected in
two-particle correlation functions [51], which unfortunately
require two-loop diagrams beyond our numerical capability.

Thus, the phase diagram for κ > 0.1 is largely controlled
by the interplay of a deconfined AFM QCP and a transition
to the large electron Fermi surface. At finite temperature,
one may further expect a crossover line connected to the
renormalized classical regime in the Heisenberg limit above
the AFM order and a delocalization line associated with
the transition to the large electron Fermi surface. In be-
tween, irrespective of an intermediate state or a QCP at
zero temperature, there always exists a paramagnetic re-
gion with short-lived spinon and holon excitations and a
partially enlarged electron Fermi surface. This provides a
candidate microscopic interpretation of the two-fluid model
with a coexistent spin liquid and heavy quasiparticles [52,53].
The partially enlarged electron Fermi surface evolves with
temperature, supported recently by angle-resolved photoe-
mission spectroscopy (ARPES) [54] and ultrafast optical
pump-probe spectroscopy [55] in CeCoIn5. The fact that it
varies continuously and is “nearly large” in the vicinity of
the single QCP for large κ might help resolve the recent
controversy for YbRh2Si2, in which, contrary to the usual
expectation based on the change in the Hall coefficient [5],
ARPES reported a large Fermi surface above the antiferro-
magnetism (70 mK) [56]. Even deep on the AFM side, “band
bending” has been observed in paramagnetic CeRhIn5 [57].
The crossover in the Hall coefficient might be explained if
holon contributions are taken into consideration [58–60]. The
presence of deconfined holons is a peculiar feature of the in-
termediate region in our theory whose consequences have yet
to be fully elaborated. In the AFM phase at zero temperature, a
small electron Fermi surface is always expected due to spinon
condensation.

Some of the physical properties in the intermediate re-
gion can be approximately captured by the large-N limit.

FIG. 3. Temperature dependence of (a) the inverse staggered sus-
ceptibility and (b) the specific heat coefficient at κ = 0.2 for different
values of TK/JH . The colors distinguish the AFM (blue), HS (red),
and HFL (green) regions. The inset in (a) shows the power-law
exponent α as a function of TK/JH on the AFM side, and that in
(b) compares the low-temperature spinon density of states in the HS
and HFL regions. The arrows mark the gap edges. (c) and (d) Same
as (a) and (b), but at κ = 0.48, where the red color denotes the QCP.

Figure 3 plots the calculated staggered magnetic suscepti-
bility χst and specific heat coefficient C/T at κ = 0.2 and
0.48. In both cases, we see χst ∼ T −α on the AFM side and
C/T ∼ − ln T at the AFM QCP, typical of NFL. The expo-
nent α varies monotonically with TK/JH and drops rapidly
near the AFM QCP (roughly 0.5 at κ = 0.48). Its value is
much smaller than that of the Heisenberg model, reflecting
the presence of additional holon excitations. Its nonuniver-
sality seems to be consistent with experimental observations,
where α varies from 1/3 in UCu5−xPdx [61] to 0.51 in
Ce(Ru1−xFex )2Ge2 [62] to 0.75 in CeCu5.9Au0.1 [11]. Inside
the HFL, C/T shows a broad maximum at finite tempera-
ture. This difference may be understood from the insets in
Figs. 3(b) and 3(d), where the spinon density of states is
singular at the AFM QCP but gapped in the HFL. Inside the
intermediate state, the spinon density of states is gapless but
nonsingular, and C/T keeps growing with decreasing temper-
ature, reflecting nonuniversal NFL behaviors, as observed in
CePdAl [3].

It remains to be seen how transport properties might be af-
fected when the electron self-energy is included at finite N . A
linear-in-T resistivity has been proposed to arise either from
critical holons [28] or due to spinon scattering with vanishing
holon velocity [31]. This might be true near the AFM QCP but
must not be extended to the whole intermediate region where
spinon and holon dynamics are not always critical, even for
frustrated Kondo lattices. Indeed, the linear-in-T resistivity
was observed over only a narrow region of the intermediate
phase in CePdAl [3]. Its appearance is probably associated
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with the distorted kagome structure, calculations of which
require more auxiliary fields and will be left for future work.

The intermediate phase has also been observed in other
compounds, including YbRh2Si2 with Ir or Ge doping [14,15]
and YbAgGe under field [63]. These compounds adopt differ-
ent crystal structures, suggesting that the intermediate phase is
not a phenomenon solely of frustrated Kondo lattices. Large
spin/orbital degeneracy and low dimensionality may also
introduce strong quantum fluctuations [64]. Of course, the
details of the phase diagram may be altered by finite-N correc-
tions including gauge fluctuations. Nevertheless, our approach
allows for the possibility of the intermediate NFL state, which
is an advance beyond the local approximation. Key features

distinguishing our theory from the conventional Hertz-Millis
theory include the partially enlarged electron Fermi surface
with an intermediate Fermi wave vector [30], the existence of
multiple charge carriers, and possibly singular charge fluctu-
ations [7,28]. More elaborate studies along this line may lead
to a better understanding of Kondo lattice physics.

This work was supported by the National Key R&D Pro-
gram of China (Grant No. 2017YFA0303103), the National
Natural Science Foundation of China (Grants No. 12174429,
No. 11774401, No. 11974397), and the Strategic Priority Re-
search Program of the Chinese Academy of Sciences (Grant
No. XDB33010100).
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