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Nonlocal exchange and correlation energy functionals using the Yukawa potential as ingredient:
Application to the linear response of the uniform electron gas
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We show that the reduced, dimensionless Yukawa potential yα can be employed as an important ingredient in
the construction of the exchange and correlation energy functionals. A functional based on yα provides a better
description of the exchange and correlation linear response functions of the homogeneous electron gas, not only
at small wave vectors, where gradient expansions are correct, but also at large wave vectors, where semilocal
exchange and correlation functionals fail badly. Moreover, the yα ingredient gives a realistic description of the
exchange energy and potential at the nuclear cusp and the inner atomic core, where the semilocal ingredients
(i.e., the reduced gradient and Laplacian of the density) are not suitable, causing divergence of the potential.
Thus, the yα ingredient can be attractive for the development of various exchange-correlation functionals.
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I. INTRODUCTION

The Kohn-Sham (KS) density functional theory (DFT)
[1–6] is the most used electronic structure computational
method in quantum chemistry and solid-state physics [7]. In
KS-DFT, the noninteracting kinetic energy is treated exactly
using the KS one-particle orbitals, and only the exchange-
correlation (XC) energy Exc[n] must be approximated as a
functional of the electronic density n(r). The exact XC func-
tional contains all the many-body quantum effects beyond the
Hartree approximation, and due to its complexity, it is known
only for few and very simple real systems, e.g., the dissoci-
ation of the H2 molecule [8]. Moreover, even the evaluation
of the almost-exact XC potentials [vxc(r) = δExc[n(r)]/δn(r)]
from correlated ab initio densities requires nontrivial tech-
niques, such as the inverse DFT problem of mapping the
ground state density into its XC potential [9]. Despite these
difficulties, the XC functional development has been an ac-
tive research field for several decades [2–7,10–13]. Nowadays
many XC functionals have been developed [10–12,14,15],
being accurate for various systems and properties.

The nonempirical XC functionals have been classified on
the so-called DFT Jacob’s ladder [16], starting with the local
(rung 1) and the generalized-gradient approximation (GGA,
rung 2) semilocal ones. Meta-GGA functionals (rung 3) are
the most sophisticated semilocal XC functionals, with the XC
energy per particle [defined as Exc = ∫

dr n(r)εxc(r)]

εsemilocal
xc (r) = εxc(n↑, n↓,∇n↑,∇n↓,∇2n↑,∇2n↓, τ↑, τ↓),

(1)
where n↑, n↓ are the spin densities (n = n↑ + n↓), and
τ↑, τ↓ are the spin-dependent kinetic energy densities

(τσ = ∑occ
i=1 |∇φi,σ |2/2, where φi,σ is the ith occupied KS

orbital of spin σ ).
The semilocal ingredients, shown in Eq. (1), contain infor-

mation only from an infinitesimal volume around r, then the
semilocal XC approximations cannot describe in detail many
nonlocal features, even if they still may be accurate due to an
error cancellation between the semilocal exchange and corre-
lation functionals [17]. A simple way to develop nonlocal XC
functionals is to use physically motivated orbital-free nonlocal
ingredients, such as exchange-hole models [18–24], XC hole
models [25–27], or the reduced Hartree potential [28,29]

ηu = u(r)

3(3/π )1/3n(r)1/3
, (2)

where u(r) = ∫
dr′ n(r′)/|r − r′| is the Hartree potential.

The reduced Hartree ingredient is important for one- and
two-electron systems, but it is ill defined for extended sys-
tems. Recently, we have proposed the dimensionless, reduced
Yukawa potential (also known as reduced screened Hartree
potential) [30]

yα (r) = α2

4πn1/3(r)

∫
dr′ n(r′)

|r − r′|e−αn1/3(r)|r−r′ |, (3)

which is of interest for the nonlocal kinetic energy functionals
[30]. Here, α � 0 is a parameter that measures the screening
strength. Semilocal functionals which include yα (r) as an
ingredient have been named yGGA functionals [30].

Rung 4 of the ladder is represented by hybrid and hyper-
GGA functionals [31–42], which use the nonlocal exact
exchange as an ingredient. Finally, the most sophisticated
XC functionals depend on all the occupied and unoccupied
KS orbitals and energies (rung 5). They can be related to
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the DFT perturbation theory [43–47], the interaction strength
interpolation along the adiabatic connection curve [48–67], or
the XC kernel approximations ( fxc) for the linear-response
time-dependent DFT approach, in the framework of the
adiabatic-connection fluctuation-dissipation theorem [68–87].

All these XC approximations have been developed taking
into account different exact conditions [88,89]. One of these is
the XC linear response function of the homogeneous electron
gas (HEG, also named jellium), defined as

γxc(η) = −k2
F

π
F

(
δ2Exc[n]

δn(r)δn(r′)

∣∣∣∣
n0

)
= fxc(η)

f LDA
x

, (4)

where F represents the Fourier transform, η = k/(2kF ) is the
dimensionless momentum [kF = (3π2n0)1/3 being the Fermi
wave vector of the jellium model with the constant density n0],
fxc(η) is the HEG XC kernel, and f LDA

x = −π/k2
F is the LDA

HEG exchange-only kernel. Accurate values of γxc(η) are
known from quantum Monte Carlo calculations [90], being
modeled in detail by several HEG XC kernel approxima-
tions, such as the state-of-the-art Richardson-Ashcroft (RA)
jellium kernel [77]. Accurate description of the XC linear
response function γxc(η) is a difficult requirement for many
XC functionals of Jacob’s ladder. In fact, the local density
approximation (LDA) XC functional [1,91], which is con-
structed from the HEG, is exact for the jellium XC energy
per particle (εxc), but its linear response γ LDA

xc (η) is exact only
at η = 0, being just a constant [γ LDA

xc (η) = γ LDA
xc (0)]. On the

other hand, the exchange and correlation gradient expansions
[92–97] are exact in the limit η → 0, while they fail abruptly
at large wave vectors, where they diverge [98]. For this
reason, several generalized gradient approximations (GGAs)
[99–101], meta-GGAs [15,88], global hybrids [42], and long-
range [102] and short-range screened hybrids [103,104] have
been constructed to recover the LDA linear response.

The violation of the correct η → ∞ behavior of the XC
kernel can also cause the so-called ultraviolet catastrophe
which produces a divergence of the pair distribution function
at small interparticle distances [81,105].

In this article, we study the significance of the reduced
Yukawa potential yα (r) [see Eq. (3)] for exchange and cor-
relation functionals, showing its relevance for the XC HEG
linear response function γxc(η).

The paper is organized as follows. In Sec. II and Sec. III,
we propose very simple exchange and correlation functionals
using the reduced Yukawa potential as the only ingredient,
and show results for atoms and jellium clusters. In Sec. IV,
we combine the exchange and correlation functionals of the
previous sections, to show results for the full XC functional.
Finally, conclusions are drawn in Sec. V.

II. EXCHANGE ENERGY FUNCTIONALS

A. Development of the exchange functionals

First, let us consider the most simple, yα (r)-dependent
exchange functional, which we name YUKx0, whose en-
hancement factor Fx (defined as εx = εLDA

x Fx) is

F YUKx0
x = yα. (5)

For any value of the α � 0 parameter, YUKx0 recovers the
LDA for the HEG, and behaves correctly under the uniform
density scaling of the density (EYUKx0

x [nλ] = λEYUKx0
x [n],

where nλ(r) = λ3n(λr), with λ � 0). Performing similar cal-
culations to those in Ref. [30], see also Appendix B, we obtain
the following HEG linear response function:

γ YUKx0
x (η) = α4 + 14α2

kF
α2η2 − 8α4

kF
η4(

4α2
kF

η2 + α2
)2 , (6)

where αkF = (3π2)(1/3). When η → 0 it behaves as

γ YUKx0
x → 1 + 6

α2
kF

α2
η2 − 72

α4
kF

α4
η4 + O(η6), (7)

and we recall that the exact response function [92]
gives γ exact

x → 1 + (5/9)η2 + (73/225)η4 + O(η6); see also
Appendix B. Then, we require that YUKx0 recover the
second-order term at small wave vectors, and we obtain

α = 3
5

√
30 αkF . (8)

This condition is also fulfilled by any semilocal exchange
functional that recovers the second-order gradient expan-
sion (GE2) of the exchange energy (i.e., εGE2

x = εLDA
x (1 +

μxs2), where μx = 10/81 [93] and s = |∇n|/(2kF n) being
the reduced gradient of the density). For example, the pop-
ular PBEsol GGA [106] behaves as GE2, yielding γ PBEsol

x =
γ GE2

x = 1 + (9/2)μxη
2, being accurate at small wave vectors,

but diverging at large wave vectors, where the exact response
function vanishes as [γ exact

x → 1/(2η2)]. (A complete analysis
of the HEG linear response of semilocal exchange functionals
is presented in Appendix B.) On the other hand, the YUKx0
is finite when η → ∞, but has the wrong sign, behaving as

γ YUKx0
x → −1

2
+ 9

8

α2

α2
kF

η2
− 15

32

α4

α4
kF

η4
+ O(η−6). (9)

In order to solve this problem, we next propose the YUKx1
exchange functional, with the following exchange enhance-
ment factor,

F YUKx1
x = (1 − β ) + βyα, (10)

where the parameters β and α are fixed from the conditions (i)
γ YUKx1

x → 1 + (5/9)η2 + · · · at small η, and (ii) γ YUKx1
x → 0

at large η. We obtain the following parameters:

α = 6/5
√

5αkF ,

β = 2/3. (11)

With this choice of parameters, the YUKx1 exchange re-
sponse function has the simple analytic expression (see
Appendix B)

γ YUKx1
x = 27

5 η2 + 3

(5 η2 + 9)2 , (12)

which behaves as

γ YUKx1
x → 1 + 5

9
η2 − 25

27
η4 + O(η6), when η → 0,

γ YUKx1
x → 27

5 η2
− 81

5 η4
+ O(η−6), when η → ∞. (13)
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Note that YUKx0 and YUKx1 do not depend on the gradient
of the density at all; thus they belong to the yLDA class of
XC functionals. In this work, we will not consider functionals
that depend also on the gradient, which will be investigated
elsewhere. Note that the yLDA functionals investigated here
do not include any empirical parameter.

Finally, we consider the YUKx2 exchange functional of the
form

F YUKx2
x = [1 − c(z)]ζ2 + c(z)F YUKx1

x , (14)

where

ζ2(r) = 1

4An1/3(r)

∫
dr′ n(r′)

|r − r′|e−α2c(z)n1/3(r)|r−r′ |, (15)

with A = 3αkF /(4π ),

c(z) = (1 − z3)1/6, (16)

and z = τW /τ being the well-known meta-GGA ingredient.
Here τW = |∇n|2/(8n) is the von Weizsäcker kinetic energy
density. Note that the function c(z) has been previously used
in Ref. [28]. The ingredient ζ2(r) is similar to yα (r), but in
the case of one- and two-electron systems, where c(z) = 0, it
simplifies to Eq. (2).

Finally, the parameter α2 has been fitted to the exchange
energy of noble atoms (see Appendix C), being

α2 = 0.3αkF . (17)

The YUKx2 exchange functional is exact for any one- and
two-electron systems, where

Ex[n] = −1

2

∫
dr n(r) u(r), for N = 1,

Ex[n] = −1

4

∫
dr n(r) u(r), for N = 2, (18)

with u(r) being the Hartree potential and N the number of
electrons. Moreover, YUKx2 preserves the HEG linear re-
sponse of the YUKx1 functional (see Appendix C). Note,
however, that the YUKx2 functional is not a yGGA functional
as defined in Ref. [30], because it depends on the kinetic
energy density and thus on KS orbitals.

B. Results for exchange functionals

1. HEG linear response of the exchange energy

In Fig. 1, we show the HEG exchange-only linear-response
(LR) function γx(η) of several exchange energy functionals.
The LDA (with γ LDA

x = 1) is exact only at η = 0. On the other
hand, PBE and PBEsol exchange functionals [with γ GGA

x =
1 + (9/2)μxη

2 where μPBE
x = 0.21951 and μPBEsol

x = 10/81]
are accurate at small wave vectors η < 1 but they fail badly
for η > 1. We recall that the large-wave-vector regime is dom-
inant when the external perturbation of the HEG has a small
amplitude and a short-wavelength density wave. On the other
hand, the most accurate exchange functional is YUKx1 (and
YUKx2), which is exact in both small- and large-wave-vector
limits. However, we observe that the YUKx functionals, as
well as all semilocal exchange functionals, cannot capture the
abrupt behavior at η → 1, where dγ exact

x /dη → −∞.
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FIG. 1. The exchange-only LR function γx of the uniform elec-
tron gas, versus η = k/2kF . Note that YUKx2 is the same as YUKx1.

2. Atoms

At the nuclear cusp and the inner atomic core, the exact ex-
change enhancement factor F EXX

x = εEXX,conv
x /εLDA

x , defined
in the conventional gauge [31,107] of the exact exchange en-
ergy per particle εEXX,conv

x , has a significant de-enhancement
(i.e., F EXX

x < 1) that cannot be described by popular semilocal
functionals, where F semilocal

x � 1. In order to mimic the exact
behavior, the Laplacian of the density ∇2n must be involved
in the functional expression [108], but it gives unphysical
oscillations in the exchange potential (vx = δEx/δn). Below
we show that our simple but nonlocal exchange functionals
can describe considerably better this atomic region. Next,
we report in Fig. 2 the exchange enhancement factors for He,
Ne, and Ar atoms see Appendix A for details. In the case of
the He atom, the YUKx2 functional is exact by construction.
YUKx0 and YUKx1 are unexpectedly accurate at the nucleus,
showing a significant de-enhancement and being close to the
exact value, as reported in Table I. On the other hand, the
YUKx0 and YUKx1 functionals give relative errors of the He
exchange energy of −6.9% and −10.4%, respectively, being
better than LDA (−13.6%) but definitely worse than TPSS
(0.6%); see Table I.

In the cases of Ne and Ar atoms, shown in the other
panels of Fig. 2, all YUKx functionals have similar shapes
of the exchange enhancement factor, modeling quite well the
exact behavior at the nucleus and the inner atomic core, while
uMGGA and TPSS are enhanced over the LDA everywhere
in space. At the nuclear cusp, all YUKx are quite accurate, in
contrast to LDA, TPSS, uMGGA, and SCAN; see also Table I.
Regarding the total exchange energy, similar trends to those
for helium are found.

To test in more detail the accuracy of these exchange func-
tionals for atoms, we report in Fig. 3 the relative errors of
exchange energy Ex (in %) of neutral, nonrelativistic noble,
alkali, and alkali-earth atoms, versus Z−1/3, where Z is the
nuclear charge (10 � Z � 292). The limit Z → ∞ represents
the semiclassical atom that is described by the semiclassical
asymptotic expansion [109–111]

Ex[n] ≈ ELDA
x + d1Z + d2Z2/3 + · · · , (19)
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FIG. 2. Exchange enhancement factor Fx versus the radial dis-
tance from the nucleus r (in a.u.), for He atom (upper panel), Ne
atom (middle panel), and Ar atom (lower panel). Note that YUKx2
and uMGGA are exact for He atom.

where d1 = −0.2240 and d2 = 0.2467 are atomic inner core
and atomic quantum oscillation dependent terms, respectively.
The most accurate functional is uMGGA [28], which has been
constructed to recover Eq. (19). Nevertheless, the YUKx func-
tionals become accurate for large atoms, with errors below
1%, and competing with the TPSS meta-GGA. This is an im-
portant achievement of the YUKx0 and YUKx1 functionals,

TABLE I. Exchange enhancement factor Fx (0) at the nuclear
cusp, relative error in the total exchange energy (�Ex), and the
exchange potential vx (0) at the nuclear cusp. N.C. means that the
exchange potential can only be defined using an optimized effective
potential procedure, not considered in this work.

Fx (0) �Ex vx (0)

He
exact 0.75 0 −1.65
YUKx0 0.65 −6.93% −1.52
YUKx1 0.73 −10.39% −1.49
YUKx2 0.75 0 −1.65
umGGA 0.75 0 −1.65
LDA 1 −13.65% −1.48
PBE 1 −0.84% −∞
TPSS 1.13 0.63%
SCAN 1.17 0.67%

Ne
exact 0.79 0 −7.94
YUKx0 0.67 −1.75% −8.47
YUKx1 0.75 −3.15% −8.41
YUKx2 0.68 −2.41% N.C.
umGGA 1.11 0.47% −∞
LDA 1 −8.67% −8.27
PBE 1.03 −0.12% −∞
TPSS 1.13 0.79% −∞
SCAN 1.17 0.60% −∞

Ar
exact 0.79 0 −14.33
YUKx0 0.68 −2.01% −15.45
YUKx1 0.75 −2.57% −15.39
YUKx2 0.69 −0.88% N.C.
umGGA 1.12 0.09% −∞
LDA 1 −7.58% −15.21
PBE 1.03 −0.53% −∞
TPSS 1.13 0.19% −∞
SCAN 1.17 0.32% −∞

because they have been constructed solely from the HEG
linear response. On the other hand, YUKx2, which performs
better, has a parameter fitted to the noble atoms.
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FIG. 3. Relative errors of exchange energy Ex (in %) for noble
atoms for 10 � Z � 290, alkali atoms for 11 � Z � 291, and alkali-
earth atoms for 12 � Z � 292.
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FIG. 4. The exchange potential vx = δEx/δn (in a.u.) versus the
radial distance (in a.u.) from the nucleus r, for He, Ne, and Ar atoms.

3. Exchange potential for atoms

The good performance of the YUKx0 and YUKx1 ex-
change enhancement factors at the nuclear cusp needs to be
confirmed considering the first functional derivative, i.e., the
exchange potential.

The exchange potential for the yGGA functional has the
following expression [30]:

vx = v(0)
x + v(1)

x + v(2)
x ,

v(0)
x = ∂ex

∂n
− ∇ ∂ex

∂∇n
+ ∇2 ∂ex

∂∇2n
,
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FIG. 5. The total exchange potential vx (in a.u.), and its compo-
nents (v(0)

x , v(1)
x , and v(2)

x ) of Eq. (20), in the case of YUKx0 functional
and Ne atom, as a function of the radial distance (in a.u.).

v(1)
x =

∫
dr′ ∂ex

∂uα

(r′)
e−αn1/3(r′ )|r−r′|

|r − r′| ,

v(2)
x = − α

3n2/3(r)

∂ex

∂uα

(r)
∫

dr′ n(r′)e−αn1/3(r)|r−r′ |, (20)

where uα = ∫
dr′ n(r′ )

|r−r′ |e
−αn1/3(r)|r−r′ | is the Yukawa screened

potential (i.e., uα (r) = yα (r)[4πn1/3(r)]/α2).
Note that the YUKx2 functional depends also on the

kinetic energy density and thus on KS orbitals, and thus
Eqs. (20) are not valid in this case. Investigations of the
YUKx2 exchange potential, which require special techniques
[15], will be presented elsewhere.

In Fig. 4, we show the exchange potential vx = δEx/δn
versus the radial distance from the nucleus r, for several noble
atoms. We observe that for all the considered atoms (He,
Ne, and Ar), YUKx0 and YUKx1 exchange potentials are
finite and accurate at the nucleus, being close to the LDA, in
contrast to semilocal functionals which diverge at the nucleus
[vsemilocal

x (r → 0) → −∞]. Despite the YUKx potentials are
close to LDA, the YUKx have better enhancement factors Fx;
see Table I. Values of the exchange potential at the nuclear
cusp are reported in the last column of Table I: relative errors
for YUKx functional are within 8% for all cases. Moreover,
as shown in Fig. 5, all the components of vx (i.e., v(0)

x , v(1)
x ,

and v(2)
x ) are finite at the nucleus, and the main contribution is

given by v(1)
x .

4. Jellium clusters

Next, we consider neutral jellium clusters with Z electrons
and radius R = rsZ1/3; see Appendix A for details. Such jel-
lium spheres are simple models for simple metal clusters,
which are of interest in various applications [112,113]. In
Table II, we report the error statistics (MARE and MAE) of
exchange energy for jellium clusters with Z = 8, 18, 20, 34,
40, 58, and 92, and bulk parameter rs = 2 and 4, respectively.
We observe that YUKx functionals improve considerably over
LDA, being often comparable with TPSS and uMGGA. In
particular YUKx0 is the most accurate between the yLDA
functionals, while YUKx1 is the worst one, being closer to
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TABLE II. Mean absolute relative errors (MARE in %) and mean
absolute errors (MAE in a.u., shown in parentheses) of the exchange
energy Ex for jellium clusters with Z = 8, 18, 20, 34, 40, 58, and
92, and bulk parameter rs = 2 and rs = 4, from various exchange
functionals.

rs = 2 rs = 4

LDA 4.03 (0.256) 4.13 (0.142)
PBE 0.68 (0.038) 0.59 (0.016)
TPSS 0.91 (0.058) 0.73 (0.024)
SCAN 0.18 (0.015) 0.51 (0.018)
uMGGA 0.86 (0.060) 0.76 (0.030)
YUKx0 0.87 (0.036) 1.40 (0.030)
YUKx1 1.83 (0.088) 2.56 (0.075)
YUKx2 1.09 (0.080) 1.31 (0.047)

LDA. In any case, such accuracy can be considered remark-
able, taking into account that these YUKx functionals do not
have any parameter fitted on jellium clusters or any gradient
dependence.

We also tested jellium clusters with Z = 58 and 92 e−, and
2 � rs � 6 in a perturbed external potential of the following
form:

vext (r) = v
jell
ext (r)

[
1 + 1

m
sin(κr)

]
, (21)

where v
jell
ext (r) is the external potential of the unperturbed

jellium cluster; see Eq. (A1) of Appendix A. Similarly to the
calculations of Ref. [30], we compute the exchange response
of the functional Ex, as

δκEx = (
Ex[vext] − Ex

[
v

jell
ext

])/
Ex

[
v

jell
ext

] × 100, (22)

and we measure its κ-averaged exchange response error as

�Ex =
∫ κmax

κmin
dκ

∣∣δκEx − δκE exact
x

∣∣/(κmax − κmin), (23)

where κmin = 0, κmax = 2.1, and m = 50. The results are
shown in Table III, and we see that the LDA and YUKx
functionals perform close to each other, and noticeably better
than the PBE, TPSS, SCAN, and uMGGA functionals. In fact
at high wave vectors, the LDA and YUKx HEG exchange
response functions (γx) remain finite, whereas for all the other
functionals they diverge. Finally, we show in Fig. 6 the rela-
tive exchange response δκEx [see Eq. (22)] versus κ of several
exchange functionals, for the considered jellium clusters with
rs = 3. The exact exchange energy (EXX) oscillates with κ ,
and the frequency of these oscillations slightly increases from
the Z = 58 cluster to the one with Z = 92. All the functional
approximations follow the EXX oscillations, having almost
the same accuracy for κ � 0.75. However, for 0.75 � κ �
2.1, YUKx0 performs better than SCAN and uMGGA, being
significantly closer to EXX, especially for the cluster with
Z = 92.

TABLE III. The κ-averaged exchange response errors [�Ex of
Eq. (23)] of various KE functionals, for the jellium clusters with 58
and 92 e−, in the case of several bulk parameters (2 � rs � 6). The
last column shows the overall accuracy (averaged over rs). The best
result of each column is highlighted in bold.

rs = 2 rs = 3 rs = 4 rs = 5 rs = 6 overall

Jellium cluster with 58 e−

LDA 0.60 0.58 0.59 0.49 0.34 0.52
PBE 0.50 0.89 1.20 1.27 1.27 1.03
TPSS 0.43 0.78 1.07 1.13 1.13 0.91
SCAN 0.45 0.84 1.08 1.02 1.01 0.89
uMGGA 0.50 0.89 1.20 1.27 1.25 1.02
YUKx0 0.53 0.61 0.64 0.55 0.41 0.55
YUKx1 0.62 0.63 0.63 0.53 0.39 0.56
YUKx2 0.40 0.58 0.69 0.67 0.59 0.59

Jellium cluster with 92 e−

LDA 0.46 0.60 0.73 0.73 0.63 0.63
PBE 0.78 1.49 2.08 2.23 2.14 1.74
TPSS 0.69 1.33 1.89 2.00 1.97 1.58
SCAN 1.01 1.53 1.90 1.80 1.84 1.62
uMGGA 0.80 1.46 1.99 2.11 2.02 1.68
YUKx0 0.43 0.69 0.83 0.78 0.59 0.67
YUKx1 0.48 0.63 0.74 0.70 0.49 0.61
YUKx2 0.56 0.95 1.31 1.30 1.26 1.08
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FIG. 6. Relative exchange response δκEx [see Eq. (22)] versus κ

(in a.u.) of several exchange functionals, for the jellium clusters with
Z = 58 (upper panel) and Z = 92 (lower panel), and rs = 3.
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III. CORRELATION FUNCTIONAL

We now move to analyze the HEG linear response of the
correlation functional. The HEG linear response correlation
function γc has the following properties:

(i) At small wave vectors, it behaves as [98]

γc(η) → γ LDA
c − 3

2β(rs)π2η2, when η → 0, (24)

where a simple and accurate parametrization of the density-
dependent GE2 correlation coefficient [94] β(rs) has been
proposed in Ref. [114],

β(rs) ≈ 0.066725
1 + 0.1rs

1 + 0.1778rs
. (25)

(ii) At large wave vectors, it behaves as [72,77]

γc(η) → −2π

kF

d
(
rsε

LDA
c

)
drs

, when η → ∞. (26)

For other wavevectors γc is very complicated, and it is
better analyzed together with the exchange functional which
is the topic of the next section.

Because the computation of the linear response correlation
energy is very complicated, we construct the functional re-
quiring the following features:

(a) at η = 0 to recover γ LDA
c , and at small wave vectors to

obtain a negative slope (dγc/dη2 � 0);
(b) at large wave vectors to model (as much as possible)

the exact behavior of Eq. (26).
Moreover, in order to further simplify the calculations for

the HEG linear response function of the correlation energy,
we use the simple but accurate parametrization of the LDA
correlation energy per particle proposed in Ref. [115],

εLDA
c (rs, ζ ) = ε0

c (rs) + [
ε1

c (rs) − ε0
c (rs)

]
f (ζ ),

εi
c = −ai ln

(
1 + bi

rs
+ bi

r2
s

)
, with i = 0, 1,

f (ζ ) = [(1 + ζ )4/3 + (1 − ζ )4/3 − 2]/[2(21/3 − 1)],

(27)

where ζ = (n↑ − n↓)/n is the relative spin polarization,
and ε0

c (rs) and ε1
c (rs) are the paramagnetic and the ferro-

magnetic correlation energies per particle, respectively, and
the parameters are a0 = (ln 2 − 1)/(2π2), b0 = 20.4562557,
a1 = (ln 2 − 1)/(4π2), and b1 = 27.4203609.

We find that the following correlation energy per particle
satisfies the conditions (a) and (b):

εYUKc
c = εLDA

c

1 + σ

yα + σ
, (28)

with σ=5 and α=2αkF . (For some details, see Appendix D.)
We remark that the YUKc correlation functional is not in-
tended to be accurate for any system, with the exception of
the HEG linear response regime. Nevertheless, the YUKc
can be used as a starting point, for the construction of ac-
curate nonlocal correlation functionals. In Fig. 7, we report
γ YUKc

c (η), showing how it fulfills the conditions (a) and
(b). Thus, YUKc recovers LDA at η = 0, and gives in-
deed negative slope dγ YUKc

c (η)/dη2 � 0 when η � 0.5, such
that for any bulk parameter rs, it behaves at small wave

0
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 0.15

 0.2

 0.25

0  0.5 1  1.5 2  2.5 3  3.5 4

γ c
(η

) 

η

rs=2

rs=5

YUKcor
PBE

PBEsol
Eq. (26)

FIG. 7. The correlation-only HEG linear response function
γc(η), versus the dimensionless momentum η = k/2kF , for rs = 2
(thick lines) and 5 (narrow lines), respectively. We also show the
exact asymptote for large wave vectors [see Eq. (26)].
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FIG. 8. Upper panel: Correlation energy per particle εc (in a.u.)
versus the scaled radial distance r/R, with R being the radius of the
jellium cluster with 92 e−, and rs = 2. The total correlation ener-
gies are (in a.u.) ELDA

c = −3.9005, EYUKc
c = −3.8843, and EPBE

c =
−3.5195. Lower panel: Correlation energy per particle εc versus
the radial distance r (in a.u.) for the Ne atom. The total correla-
tion energies are (in a.u.) ELDA

c = −0.7428, EYUKc
c = −0.7188, and

EPBE
c = −0.3510.
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FIG. 9. The correlation potential vc = δEc/δn (in a.u.) versus the
radial distance from the nucleus r (in a.u.), for Ne atom. The single,
double, and partially triple excitations [CCSD(T)] reference curve is
taken from Ref. [45].

vectors as γ YUKc
c = γ LDA

c − 3
2βYUKc(rs)π2η2 + O(η4), where

βYUKc(2) ≈ 0.005 and βYUKc(5) ≈ 0.007, i.e. about one order
of magnitude smaller than the exact GE2 parameter β(rs) of
Eq. (25). On the other hand, at large wave vectors, γ YUKc

c (η)
mimics the exact behavior of Eq. (26) which is a very difficult
exact condition for correlation functionals. In fact, to our
best knowledge, only the jellium XC kernels [72,75,77,80,86]
used in the linear-response time-dependent DFT approach, in
the context of the adiabatic connection fluctuation-dissipation
theorem [68,69], can fulfill Eq. (26). As shown also in the
figure, the semilocal correlation functionals (e.g., PBE and
PBEsol) fail badly at large wave vectors. In Fig. 8, we show
the LDA, PBE, and YUKc correlation energy per particle εc

for the jellium cluster with 92 e− and rs = 2, and the Ne atom,
respectively. In both cases, the YUKc is close to and only
slightly better than LDA. This is a consequence of the βYUKc

value. Finally, in Fig. 9 we show the correlation potential
vc = δEc/δn for the Ne atom. While PBE, as any GGA and
meta-GGA, diverges at the nucleus, the YUKc functional is
finite but close to the LDA value. Overall, the vYUKc

c improves
over the vLDA

c , but cannot describe the quantum oscillations.

IV. EXCHANGE-CORRELATION FUNCTIONALS
FOR JELLIUM LINEAR RESPONSE

In this section we combine the YUKx exchange functionals
with the YUKc correlation functional, showing the results
for the HEG linear-response exchange-correlation function
γxc. Thus, in Fig. 10, we report γxc of the uniform electron
gases with rs = 2 and 5, respectively, for several functionals.
PBE, which is based on a heavy error cancellation between
its exchange and correlation parts, recovers (by construction)
the accurate LDA linear response, being exact only at η = 0.
On the other hand, PBEsol, which has been fitted to jellium
surface XC energies, is moderately close to the CP and RA
static kernels for η � 3, but at larger wave vectors is fail-
ing badly. Nevertheless, the best performance is provided by
YUKx1+YUKc, which is very close to RA until η � 1. Note
that in this region, γ RA

xc � γ LDA
xc and the same feature is also
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FIG. 10. The exchange-correlation linear response function γxc

of the uniform electron gas,versus the dimensionless momentum
η = k/2kF , for rs = 2 and 5, respectively. We also show the results
from the static (ω = 0) CP kernel of Ref. [72], and the static (ω = 0)
state-of-the-art RA kernel of Ref. [77].

shown by other XC kernels [75,116], while the DMC data
are quite noisy [98], and γ CP

xc � γ LDA
xc everywhere, recovering

the compressibility sum rule at η = 0. For large wave vectors
η � 4, YUKx1+YUKc is close to the exact behavior, which
is incorporated in both CP and RA kernels.

Thus the YUKx1+YUKc functional provides also a phys-
ical pair distribution function at small interparticle distance,
where semilocal functionals may fail badly [81,105]. On
the other hand the YUKx1+YUKc functional, as well as
jellium kernels in the linear response TDDFT, cannot de-
scribe excitonic effects of bulk semiconductors and insulators
[73,117–119], yet its good behavior for η → ∞ may be still
important for the electron energy loss spectra (EELS) at large
momentum transfer [120].

We also recall that the jellium kernels in the linear
response TDDFT approach perform accurately for the equilib-
rium lattice constants, bulk moduli, and correlation energies
per electron of bulk solids [85]. However, these methods
may not be suitable for double, Rydberg, and long-range
charge transfer excitations [121], where additional corrections
are required [122,123]. Nevertheless, the nonlocality of the
YUKx1+YUKc functional can be important for the long-
range charge-transfer excited states in TDDFT calculations
[124].
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V. SUMMARY AND CONCLUSIONS

We have investigated the reduced, dimensionless Yukawa
potential yα [see Eq. (1)] as an ingredient for the develop-
ment of exchange and correlation functionals. First, we have
constructed the YUKx0 and YUKx1 exchange functionals,
having very simple exchange enhancement factors dependent
only on yα [i.e., Fx = Fx(yα )]. Both YUKx0 and YUKx1 give
HEG linear response exchange functions γx(η) that are correct
at small wave vectors [recovering the second-order expansion
γx(η) → 1 + (5/9)η2], but also they are finite at large wave
vectors, a feature that usually cannot be reached by semilocal
exchange functionals. Moreover, the YUKx1 linear response
exchange function γx(η) becomes even exact at large wave
vectors.

We have also proposed the YUKx2 exchange functional,
that preserves the YUKx1 linear response of the homogeneous
electron gas, and becomes exact for any one- and two-electron
systems. In this case, the YUKx2 exchange enhancement fac-
tor is dependent on both yα and z [i.e., Fx = Fx(yα, z)], where
z is the well-known meta-GGA ingredient that can distinguish
iso-orbital regions.

We tested the YUKx functionals for atoms and jellium
clusters. Noting that these simple functionals have been
constructed solely from the HEG linear response, their per-
formances are very encouraging. In particular we have proved
that they are close to exact at the nuclear cusp and in the inner
atomic core, where both Fx and vx are realistic. Such a feature
can become important, showing that YUKx functionals are
accurate for the short-range regime, and for example, they can
be used in the construction of short-range screened functionals
[103].

Next, we have developed the YUKc correlation functional,
which is dependent only on the spin densities and yα [i.e.,
εc = εc(n↑, n↓, yα )]. The YUKc linear response function γc is
moderately accurate for small and large wave vectors, which is
an important achievement, met only by high-level, fifth-rung
functionals. However, the performance of YUKc for atoms
and jellium clusters is better than, but close to, the LDA.
Thus, future work should be done to improve the YUKc for
systems beyond the HEG linear response at small external
perturbations.

Finally, the YUKx1+YUKc exchange-correlation func-
tional gives a realistic HEG linear response function γxc,
competing with the CP and RA kernels, as shown in Fig. 10.
These results fully assess the yα as a powerful ingredient for
the DFT development of the exchange-correlation functionals.

Moreover, the YUKx1+YUKc functional can be of interest
for various applications in solid-state electronic calculations,
and its nonlocality should be further investigated. However,
the YUKx1+YUKc functional has been constructed only
from a few exact conditions related mainly to the HEG linear
response, and its accuracy for the total exchange-correlation
energy is not as good as that of popular semilocal functionals.
In order to improve it, one should consider incorporating other
exact conditions relevant for the total exchange-correlation
energy, such as the fourth-order gradient expansion of the
exchange energy [92], the second-order gradient expansion of
the correlation energy [94], and the semiclassical expansions
of the neutral, nonrelativistic atoms for exchange [109–111]
and correlation [125,126].

APPENDIX A: COMPUTATIONAL DETAILS

All calculations are done non-self-consistently, using ac-
curate numerical LDA orbitals and densities, in a modified
version of the Engel code [2,127,128]. The KS-DFT LDA cal-
culations have been performed with a logarithmic mesh with
800 points along the radial direction, in order to accurately
capture the atomic nuclear cusp. The convergence criteria are
as follows: (1) the difference between total energies of two
consecutive iterations must be smaller than 10−8 Ry, and (2)
the maximum absolute difference between the total potentials
of two consecutive iterations must be smaller than 10−5.

Neutral jellium clusters with Z electrons and radius
R = rsZ1/3 have the external potential [111]

v
jell
ext (r) =

{
Z
(− 3

2R + r2

2R3

)
, r < R,

−Z 1
r , r � R,

(A1)

given by the positive background

n+(r) =
{

3/4πr3
s , r < R,

0, r � R.
(A2)

APPENDIX B: DERIVATION OF THE LINEAR RESPONSE

We consider a small perturbation of the HEG, such that
the perturbed density is n(r) = n0 + nke−ikr, with n0 being the
bulk density and nk 
 n0. Following the method described in
Refs. [30,98,129], we replace the perturbed functional in the
functional expression, taking the Taylor series in nk/n0. The
linear response function γx of the considered functional will
be the second-order coefficient of this expansion multiplied
by −2k2

F /π .
First, let us consider any Laplacian-level meta-GGA ex-

change functional with the enhancement factor Fx(s, q), where
s and q are the reduced gradient and Laplacian of the density.
Note that our analysis can be applied to any meta-GGA func-
tional, because the kinetic energy density τ in the small- and
large-wave-vector limits can be expressed in terms of n, s, and
q [98]. We assume that Fx(s, q) recovers the LDA behavior at
s = q = 0, such that at small reduced gradients we have the
general form

Fx(s, q) = 1 + a1s2 + a2q + a3s4 + a4q2 + a5s2q + a6q3

+ a7s6 + a8qs4 + a9q2s2 + · · · . (B1)

Then, the linear response of this exchange functional is

γ semilocal
x = 1 + (

9
2 a1 + 3

2 a2
)
η2 + 9

2 a4 η4. (B2)

Note that the terms s2 and q are interchangeable under inte-
gration by parts [108], and usually the q term is eliminated
in favor of s2 term. Then, considering a2 = 0, a1 = 10/81,
and a4 = 146/2025 fixed from the gradient expansion of the
exchange energy [92], we obtain

γ semilocal
x = 1 + 5

9η2 + 73
225η4, (B3)

which is the exact behavior at small wave vectors. On the
other hand, γ semilocal

x is finite at large wave vectors, only if
a2 = −3a1 and a4 = 0.
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The linear response of the YUKx0 functional is computed
using Eq. (G4) of Ref. [30],

yα (r = 0) = 1 − k2

n0
[
(3π2)2/3α′2n2/3

0 + k2
]nk

+ 1

3n2
0

k2
[
5(3π2)2/3α′2n2/3

0 + 3k2
]

[
(3π2)2/3n2/3

0 α′2 + k2
]2 n2

k + O
(
n3

k

)
,

(B4)

where α′ = α/αkF . Multiplying Eq. (B4) with the LDA ex-
change energy density [computed at the density n(r = 0) =
n0 + nk], we find, after some algebra, the expression of
Eq. (6). Noting that the YUKx1 exchange functional is just
a linear combination between LDA exchange and YUKx0, its
linear response function can be easily computed, obtaining

γ YUKx1
x (η) = α4 + (8 + 6β )α2α2

kF
η2 − (24β − 16)α4

kF
η4(

4α2
kF

η2 + α2
)2 .

(B5)

When β = 1, Eq. (B5) recovers γ YUKx0
x (η) of Eq. (6). When

β = 0, Eq. (B5) recovers γ LDA
x (η) = 1. Substituting α and β

of Eq. (11) into Eq. (B5), we obtain Eq. (12).

APPENDIX C: OPTIMIZATION
OF THE YUKx2 FUNCTIONAL

The parameter α2 of Eq. (17) has been fitted to the ex-
change energies of noble atoms (from Ne to the nonrelativistic
atom with 290 e−), by minimizing the mean absolute relative
error.

For a slowly varying density, the function c(z) behaves as

c(z) = (1 − z3)1/6 → 1 − z3/6 + O(z6), (C1)

such that the YUKx2 exchange enhancement factor is

F YUKx2
x ≈ z3

6

(
ζ2 − F YUKx1

x

) + F YUKx1
x . (C2)

Noting that z = τW /τ ≈ (5s2/3), then the first term on the
right-hand side of Eq. (C2) is a higher response term (see also
Appendix B). Then, YUKx2 has the same linear response as
the YUKx1 functional.

APPENDIX D: OPTIMIZATION
OF THE YUKc FUNCTIONAL

The HEG linear response of the YUKc correlation func-
tional has been computed using the method described in
Appendix B. However, because of the density dependence of
εLDA

c that enters into the YUKc expression, the final formula
of γc is quite complicated. Then we find the parameters α

and σ by checking that the slope dγc/dη2 is negative at
η = 0, and minimizing the errors between the computed γc

and Eq. (26) at large wave vectors, in the physically motivated
range 2 � rs � 6 for bulk metals.

Now, let us consider the high-density (HD) and low-density
(LD) limits. For the HD case, we consider εLDA

c ≈ c0(ζ ) ln(rs)
[91]; then we obtain

γ HD
c → c0 rs 2

2
3 π

2
3

3
√

3

3

+ 8
π2[2 ln (rs) + 1]22/3rs c0

(1 + σ )α2
η2

+ O(η4), when η → 0,

γ HD
c → −c0 rs 22/3π2/3 3

√
3[−σ 2 + 6 ln (rs) − 4 σ − 3]

3(σ 2 + 2 σ + 1)
,

when η → ∞. (D1)

On the other hand, in the LD case, the first-order term of
the LDA correlation scales as exchange, such that εLDA

c ≈
−d0(ζ )/rs [91]; then γ LD

c has a simpler expression, being
independent of rs:

γ LD
c = 4

9 [ 3
√

3π2/322/3d0(α4 + 2 32/3π4/3α2η2

+ 336 3
√

3π8/3η4 + 48 3
√

3π8/3η4σ 2

+ 8 σ 232/3π4/3α2η2

+α4σ 2 + 2 α4σ + 10 σ 32/3π4/3α2η2

+ 168 3
√

3π8/3η4σ )]/[(σ 2 + 2 σ + 1)

× (4 32/3π4/3η2 + α2)2], (D2)

which behaves as

γ LD
c → 4 d0 22/3π2/3 3

√
3

9
− 8π222/3d0

(1 + σ )α2
η2 + · · · when η → 0,

γ LD
c → 2

9

d0 22/3π2/3 3
√

3(2 σ 2 + 7 σ + 14)

σ 2 + 2 σ + 1
, when η → ∞.

(D3)

We observe that both γ HD
c and γ LD

c have negative slopes
(dγc/dη2 � 0), and both are positive at large wave vectors.
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[47] S. Jana, S. Śmiga, L. A. Constantin, and P. Samal, J. Chem.
Theory Comput. 16, 7413 (2020).

[48] M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. Lett. 84, 5070
(2000).

[49] M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. A 62, 012502
(2000).

[50] J. P. Perdew, S. Kurth, and M. Seidl, Int. J. Mod. Phys. B 15,
1672 (2001).

[51] Z.-F. Liu and K. Burke, Phys. Rev. A 79, 064503 (2009).
[52] Z.-F. Liu and K. Burke, J. Chem. Phys. 131, 124124 (2009).
[53] R. Magyar, W. Terilla, and K. Burke, J. Chem. Phys. 119, 696

(2003).
[54] J. Sun, J. Chem. Theory Comput. 5, 708 (2009).
[55] M. Seidl and P. Gori-Giorgi, Phys. Rev. A 81, 012508 (2010).
[56] P. Gori-Giorgi, G. Vignale, and M. Seidl, J. Chem. Theory

Comput. 5, 743 (2009).
[57] A. Mirtschink, M. Seidl, and P. Gori-Giorgi, J. Chem. Theory

Comput. 8, 3097 (2012).
[58] P. Gori-Giorgi and M. Seidl, Phys. Chem. Chem. Phys. 12,

14405 (2010).
[59] S. Vuckovic, T. J. Irons, A. Savin, A. M. Teale, and P. Gori-

Giorgi, J. Chem. Theory Comput. 12, 2598 (2016).
[60] E. Fabiano, P. Gori-Giorgi, M. Seidl, and F. Della Sala,

J. Chem. Theory Comput. 12, 4885 (2016).
[61] S. Giarrusso, P. Gori-Giorgi, F. Della Sala, and E. Fabiano, J.

Chem. Phys. 148, 134106 (2018).
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