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Logarithmic divergent specific heat from high-temperature series expansions: Application to the
two-dimensional XXZ Heisenberg model
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We present an interpolation method for the specific heat cv (T ), when there is a phase transition with a
logarithmic singularity in cv at a critical temperature T = Tc. The method uses the fact that cv is constrained both
by its high temperature series expansion and just above Tc by the type of singularity. We test our method on the
ferro- and antiferromagnetic Ising models on the two-dimensional square, triangular, honeycomb, and kagome
lattices, where we find an excellent agreement with the exact solutions. We then explore the XXZ Heisenberg
model, for which no exact results are available.
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I. INTRODUCTION

The study of finite-temperature phase transitions is of great
importance in condensed matter physics [1] and in particular
in the field of quantum magnetism. When lowering the tem-
perature from a paramagnetic state, a transition may occur at a
critical point where an order parameter arises due to the break-
ing of a given symmetry of the Hamiltonian. The interest in
studying these transitions is twofold: On the theoretical side,
the classification of the different phase transitions according
to their universality classes and the understanding of the pa-
rameters that play a key role in the change from one phase
to the next. On the experimental side, reliable methods are
needed to contrast measurements with theoretical predictions.
And even though the Mermin-Wagner theorem states that the
breaking of continuous symmetries at finite temperature can
only occur in three-dimensional systems [2], two-dimensional
systems can still have finite-temperature phase transitions
through the breaking of a discrete symmetry, as in the case
of the Ising model.

The Ising model was first proposed in 1920 by W. Lenz
in an attempt to explain ferromagnetism [3], and his student
E. Ising found that the exact solution in one dimension has
no phase transition whatsoever [4]. Many years later it was
proven that a paramagnetic to ferromagnetic phase transition
does indeed occur at finite temperature in the two-dimensional
model on the square lattice [5,6], finally exactly solved by L.
Onsager in 1944 [7]. Using different transformations, this re-
sult was extended to several two-dimensional lattices [8–15],
such as the triangular lattice [8], the kagome lattice [10], and
the honeycomb lattice [11]. A detailed summary of the critical
temperatures on Archimedean and Laves lattices is given in
Ref. [16].

But the Ising model is not only important in the under-
standing of ferromagnetism; in fact, the critical exponents of
the thermodynamic functions near the critical point form the

Ising universality class, and there are several systems (not
only ferromagnetic) that behave similarly in the presence of
a phase transition [17,18]. In the field of quantum magnetism,
the Mermin-Wagner theorem precludes the existence of finite-
temperature phase transitions in two-dimensional systems
when only continuous symmetries are broken in the ground
state, like in most Heisenberg magnets, but not when the
ground state has a discrete degeneracy [19]. An important ex-
ample of this is the case of the Heisenberg model with nearest-
and next-nearest-neighbor interactions in the square lattice
[20–23]. Chandra et al. proposed that in this model a transition
could occur due to the emergence of an effective Ising order
parameter [20]. This transition was confirmed several years
later for the classical model on the square lattice by Monte
Carlo simulations [21], showing that the critical exponents
were those of the Ising model. And although there was some
doubt about the extension to the S = 1/2 quantum case, it was
realized shortly after that the Ising transition occurs for any
value of S [22,23].

The theoretical calculation of critical properties is then of
central importance to understand the relevant order param-
eters involved in phase transitions. When no exact result is
available, numerical methods have to be implemented. Classi-
cal and quantum Monte Carlo (QMC) methods work naturally
at finite temperatures and grant access to the calculation of the
critical exponents and temperatures through finite-size scaling
[21], but fail in the quantum case when there is frustration due
to the sign problem. For quantum systems, exact diagonal-
ization [24] and tensor methods [25] are used on frustrated
systems but present more difficulties when it comes to large
lattice sizes and/or finite temperatures.

Finally, high-temperature series expansion (HTSE) meth-
ods operate directly in the thermodynamic limit but cannot
reach very low temperatures, a limitation that becomes more
restrictive when there are singularities in the thermodynamic
functions due to the presence of a finite-temperature phase
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transition. When there is no finite-temperature phase transi-
tion, methods have been proposed to extrapolate the HTSE of
thermodynamic functions down to T = 0 [26–29], relying on
some knowledge about the ground state (such as the type of
order and ground-state energy). These methods have proven to
be useful for understanding experiments [30–35]. But, apart
from an exploratory extension of the entropy method pre-
sented in Ref. [36], no other method has been developed to
interpolate the thermodynamic functions between the high-
temperature limit and the critical behavior at T = Tc.

In this paper, we present an interpolation method for the
specific heat, cv , based on the HTSE and the existence of
a phase transition with a logarithmic singularity. We test it
on several two-dimensional ferro- and antiferromagnetic Ising
models and then apply it to Heisenberg models with Ising
anisotropy (XXZ models), all of which have a logarithmic
divergence in cv . The nonuniversal parameters characterizing
the transition are obtained in a self-consistent way by looking
for the greatest number of coinciding Padé approximants (PA)
of our proposed function. The reconstructed cv , in the temper-
ature range [Tc,∞], is in good quantitative agreement with the
exact solution. For the XXZ model, we are able to evaluate Tc

over a wide range of anisotropies, finding a good agreement
with the QMC calculations available in the literature.

The article is organized as follows. In Sec. II, we present
the Hamiltonian for the XXZ model and some results derived
from the exact solution in the Ising limit for the critical
parameters of cv . Section III is devoted to the interpolation
method. In Sec. IV, we present the results, first for the Ising
limit and then for the XXZ model. Finally, the conclusions
and perspectives are given in Sec. V.

II. XXZ MODEL

The S = 1/2 XXZ Hamiltonian can be written as

H = J
∑
〈i j〉

[
Sz

i Sz
j + � S⊥

i · S⊥
j

]
, (1)

where 〈i j〉 represents the nearest neighbors in a two-
dimensional lattice, Sz is the z-component of the spin, and
S⊥ = (Sx, Sy) represents the x and y components. In the fol-
lowing, we set J = 1 for the antiferromagnetic cases and
J = −1 for the ferromagnetic ones, and � goes from 0 (Ising)
to 1 (Heisenberg).

The ferromagnetic Ising model (and antiferromagnetic on
bipartite lattices), � = 0, is known to exhibit a singularity in
cv described above Tc as

cs
v (β ) = A ln

(
1 − β

βc

)
, (2)

where β = 1/T is the inverse temperature (βc = 1/Tc).
Throughout this article, we focus only on T > Tc (β < βc).

Onsager’s exact solution of the Ising model on the square
lattice has been extended to other lattices [13]. The ex-
act expressions of cv for the square, triangular, honeycomb,
and kagome lattices and the corresponding singularity pa-
rameters are given in Appendix. We give in Table I the
expressions of βc, A [see Eq. (2)] and the shift B at Tc

TABLE I. Singularity parameters βc, A, and B obtained from the
exact solution of the ferromagnetic Ising model [see Eqs. (2), (3) and
Appendix]; e stands for the Euler’s constant.

Lattice βc −A B/A

Square ln(3+2
√

2) β2
c

2π

π

4 + ln eβc

4
√

2

Triangular ln 3 3
√

3β2
c

4π

π

2
√

3
+ ln eβc

4

Honeycomb 2 ln(2+√
3)

√
3β2

c
8π

π
√

3
9 + ln eβc

4
√

3

Kagome ln(3+2
√

3)
√

3β2
c

4π

π (
√

3−1)
6 + ln eβc

4

defined by

B = lim
β→βc

(
cv (β ) − cs

v (β )
)
. (3)

When the parameter � is turned on, the Ising transition
survives and cv continues to have the same kind of divergence,
while the critical temperature Tc decreases. At the Heisenberg
point, � = 1, there is no finite-temperature phase transition.
Around the Heisenberg point (� � 1), the critical tempera-
ture behaves as 1/ ln |1 − �| [37–39]. This happens for both
classical and quantum spins. For � < 1, which is the case we
are focusing on, the phase transition is always of the Ising
universality class [39–41], whereas for � > 1 the transition is
of the Kosterlitz-Thouless type [37,39–44].

III. INTERPOLATION METHOD

In this section we present a method to interpolate between
the high-temperature limit and the critical temperature Tc.
From the HTSE of the free energy, f , we evaluate the series
expansions of the thermodynamic quantities around β = 0.
The f -HTSE reads

β f = − ln 2 −
n∑

i=1

ei

2ii!
β i + O(βn+1), (4)

where ei are polynomials of J and �. In the Ising limit,
where exact formulas are available, the coefficients can be
calculated up to arbitrary orders, but when the exact partition
function is unknown the HTSE is typically known up to orders
15 to 20 depending on lattice connectivity and the Hamil-
tonian. The convergence radius of the series is determined
by the singularity closest to the origin in the complex plane
of β. When the singularity appears on the real positive axis,
a finite-temperature phase transition occurs. In practice, the
series generally converge down to T ≈ |J| while PAs allow
this range to be extended to about 0.5|J|, in the absence of
phase transitions.

However, even if the raw HTSE or the PAs are unreliable
close to a phase transition, the ratio or the Dlog Padé meth-
ods allow to obtain accurate values of βc [45–51]. The ratio
method is a direct estimate of the convergence radius of the
series for a given thermodynamic function [45,49–51]. This
method is usually used with the susceptibility χ (β ), where
the critical exponent γ is greater than 1, but tends to fail
for quantities such as the specific heat cv or the entropy s
[45] where the critical exponents are small or negative. The
Dlog Padé method [49] evaluates the poles and residues of
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the PAs of a given function that possesses a simple pole in
theory. This function is often the derivative of ln χ (β ), and
this method gives very good results for βc and the critical
exponent γ , as there are generally several PAs with the same
pole and residue, up to a good precision [45,49,52,53]. But
both methods require some knowledge of the magnetic order
and the calculation of the corresponding susceptibility (either
ferromagnetic, antiferromagnetic, or other).

The previous methods work because the series already hold
information about the singularity at the lowest orders. Our
goal is to use this information to develop a method that works
for cv and provides reliable results over the whole range of
temperatures down to Tc. We assume that cv around Tc can
be well described by the singular behavior from Eq. (2), with
a good choice of the parameters A and βc. Then we propose
to subtract the singular behavior of cv , and define a function
R(β ),

R(β ) = cv (β ) − cs
v (β ), (5)

which behaves smoothly for T � Tc. Note that the constant B
verifies B = R(βc) [see Eq. (3)]. In practice we do not have
access to the exact cv and we only have the cv-HTSE to order
n. The HTSE of the singular part cs

v (β ) can be easily obtained
up to order n. So, finally, we can obtain the R-HTSE to order n,
which depends on parameters βc and A. This regular function
R is the one that we are going to use for the interpolation
method. If βc or A are wrongly chosen, the singularities in cs

v

and cv will not cancel out and R(β ) will not behave regularly
around βc.

Now we define the procedure to measure the quality of a
given R-HTSE, defined by a set of parameters {βc, A}. From
the R-HTSE to order n we get the standard n + 1 PAs, defined
with the convention that the denominator polynomial starts
with 1. Then, we discard all the PAs with real poles in the
range [0, βc] and we are left with NP physical PAs, denoted by
Pi with i = 1..NP . The next step is to count how many of them
coincide at βm = δβc with δ > 1, because a regular function at
βc should be regular beyond the critical point. Throughout the
article, we use δ = 1.05. Since the R-HTSE starts at order 1
in β (the cv-HTSE starts at order 2, and the cs

v-HTSE starts at
order 1), we discard the PA with a constant numerator (order
0). We then define a quality function Q as

Q2 = 2

(n − 1)n

NP∑
i=1

i−1∑
j=1

Mε

(Pi(βm) − P j (βm)

F (βc)

)
, (6)

where Mε (x) = 1/(1 + (x/ε)8) and F (βc) = 1
2 (Pi(βc) +

P j (βc)). The function Mε (x) is chosen to be near zero when
x > ε and close to 1 otherwise, and we choose ε = 0.005.
Then, Q represents the proportion of coinciding PAs. As we
will show below, Q takes large values only in small regions of
the parameter space and we will consider peaks of Q(A, βc)
greater than 0.5 as reliable results (a majority of coinciding
PAs). The best set of parameters {βc, A} is defined by the
maximum in Q(A, βc). We define the uncertainties on this best
set of parameters as the width of the peaks.

Once the best set of parameters {βc, A} is found, we can
reconstruct the specific heat cr

v by adding the singularity to the
regular part. For that, we replace R(β ) by one of its coinciding
PAs (one contributing to Q), Pi, and we put explicitly the

singular part in Eq. (5):

cr
v (β ) = Pi(β ) + A ln

(
1 − β

βc

)
. (7)

In the limit n → ∞, the reconstructed cr
v should converge to

the exact one.

IV. RESULTS

In this section we present the results obtained with the
method presented in the previous section for different lattices
and models. Whenever possible, we compare our results with
exact results or calculations by other authors using alternative
methods.

A. Ferromagnetic Ising model on the square lattice

We compute the quality Q [see Eq. (6)] for several orders
of the HTSE on a grid of values in the plane βc-A. We are
scanning in steps of 10−4 both in βc and A in a wide range
around the exact values. It is important to keep small steps,
because the domain where the quality Q reaches its maximum
is generally narrow as can be seen in Fig. 1, where the black
circles represent the exact values. The best sets of parameters
have quality values around 0.95, which means that almost all
of the PAs coincide. In addition, we find that the quality drops
rapidly away from the best parameters.

As the order of the HTSE increases, we see that the best-
quality domain is narrower and gets closer to the exact point,
as shown in Table II. In Fig. 2, we see that the parameters go
to roughly the exact values like 1/n2, where n is the HTSE
order. Note that already at order 20 the results are close to the
exact ones (see Table II).

Using the best parameters {βc, A} presented in Table II, we
reconstruct the specific heat cr

v using Eq. (7). Figure 3 shows
cr
v (T ) built from the HTSE at order 30, where only a single PA

−0.51

−0.50

−0.49

A

O-20
Exact

O-24

1.762 1.764 1.766
βc

−0.51

−0.50

−0.49

A

O-28

1.762 1.764 1.766
βc

O-30

0.0

0.2

0.4

0.6

0.8

1.0

Q

FIG. 1. The quality Q [see Eq. (6)] versus βc and A [see Eqs. (2)
and (3)] for the square lattice ferromagnetic Ising model using the
cv-HTSE at orders 20 (top left), 24 (top right), 28 (bottom left),
and 30 (bottom right). The black circles indicate the Onsager’s exact
solution (see Table I). Note that Q reaches values close to 1.
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TABLE II. Results for the parameters βc, A, and B versus the
HTSE order for the square lattice ferromagnetic Ising model, com-
pared to the exact solution (see Table I).

Order βc A B

20 1.7645(10) −0.509(5) −0.350(10)
22 1.7645(10) −0.509(5) −0.353(10)
24 1.7636(6) −0.504(4) −0.340(10)
26 1.7635(6) −0.503(4) −0.337(10)
28 1.7632(3) −0.501(3) −0.331(6)
30 1.7631(3) −0.500(2) −0.328(6)

Exact 1.762747... −0.49453... −0.30631...

does not coincide. For comparison, the dashed lines represent
the PAs of the raw HTSE of cv . The present method shows a
clear improvement over the raw HTSE or its PAs.

In Fig. 4 we show the results for the reconstructed cr
v

obtained from the HTSE at orders from 10 to 30 (solid lines),
compared with the exact result (dashed line). Even though
cr
v at order 10 is visibly different from the exact one, the

results improve quickly as the order increases. The inset of
Fig. 4 shows that the relative differences with respect to the
exact result decrease significantly as the order increases. Since
the βc evaluated at each order is slightly greater than the
exact value, the relative differences tend to 1 around the exact
critical temperature. We see that a good agreement with the
exact results is already obtained at order 14, even if the values
of A and B may differ from the exact ones. This means that the
precision in the parameters A and B is not as important as the
precision in βc in order to have a good representation of cv .

B. Ferromagnetic Ising model on other lattices

We now turn to the triangular, honeycomb, and kagome lat-
tices, keeping the ferromagnetic Ising model. They all present

0.000 0.001 0.002 0.003
1/n2

0.00

0.05

0.10

0.15

0.20

d
r

βc

A

B

FIG. 2. Relative differences of the values of βc, A, and B ex-
tracted from Table II compared with the exact ones as a function
of 1/n2, where n is the HTSE order. Lines are linear fits through the
points taking into account the uncertainties. dr = (V − V exact )/V exact,
where V = βc, A, and B.

0.55 0.59 0.63 0.67
T

1

2

3

4

c v

T exact
c

[0, 30]
[2, 28]
[4, 26]
[6, 24]
[8, 22]
[10, 20]
[12, 18]

[14, 16]
[18, 12]
[20, 10]
[22, 8]
[24, 6]
[26, 4]
[28, 2]
O-30

FIG. 3. The specific heat cv as a function of the temperature T
for the square lattice ferromagnetic Ising model; full line stands for
the reconstructed cr

v from our method. The dashed lines are the the
Padé approximants of the raw cv . The vertical dotted line indicates
the exact value of Tc.

a finite-temperature phase transition with different nonuniver-
sal parameters (see Table I). Our method works very well for
the triangular lattice, with quality values close to 1 for all or-
ders [54]. On the other hand, for the honeycomb and kagome
lattices, the maximum of Q oscillates between 0.5 and 0.7
depending on the HTSE order and the lattice [54]. Moreover,
these two lattices present wider peaks of Q(βc, A) which lead
to a loss of precision in the evaluation of the parameters βc,
A, and B in the end. Nevertheless, it is worth mentioning that

0.52 0.56 0.60 0.64 0.68
T

0

1

2

3

4

c v

O-10

O-14

O-20

O-22

O-24

O-26

O-28

O-30

Exact
0.57 0.58

T

10−3

10−2

10−1

d
r

dr =
cr
v − cexact

v

cexact
v

FIG. 4. The reconstructed cr
v versus the temperature T for the

square lattice ferromagnetic Ising model using cv-HTSE orders from
10 to 30. The black dashed line indicates the exact solution. The inset
shows the relative difference between our results and the exact result.
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TABLE III. Singularity parameters βc, A, and B for the triangular, honeycomb, and kagome lattices ferromagnetic Ising model obtained
from different orders of the cv-HTSE, compared with the exact solutions (see Table I).

Triangular Honeycomb Kagome

Order βc A B βc A B βc A B

20 1.0998(4) −0.521(4) −0.385(10) 2.6395(20) −0.484(5) −0.305(10) 1.870(6) −0.50(3) −0.34(6)
22 1.0993(3) −0.515(4) −0.365(10) 2.6320(40) −0.467(15) −0.270(30) 1.865(2) −0.48(1) −0.30(2)
24 1.0992(3) −0.514(3) −0.364(8) 2.6330(50) −0.470(15) −0.280(40) 1.870(3) −0.495(20) −0.34(4)
26 1.0990(3) −0.511(3) −0.355(8) 2.6320(20) −0.468(10) −0.270(20) 1.867(3) −0.485(20) −0.31(4)
28 1.0989(2) −0.509(2) −0.349(8) 2.6330(20) −0.469(7) −0.270(15) 1.868(2) −0.490(10) −0.32(2)
30 1.0988(2) −0.507(2) −0.341(8) 2.6326(15) −0.469(5) −0.270(10) 1.867(1) −0.483(7) −0.31(2)

Exact 1.098612... −0.49906... −0.30675... 2.633915... −0.47810... −0.30477... 1.86626... −0.48006... −0.29809...

having 50% of coinciding PAs up to βc is a very good result
since the PAs of the raw HTSE are all different at βc.

The quality pictures (see Fig. 1 and those in the supplemen-
tal material [54]) are qualitatively different from one lattice to
another. It is not easy to determine the conditions under which
some models possess large and sharp quality peaks or not.
The hypothesis that a low value of βc (that decreases with the
coordination number p of the lattice roughly as Tc ∝ p − 1)
makes the extrapolation method work better is not verified
for the square and kagome lattices (both with a coordination
of 4). Although they have about the same βc, the first one
has a sharp quality peak and the second a wide one. On the
other hand, bipartite (square and honeycomb) or nonbipartite
(triangular and kaome) lattices can both have either sharp or
wide quality peaks. Note that the bipartite property implies
that odd terms of the HTSE are zero. Finally, we remark that
the present method works better for the two Bravais lattices
(square and triangular).

We summarize our results for these three lattices in
Table III. Among the three parameters βc, A and B, it is always
βc that has the smallest relative difference with the exact
result. The A and B values for the triangular lattices converge
to the exact values [54]. On the other hand, for the honeycomb
and kagome cases, the large uncertainties make it impossible
to extrapolate to large n (at least from the results of orders
n � 30). Nevertheless, the reconstructed cr

v from any of these
results is always in good agreement with the exact cv [54]
(except very close to the critical point, because the divergence
is not exactly at the same temperature).

Another interesting feature is the fact that, although the
values of βc depend on the lattice, the values of the parameters
A and B are always around the same values, −0.49 for A and
−0.3 for B (see exact results in Tables II and III). It would be
indeed interesting to check if this is still the case for other
more complicated lattices, or for other Ising transitions in
general.

C. XXZ model

We examine here the evolution of the Ising singularity
when the model is interpolated between the Ising and the
Heisenberg models, i.e., when the parameter � of Eq. (1)
varies from 0 (Ising) to 1 (Heisenberg). In the Heisenberg
limit, no discrete symmetry is broken in the ground state
and the Mermin-Wagner theorem forbids the existence of

finite-temperature phase transitions, but for any other value
of � in the interval [0,1] there is indeed a finite-temperature
phase transition associated with the Ising order parameter. The
value of the critical temperature Tc is expected to decrease
as � increases, and it has been suggested in Ref. [39] that it
behaves like the inverse of a logarithm near the Heisenberg
point, 1/ ln |1 − �|.

Since there are no exact results for this model, the HTSE
coefficients have been calculated up to order 19 for the square
lattice, 17 for the triangular case, 20 for the honeycomb case,
and 18 for the kagome lattice. For the square and honeycomb
lattices, we consider both ferro- and antiferromagnetic inter-
actions (since there is no frustration). In fact, in these cases
where the lattice is bipartite, the transformation � → −� has
no effect on the cv-HTSE (this kind of transformation can
be understood as a rotation of π about the z axis of one of
the two sublattices). This implies that only the sign of the z
part is important in the evolution of the transition when |�|
increases. On the other hand, for the triangular and kagome
lattices, only the ferromagnetic case has a finite-temperature
phase transition.

Figure 5 shows our results for the square lattice in the anti-
ferromagnetic case (the ferromagnetic case will be discussed
below), using HTSE orders 18 (upper red triangles) and 19
(lower purple triangles). Near the Ising limit (� = 0), the
uncertainties are always smaller than the symbol size, whereas
they keep increasing when � increases, and the results start to
depend on the order. In fact, as � increases, the maximum
value of the quality Q(βc, A) decreases while the domain of
higher values widens, so it becomes difficult to determine
precise values. The value of Q decreases from 0.9 to 0.6 as �

increases from 0 to 0.5, where our results are in good agree-
ment with the QMC computations [39]. Indeed, at order 19 we
find Tc = 0.522(3), whereas the QMC value is Tc = 0.525(5)
[39]. The quality then continues to deteriorate to about 0.3
at � = 0.8 and it becomes difficult to separate peaks from
oscillations. However, our results seem to approach the next
QMC point (see Fig. 5).

Using the exact limit in the Ising point as well as a vanish-
ing derivative, and imposing the logarithmic behavior around
� = 1, we propose a simple two-parameter function having
the correct limits both for � = 0 and 1:

Tc = T Ising
c

1 + a� − b�2

1 − a ln(1 − �)
. (8)
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FIG. 5. Critical temperature Tc as a function of � obtained with
our method for the XXZ antiferromagnetic model [Eq. (1)] on the
square lattice, at HTSE orders 18 and 19. QMC results are taken
from Ref. [39]. The blue line is the fit of Eq. (8). The green circle is
the exact result in the Ising limit.

Fitting these parameters using the three QMC points [39] and
the exact Ising value leads to a = 0.26 and b = 0.11. This
function is is shown in Fig. 5, where we can see that it agrees
with our current results.

In Fig. 6 we show the critical temperature, normalized by
the exact critical temperature of the corresponding Ising case,
for the square, triangular, honeycomb, and kagome lattices
using ferromagnetic interactions. Although the relative criti-
cal temperatures are very similar for all four lattices at low
�, larger differences appear above � = 0.2. The honeycomb
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in
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Honeycomb O-20
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FIG. 6. Critical temperature Tc, normalized by the corresponding
exact value in the Ising limit, as a function of � obtained with the
present method for the ferromagnetic square, triangular, honeycomb,
and kagome lattices. In blue the fit of Eq. (8) for the square antifer-
romagnetic case.
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Δ = 0.80
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FIG. 7. Reconstructed specific heat cv as a function of T for the
square lattice ferromagnetic case. Several values of � are shown,
from the Ising limit at � = 0.0 to � = 0.85. For reference, we show
in dashed line the cv for the Heisenberg case obtained from the
entropy method [27].

lattice, which is the one with the lowest coordination number,
is the case where the relative critical temperature is the lowest,
followed by the kagome and the square lattices and, finally, the
triangular lattice, which has the highest coordination number.

As was the case in the Ising models, the values of A have
larger uncertainties than those of βc and remain around the
corresponding Ising values [54]. As for the square lattice (see
Fig. 7), uncertainties in A have little effect in the reconstructed
cr
v [Eq. (7)], and again, variations in βc with � lead to the main

effect on variations in cv . The dashed black line stands for the
Heisenberg specific heat (� = 1), as obtained by the entropy
method imposing a low-T cv (T ) ∝ T α with α = 1. We can
conclude from Fig. 7 that there must be an abrupt change in
cv very close to � = 1.

V. CONCLUSION

We have developed and tested an interpolation method
using HTSEs that can be applied for finite-temperature phase
transition systems with a logarithmic divergent specific heat
cv , as is the case for the two-dimensional Ising universality
class. From the cv-HTSE, we extract its logarithmic singu-
lar part to obtain the HTSE for the regular part of the cv .
These series depend on two parameters: The inverse of the
critical temperature βc and the multiplying constant A in front
of the logarithmic term [see Eq. (2)]. These parameters are
determined by searching for the largest number of coinciding
PAs. This method allows us to accurately capture the criti-
cal behavior of the Ising model for several two-dimensional
lattices, obtaining precise values of βc and good values for
A and B (see Tables II and III). With these values, we are
able to reconstruct the cv above Tc and we find a very good
quantitative agreement with the exact solution already for
orders as small as 14 (see Fig. 3).
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We then turn to the XXZ Heisenberg model, where there
are no exact results. We find that our method works in a wide
range of anisotropies from � = 0 to 0.8. For example, at
� = 0.5 we find a precise value of the critical temperature
Tc which is in agreement with QMC calculations. Our method
then fails near the Heisenberg point where the critical tem-
perature vanishes. The failure of the method is explicitly due
to the fact that we do not find a set of parameters {βc, A} for
which there are enough coinciding PAs, or that we do find a
large domain of values for which there are some, so that βc

and A cannot be determined with precision. This is probably
due to the complications that arise when there is a mixture of
the singular behavior and the finite peak from the Heisenberg
limit. Indeed, if the singular peak is at temperatures lower than
the Heisenberg peak, removing the singular behavior would
leave us with a series that must describe a Heisenberg-like cv ,
and generally the PAs do not coincide for temperatures below
J/2. A more advanced method would have to take both peaks
into account.

This limitation of our method is probably the reason why
we did not get any convincing result for the antiferromagnetic
J1 − J2 model on the square lattice, where an Ising transition
should appear for J2 > 0.6J1 in the S = 1

2 quantum case.
In this case, the transition temperature is small and it only
increases for large values of J2. But when J2 is large, the
transition is very subtle and difficult to capture [21,23].

At this stage, our method can be used to obtain important
parameters related to phase transitions such as βc, A, and B
in the case of logarithmic divergences. But it is possible to
extend the method to other types of singularities and other
thermodynamic functions that show a singular behavior. Work
in this direction is in progress, in particular for the case
of three-dimensional Heisenberg models where cv shows a
nondivergent cusp behavior (i.e., it reaches a maximum value
with an infinite slope at βc). In this case, our method could
be used to estimate the critical exponent α, which cannot be
calculated by the ratio or Dlog Padé methods and is usually
only estimated indirectly by the relation between critical ex-
ponents [51] or assumed to be the same as that predicted by
field-theory calculations [45].
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APPENDIX: ISING EXACT FORMULAS

1. General formula

The free energy, f , of the Ising model on some
two-dimensional lattices such as the square, triangu-
lar, honeycomb, and kagome lattices can be written

as [13]

β f = f0 − 1

2ns

∫ 2π

0

∫ 2π

0
d p dq

ln(u − Sδ (p, q))
4π2

(A1)

Sδ (p, q) = 1

2 + δ
(cos p + cos q + δ cos(p + q)), (A2)

where f0 and u are functions of β, and ns is the number of
sites per unit cell, all depending on the lattice. We have δ = 0
for the square lattice and 1 for the triangular, honeycomb, and
kagome lattices. The maximum value of Sδ (p, q) is 1 and the
singular behavior occurs when the argument of the logarithm
vanishes, that is, when Sδ (p, q) = u = 1. In the following, we
assume u > 1.

The specific heat can then be calculated as

cv = −β2 d2β f

dβ2

= −β2 d2 f0

dβ2
+ β2

8π2ns

∫ 2π

0

∫ 2π

0
d p dq Xδ (p, q), (A3)

where

Xδ (p, q) = d

dβ

u′

u − Sδ (p, q)

= u′′

u − Sδ (p, q)
− u′2

(u − Sδ (p, q))2 , (A4)

where the prime indicates a derivative with respect to β. We
have to calculate the following integrals

Ik =
∫ 2π

0

∫ 2π

0

d p dq

(u − Sδ (p, q))k
(A5)

for k = 1 and 2, so that

C2 =
∫ 2π

0

∫ 2π

0
d p dq Xδ (p, q) = u′′ I1 − (u′)2 I2, (A6)

and finally

cv = −β2 d2 f0

dβ2
+ β2

8π2ns
(u′′ I1 − (u′)2 I2). (A7)

a. The I1 integral

For u > 1, we can perform the integration over q:
∫ 2π

0

dq

u − Sδ (p, q)
= 2πnc√

(u+ − cos p)(u− − cos p)
, (A8)

where u± = 2u + δ(u + 1) ± √
1 + δ(6u + 2), with u− > 1

and u+ > u− + 2
√

1 + 8δ. Then the integral over p gives

I1 = 8π (2 + δ)K0√
u+ − 1

√
u− + 1

, (A9)

where K0 = EllipticK(z0) is the elliptic function K (Maple
definition), and the argument is

z0 =
√

2
√

u+ − u−√
u+ − 1

√
u− + 1

. (A10)

For δ = 0, we find z0 = 1/u and I1 = 8πK0/u.
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b. The I2 integral

For u > 1, the integrations over q and p give
∫ 2π

0

dq

(u − Sδ (p, q))2 = 2π (2 + δ)2(cos p − (2 + δ)u)
(u+ − cos p)3/2(u− − cos p)3/2

I2 =
∫ 2π

0

∫ 2π

0

d p dq

(u − Sδ (p, q))2

= CKK0 + CEE0, (A11)

where E0 = EllipticE(z0) is the elliptic function E , and

CK = 4δC(u− − 1)(u+ + 1) (A12)

CE = C[(u+ − u−)2(u+ + u−) − 2δ(u+2 + u−2−2)]

(A13)

C = 4π (2 + δ)2

(u+ − u−)2(u− − 1)(u+ + 1)
√

u− + 1
√

u+ − 1
.

(A14)

For δ = 0, CK = 0 and CE = 8π/(u2 − 1). With these two in-
tegrals, I1 and I2, and the expressions for f0, u, and ns for each
lattice, the complete cv can be obtained at all temperatures
from Eq. (A7).

c. Singularities

The singular behavior arises when u goes to 1, that is, when
u− goes to 1 and u+ goes to 3 or 7 for δ = 0 or 1, respectively.
In the limit u → 1, we define the small variable ε = u − 1.
Then, to the first order in ε, we have

I1 = 2π (2 + δ)√
1 + 2δ

(
− ln

aε

8
+ ε

2

(
ln

aε

8
+ b

))
(A15)

a = 1, b = 1 (δ = 0) (A16)

a = 2

3
, b = 5

6
(δ = 1), (A17)

whereas for the second integral we have

I2 = 4π

ε
− 4π

(
1 + 1

2
ln

ε

8

)
+ ... (δ = 0) (A18)

I2 = 2π
√

3

ε
− π

√
3

6

(
6 ln

ε

12
+ 11

)
+ ... (δ = 1). (A19)

Around the critical point u is proportional to (t − tc)2, thus
also to (βc − β )2. We set then, using the fact that u > 1,

u(β ) = 1 + αL(βc − β )2, (A20)

where αL depends on the lattice. Then ε = u − 1 = αL(βc −
β )2 and u′(β ) = −2αL(βc − β ) = −2

√
αLε and u′′(β ) =

2αL. Finally, Eq. (A6) becomes

C2 = −4παL(2 + δ)√
1 + 2δ

(
ln

aαL(βc − β )2

8
+ 2

)
. (A21)

Using the leading term, we find that the singularity in cv from
Eq. (A7) behaves as

cv ∼ − αLβ2
c (2 + δ)

2πns
√

1 + 2δ
ln(βc − β ). (A22)

2. Square lattice

For the square lattice we have δ = 0 and ns = 1, then the
functions in Eq. (A1) are

f0 = − ln 2 + ln(1 − t2) − 1

2ns
ln(2B) (A23)

A = (1 + t2)2 (A24)

B = 2t (t2 − 1) (A25)

u = A

2B
= (1 + t2)2

4t (1 − t2)
, (A26)

where t = tanh β

4 . The critical point is for u = 1, that is, tc =√
2 − 1 and βc = ln(3 + 2

√
2). Around βc we have ε = u −

1 = 1
4 (βc − β )2 + ..., thus αL = 1

4 in Eq. (A21). Around tc B

is constant and the contributions of f0 to cv gives at βc: − β2
c

8 ,
and finally, we find

cv = β2
c

2π

(
− ln(βc − β ) + 5

2
ln 2 − 1 − π

4

)
+ o(1). (A27)

3. Triangular lattice

For the triangular lattice we have δ = 1 and ns = 1, then
the functions in Eq. (A1) are

f0 = − ln 2 + 3

2
ln(1 − t2) − 1

2ns
ln(3B) (A28)

A = (t + 1)2(t4 − 2t3 + 6t2 − 2t + 1) (A29)

B = 2t (t + 1)2(t − 1)2 (A30)

u = A

3B
= 1

6

(
t + 1

t

)
+ 2

3

(
1

t − 1
+ 1

(t − 1)2

)
, (A31)

where t = tanh β

4 . The critical point is for u = 1, that is,
tc = 2 − √

3 and βc = ln 3. Around βc we have ε = u − 1 =
3
4 (βc − β )2 + ..., thus αL = 3

4 in Eq. (A21). Around tc, B is
constant and the contributions of f0 to cv give at βc: − 3

8β2
c ,

and finally we find

cv = 3
√

3β2
c

4π

(
− ln(βc − β ) + 2 ln 2 − 1 − π

2
√

3

)
+ o(1).

(A32)

4. Honeycomb lattice

For the honeycomb lattice we have δ = 1 and ns = 2, then
the functions in Eq. (A1) are

f0 = − ln 2 + 3

4
ln(1 − t2) − 1

2ns
ln(3B) (A33)

A = 1 + 3t4 (A34)

B = 2t2(1 − t2) (A35)

u = A

3B
= 1

6

1 + 3t4

t2(1 − t2)
, (A36)
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where t = tanh β

4 . The critical point is for u = 1, that is, tc =
1/

√
3, and βc = 2 ln(2 + √

3). Around βc we have ε = u −
1 = 1

4 (βc − β )2 + ..., thus αL = 1
4 in Eq. (A21). Around tc, B

is constant and the contributions of f0 to cv gives at βc: − β2
c

24 ,
and finally we find

cv = β2
c

√
3

8π

(
− ln(βc − β ) + ln 48

2
− 1 − π

√
3

9

)
+ o(1).

(A37)

5. Kagome lattice

For the kagome lattice we have δ = 1 and ns = 3, then the
functions in Eq. (A1) are

f0 = − ln 2 − 1

2ns
ln(3B) (A38)

A = (z − 1)4 + 3

(t − 1)6(t + 1)2
t4, z = t + 1

t
(A39)

B = 2(t2 + 1)t2

(t − 1)4(t + 1)2
(A40)

u = A

3B
= 1 + (z2 − 2z − 2)2

6t2(1 + t2)(1 − t )2
, (A41)

where t = tanh β

4 . The critical point is for u = 1, that is,
tc = 1

2 (
√

3 + 1 − √
231/4), and βc = ln(3 + 2

√
3). Around

βc we have ε = u − 1 = 3
4 (βc − β )2 + ..., thus αL = 3

4 in
Eq. (A21). Around tc B is constant and the contributions of

f0 to cv gives at βc: − β2
c (3−√

3)
24 , and finally we find

cv = β2
c

√
3

4π

(
− ln(βc−β )+2 ln 2−1− π (

√
3 − 1)

6

)
+ o(1).

(A42)
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