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Analytical continuation of matrix-valued functions: Carathéodory formalism
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Finite-temperature quantum field theories are formulated in terms of Green’s functions and self-energies on
the Matsubara axis. In multiorbital systems, these quantities are related to positive semidefinite matrix-valued
functions of the Carathéodory and Schur class. Analysis, interpretation, and evaluation of derived quantities such
as real-frequency response functions requires analytic continuation of the off-diagonal elements to the real axis.
We derive the criteria under which such functions exist for given Matsubara data and present an interpolation
algorithm that intrinsically respects their mathematical properties. For small systems with precise Matsubara
data, we find that the continuation exactly recovers all off-diagonal and diagonal elements. In real-materials
systems, we show that the precision of the continuation is sufficient for the analytic continuation to commute
with the Dyson equation, and we show that the truncation of the off-diagonal self-energy elements leads to
considerable approximation artifacts.
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I. INTRODUCTION

The central object of finite-temperature field theory is the
Matsubara Green’s function Gi j (iωn). Finite temperature sim-
ulations ranging from perturbative calculations [1–3] to lattice
[4] and continuous-time [5] quantum Monte Carlo and lattice
quantum chromodynamics [6–8] simulations obtain this quan-
tity. In postprocessing, an analytical continuation step to the
retarded real axis Green’s function GR

i j (ω) is performed with
the purpose of obtaining single-particle excitation spectra,
self-energy information, and approximations to susceptibili-
ties that can then directly be related to experiment.

As small imprecisions in the Matsubara data result in large
deviations of the continued quantities, the direct solution of
the continuation problem is typically avoided. Instead, meth-
ods that aim to fit the Matsubara data with a physically
reasonable (i.e., smooth, positive, and normalized) spectral
function, such as the maximum entropy analytic continua-
tion [9–18], the stochastic analytic continuation and variants
[19–24], the sparse modeling method [25,26], or machine
learning approaches [27] are used, from which the real
and imaginary parts of the retarded Green’s functions, self-
energies, and susceptibilities are extracted. These methods
work well for single-orbital systems and the diagonal compo-
nents of Green’s functions, especially in the presence of data
with statistical uncertainties.

However, Green’s functions for all but the simplest quan-
tum systems are matrix-valued objects with both diagonal and
off-diagonal entries. While certain quantities such as the total
spectral function only depend on the diagonal entries, the
analysis of the self-energy, computation of the susceptibilities,
or evaluation of equations such as the Dyson equation on
the real axis requires knowledge of both diagonal and off-
diagonal entries. As the off-diagonal entries may change sign

as a function of frequency, standard continuation methods that
rely on positivity [11] fail.

So far, no reliable and general algorithms for the contin-
uation of matrix-valued Green’s functions exist, even though
several approaches have been explored. For instance, one may
perform a Padé [13,28–33] continuous fraction interpolation
of both the diagonal and off-diagonal terms. However, the
continued results typically exhibit continuation artifacts such
as negative spectral functions even for the diagonal part. One
may instead transform to a basis that diagonalizes the Green’s
function or the self-energy for a given Matsubara frequency
[34–36], neglect the remaining off-diagonal elements, and
employ a continuation method for diagonal Green’s functions.
Unless symmetry dictates that all off-diagonal elements for
all frequencies must be zero, this is an uncontrolled approx-
imation and results will depend on the basis chosen. Finally,
one may generalize the maximum entropy method to matrix-
valued functions and off-diagonal terms [37–40], using either
a positive-negative or a maximum quantum entropy approach.
These methods enforce the positive semidefiniteness of the
Green’s function but eliminate sharp and high-energy features,
such as the band structure contained in Green’s function data,
due to the intrinsic limitations of the fitting procedure.

As we show in this paper, the application of Nevalinna
theory [41] to matrix-valued functions overcomes these
limitations, leading to basis-indepedent interpolations that
intrinsically respect the analytic structure of matrix-valued
Green’s functions. Using a generalization of Nevanlinna-
Pick interpolation to the class of Carathéodory functions, we
demonstrate that the analytic continuation of Green’s func-
tions, self-energies, and cumulants [42] leads to matrix-valued
functions that are indistinguishable from the exact results for
a simple model system. In the context of a real-materials
multi-orbital simulation we then demonstrate that the analytic
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continuation step commutes with the Dyson equation, such
that self-energy, cumulant, and Green’s function continuations
yield consistent results. Finally, we assess the quality of the
frequently used approximation of neglecting off-diagonal self-
energy components.

II. THEORY

The main mathematical objects considered in this paper
are matrix-valued Green’s functions, self-energies, and cumu-
lants. As we will show below, the analytical properties of these
functions ensure that they lie, up to a factor of i = √−1, in the
class of Carathéodory functions [43].

In the following, we will present the mathematical
framework by introducing Carathéodory functions and their
properties, along with the related class of Schur functions [44]
and a mapping between the two classes. We will then reformu-
late the problem of analytical continuation as an interpolation
problem in the class of Schur or Carathéodory functions, in
analogy to Ref. [41]. After detailing the conditions under
which a Carathéodory interpolant through given Matsubara
points exists, we will derive an interpolation algorithm. Fi-
nally, we will show that Green’s functions, self-energies, and
cumulants are Carathéodory functions. An implementation of
these equations is provided along with this paper, see Supple-
mental Material [45].

A. Carathéodory and Schur functions

Consider an open subset B of the complex plane, such
as the unit disk D = {z : |z| < 1} or the upper half of the
complex plane C+ = {z : �z > 0}. A matrix-valued function
F (z) : B → Cm×m, holomorphic on B, belongs to the class
of Carathéodory functions C if, for any z ∈ B, the Hermi-
tian matrix (F (z) + F †(z))/2 is positive semi-definite (PSD)
[43,46,47].

Analogously, a matrix-valued function �(z), D → Cm×m,
holomorphic on D, belongs to the Schur class S if ‖�(z)‖ � 1
for any |z| < 1, where ‖�‖ denotes norm of the matrix �

[44,48]. We use the spectral norm as the matrix norm in this
paper, i.e., the largest eigenvalue of the constant matrix �s :=
[��†]1/2, with (·)1/2 indicating the Hermitian square root.

While the domain of interest for many-body objects such as
the Green’s function is the upper half of the complex plane C+,
the traditional mathematical literature mostly considers func-
tions on the open unit disk D. A Möbius transform h : C+ →
D, h(z) = z−i

z+i maps C+ to D, and its inverse h−1(z) : D → C+
maps the unit disk back to the upper half of the complex plane.

As shown in detail in Refs. [46,48], every Carathéodory
function F (z) ∈ C restricted to D can be mapped to a corre-
sponding Schur function �(z) ∈ S with the Cayley transform

�(z) = [I − F (z)][I + F (z)]−1, (1)

and its inverse

F (z) = [I + �(z)]−1[I − �(z)]. (2)

As illustrated in Fig. 1, the construction of a Carathéodory
interpolant on the upper half of the complex plane is therefore
equivalent to the construction of a Carathéodory interpolant

FIG. 1. Mapping of the input Carathéodory problem to a Schur
interpolation problem. x j denote Matsubara frequencies, Yj are Mat-
subara values, z j are transformed Matsubara points, and Jj are
transformed Matsubara values.

on the unit disk, which in turn is equivalent to the construction
of the corresponding Schur interpolant on the unit disk.

B. Pick criterion

We aim to interpolate matrix-valued Green’s functions,
self-energies, and cumulants obtained in Matsubara frequen-
cies. Thus, after mapping to the unit disk, the interpolation
problem is specified by a set of n Carathéodory m × m ma-
trices Yj at n points z j ∈ D (see Fig. 1). We first consider
the conditions under which such an interpolation problem has
solutions.

Generalizing the Pick criterion for scalar functions [49–51]
to the matrix-valued case, Refs. [46,52] derived an existence
criterion for Carathéodory interpolants directly based on input
data. Solutions for the interpolation problem exist if and only
if the Pick matrix defined for the Carathéodory function on the
unit disk D,

PC =
[

Yk + Y ∗
l

1 − z∗
k zl

]
(mn)×(mn)

(3)

or alternatively, the Pick matrix defined for the transformed
Schur function on D,

PS =
[

I − J∗
k Jl

1 − z∗
k zl

]
(mn)×(mn)

(4)

is positive semidefinite; and a unique solution only exists if it
is singular.

We note that this criterion is very restrictive in practice.
Numerical noise in Monte Carlo typically leads to negative
eigenvalues such that a Carathéodory (or Nevanlinna [41]) so-
lution of the interpolation problem does not exist. Round-off
and convergence issues in semi-analytical calculations such as
GW simulations of real materials (see Sec. III) lead to eigen-
values that are small and negative, such that the evaluation
just above the real axis still leads to PSD spectral functions,
while analytical solutions such as those for the Hubbard dimer
presented below always satisfy the Pick criterion.
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C. Interpolation of Schur functions

Matrix-valued functions in the Carathéodory class have
continued fraction expansions [46]. An algorithm to obtain
such interpolation is given by matrix extensions of the classi-
cal Schur algorithm [46,52,53], which we use as interpolation
method in this paper.

Given input data F (x j ) = Yj ( j = 0, 1, . . . , n − 1; x j ∈
C+; Yj ∈ Cm×m) for a Carathéodory matrix-valued function
F (z), we Möbius transform the domain and conformally map
the function value according to Eq. (1) (see Fig. 1), and refor-
mulate the problem as a problem of finding a matrix-valued
function �(z) in the Schur class, such that

�(z j ) = Jj = �

(
x j − i

x j + i

)
= [I − Yj][I + Yj]

−1,

j = 0, 1, . . . , n − 1. (5)

We will proceed as follows. Given a interplation problem
� = �0 with n nodes �(z j ) = Jj , j = 0, 1, . . . , n − 1, we
will find a function that interpolates the first node z0 and
express the remaining problem as an interpolation problem
�1 through n − 1 nodes. This interpolation problem will then
be expressed as a function that interpolates the second node
z1 and a remaining problem �2 through n − 2 nodes. The
procedure will be repeated until all nodes are interpolated and
only a free Schur function �n remains.

We first show how to reduce the Schur function �i(z) ∈ S
to �i+1(z) ∈ S , while releasing the node constraint of �i(z) at
zi. The reduction step is based on the theories of J-contractive
transformations [54] and as follows [46]. Assuming �i(zi ) =
Wi, define the matrix-valued function Li(z) by

yiLi(z) =[I − WiW
†

i ]−1/2[�i(z) − Wi]·
[I − W †

i �i(z)]−1[I − W †
i Wi]

1/2, (6)

where yi = |zi|(zi − z)/(zi(1 − z∗
i z)). Li(z) ∈ S by the

Schwarz lemma [54]. Define �i+1(z) as

�i+1(z) =[I − KiK
†
i ]−1/2[Li(z) − Ki]·

[I − K†
i Li(z)]−1[I − K†

i Ki]
1/2, (7)

where Ki is an arbitrary matrix such that ‖Ki‖ < 1. Since
for any zk, zl ∈ D, the matrices [I − L(zk )†L(zl )] and [I −
�i+1(zk )†�i+1(zl )] are equivalent under similarity transforma-
tion, �i+1(z) ∈ S as well.

Notice that in Eq. (6), left- and right-hand-side are both
zero at node zi so that the value of Li(zi ), and in turn of
�i+1(zi ), is free; and that for all remaining nodes z j, j > i,
�i+1(z j ) is completely determined by Li(z j ), in turn by �i(z j ),
up to a freedom in the choice of Ki. We, therefore, have
a new interpolation problem �i+1 ∈ S with one less node
constraint. Iterating the complete algorithm backwards, an
arbitrary Schur function �n(z) ∈ S will yield �0(z) ∈ S that
hits all interpolation nodes.

Ki, i = 0, 1, . . . , n − 1 and �n are free parameters that can
be used to enforce additional conditions, such as smoothness
[41], and cover all possible interpolants in the class of Schur
functions. For convenience, we choose �n to be the identity
matrix and Ki to be zero, for all i.

FIG. 2. Schematic of the transformations between G(iωn), G(ω),
�(iωn), �(ω), M(iωn), and M(ω). AC stands for analytical continu-
ation. BC stands for back continuation.

Denoting �i(z j ) = W i
j , i, j = 0, 1, . . . , n − 1 and W i

i =
Wi, consistent with the above notation, the first stage of the
algorithm consists of computing all Wi and storing them. By
Eqs. (6) and (7), we have

W i+1
j = zi(1 − z∗

i z j )

|zi|(zi − z j )
[1 − WiW

†
i ]−1/2

[
W i

j − Wi
]

× [
1 − W †

i W i
j

]−1
[1 − W †

i Wi]
1/2 j � i + 1. (8)

Iterating through i = 0, . . . , n − 2, we obtain all Wi.
The second stage of the algorithm consists of solving

�n(z) → �n−1(z) · · · → �0(z) = �(z) where �(z), z ∈ D is
the desired Schur interpolant. This is done by transcribing
Eqs. (6) and (7) as

Vi(z) = |zi|(zi − z)

zi(1 − z∗
i z)

[I − WiW
†

i ]1/2�i+1(z)[I − W †
i Wi]

−1/2

(9)

�i(z) =[I + Vi(z)W †
i ]−1[Vi(z) + Wi] (10)

with i iterating from n − 1 to 0.
Lastly, we map the Schur class fuctions back to the

Carathéodory space by constructing the Carathéodory inter-
polant F (x) via

F (x) =
[

I + �

(
x − i

x + i

)]−1[
I − �

(
x − i

x + i

)]
. (11)

The first stage is computed only once, while the second stage
depends on z and is repeated by Eq. (11) for each x ∈ C+ that
needs to be evaluated.

We note that, as in most Padé codes, our numerical in-
terpolation is highly sensitive to numerical roundoff and is
therefore performed in 512- or 1024-bit precision.

D. Carathéodory functions in many-body theory

We now show that the Green’s functions, self-energies, and
cumulants commonly encountered in many-body theory are
Carathéodory functions (up to factors of i) and can therefore
be interpolated with the interpolation method described above
(see Fig. 2).

1. iG(z) is a Carathéodory function

We assume a Hamiltonian system with eigenvectors |m〉
and eigenenergies Em. c†

i (ci) is the creation (annihilation)
operator for the single-particle orbital i, Z = ∑

m e−βEm the
partition function and β the inverse temperature. In the
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Lehmann representation, the matrix elements of the fermionic
Green’s function G(z) in the upper half complex plane C+ are

Gi j (z) = 1

Z

∑
m,n

〈n|ci|m〉〈m|c†
j |n〉

z + En − Em
(e−βEn + e−βEm ). (12)

We aim to prove for z ∈ C+ that iG(z) + (iG(z))† is a PSD
matrix, i.e., iG(z) is a Carathéodory function on C+. This
follows directly from the definition of a PSD matrix. For any
complex vector |x〉,

〈x|iG(z) + (iG(z))†|x〉 (13)

= 1

Z

∑
mni j

[
i(e−βEm + e−βEn )

z + En − Em
− i(e−βEm + e−βEn )

z∗ + En − Em

]

×〈n|cix
∗
i |m〉〈m|c†

j x j |n〉 (14)

= 1

Z

∑
mn

[
i(e−βEm + e−βEn )

z + En − Em
− i(e−βEm + e−βEn )

z∗ + En − Em

]

×〈n|
∑

i

cix
∗
i |m〉2 (15)

= 1

Z

∑
mn

2Im{z} (e−βEm + e−βEn )

Im{z}2 + (Re{z} + En − Em)2

×〈n|
∑

i

cix
∗
i |m〉2 � 0. (16)

iG(z) is therefore a Carathéodory function on C+.

2. i�(z) is a Carathéodory function

In order to show that self-energies are Carathéodory func-
tions, we make use of the Lehmann representation of the
self-energy �(z) proposed in Refs. [55,56].

The Lehmann representation of �(z) is constructed with
respect to a general fermionic Hamiltonian

H (t ) =
∑

i j

[Ti j (t ) − μδi j]c
†
i (t )c j (t )

+ 1

2

∑
i ji′ j′

Uii′ j j′ (t )c†
i (t )c†

i′ (t )c j′ (t )c j (t ), (17)

where ci(t ) = U †(t, 0)ciU (t, 0), U (t, t ′) =
TC exp(−i

∫ t
t ′ H (t1)dt1) is the system’s time-evolution

operator and TC is the time-ordering operator along the
Keldysh-Matsubara contour (t = 0 → ∞ → 0 → −iβ; note
that we restrict ourselves here to time-translation invariant
systems).

For the self-energy, additional bath degrees of freedom
(denoted s) are added to the physical orbitals (denoted i, j;
all orbitals denoted x, y) in order to emulate the retardation
effect (see Ref. [56] for details),

Heff(t ) =
∑

xy

hxy(t )c†
i c j . (18)

Heff is determined uniquely by making the s × s virtual sector
diagonal.

The explicit construction of the Lehmann representation of
�(z) for H (t ) is as follows [56]:

�i j (t, t ′) = δC (t, t ′)�HF
i j (t ) + �C

i j (t, t ′), (19)

�HF
i j (t ) ≡ 2

∑
i′ j′

Uii′ j j′ (t )〈TC c†
i′ (t )c j′ (t )〉Heff , (20)

�C
i j (t, t ′) ≡

∑
s

his(t )g(hss; t, t ′)h∗
js(t

′), (21)

where the correlated �C term is the self-energy of the ef-
fective model; g(ε; t, t ′) = i[1/(eβε + 1) − �C (t, t ′)]eiε(t−t ′ )

[�C (t, t ′) = 1 for t �C t ′, �C (t, t ′) = 0 otherwise] is the non-
interacting Green’s function of an isolated one-particle mode
(hmode = εc†c) with excitation energy ε.

We aim to prove that for z ∈ C+, i�(z) + (i�(z))† is a PSD
matrix, i.e., i�(z) is a Carathéodory function on C+. Fourier
transforming �C from time to frequency yields

�C
i j (iωn) =

∫ β

0
−i�C

i j (−iτ, 0)eiωnτ dτ (22)

=
∫ β

0

∑
s

his(0)h∗
js(0)

−e(β+τ )hss

eβhss + 1
eiωnτ dτ (23)

=
∑

s

his(0)h∗
js(0)(eiωnβ − ehssβ )

(1 + ehssβ )(hss − iωn)
(24)

=
∑

s

his(0)h∗
js(0)

iωn − hss
(25)

�C
i j (z) =

∑
s

his(0)h∗
js(0)

z − hss
, (26)

where ωn = (2n+1)π
β

are the fermionic Matsubara frequencies

so that eiωnβ = −1. Observe that �HF(z) is Hermitian and
independent of z and that the self-energy has the property
�(x + yi) = (�(x − yi))† for x, y > 0, for any complex vec-
tor |x〉,

〈x|i�(z) + (i�(z))†|x〉 (27)

= 〈x|i�C (x + yi) − i�C (x − yi)|x〉 (28)

=
∑

s

2y
∑

i j xix∗
j his(0)h∗

js(0)

(hss − x)2 + y2
(29)

=
∑

s

2y(
∑

i xihis(0))2

(hss − x)2 + y2
� 0. (30)

i�(z) is therefore a Carathéodory function on C+.

3. iM(z) is a Carathéodory function

The cumulant M is a derived object that has the properties
of a Green’s function but lacks the Fock contribution of the
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one-body Hamiltonian [42,57]. It has the definition of

M−1(z) = G−1(z) + F (31)

= (z + μ)I − �(z), (32)

where F is the Fock matrix. It is related to the Green’s func-
tion as

−iG−1(z) + i(G−1(z))† (33)

= −iM−1(z) + iF + i(M−1(z))† − iF † (34)

= −iM−1(z) + i(M−1(z))†. (35)

Since F is a constant Hermitian matrix, and the inverse of a
Carathéodory function (if it exists) is a Carathéodory function
[58], iM(z) is a matrix-valued Carathéodory function on C+.

III. RESULTS

A. Hubbard dimer

We now show results for analytical continuations. As a first
example we choose the Hubbard dimer, which consists of two
fermionic spin 1/2 sites (0 and 1), which may be occupied by
a particle with either spin ↑ or ↓. The Fock space of the system
contains 16 configurations, and exact solutions for Green’s
functions or self-energies can readily be obtained.

The Hamiltonian of the system is

H = H0 + HV + HH + HSB, (36)

where H0 = −∑
σ t (c†

0σ c1σ + h.c.) − ∑
i,σ μniσ describes

the usual quadratic spin-diagonal hopping and chemical
potential terms and HV = ∑

i UDi − ∑
i,σ

U
2 niσ a Hubbard-

type [59] on-site interaction, with Di denoting the double
occupancy on site i. In addition to these terms, we add
a magnetic field and a symmetry-breaking term HH =∑

i H (ni↑ − ni↓) and HSB = Ua(D0 − D1) + μa(n0↑ + n0↓ −
n1↑ − n1↓) + Ha(n0↑ − n0↓ − n1↑ + n1↓), with the aim of
breaking degeneracies and thereby producing a spectral func-
tion with additional features. For concreteness, we choose
β = 10, t = 1, U = 5, μ = 0.7, H = 0.3, Ua = 0.5, μa =
0.2, Ha = 0.03 and the summations are over i = 0, 1 and
σ =↑,↓. All Green’s function results are evaluated on the
Matsubara axis and stored in double precision as an input to
the interpolation algorithm.

Figure 3 shows the spectral function of the system. Figure 4
shows the real (green) and imaginary (purple) parts of the
Green’s function (top row), self-energy (middle row), and
cumulant (bottom row) as a function of frequency. Shown are
a sample diagonal (22) element (left column), a sample off-
diagonal (31) element (middle column), and an off-diagonal
element that has been obtained after rotating the fermion
operators by a random unitary rotation in orbital space (right
column).

All dashed lines were obtained exactly by diagonaliz-
ing the system in Fock space, obtaining all eigenvalues and
eigenvectors, and subsequently computing the real-frequency
Green’s function via the Lehmann representation. Once the
Green’s function was known, the process was repeated for the
noninteracting system and self-energies and cumulants were
obtained by inverting the Dyson equation in real frequencies.

FIG. 3. Total spectral function of the Hubbard dimer, obtained in
the site basis and in a randomly rotated basis, illustrating the basis
independence of the continuation procedure.

All colored (green, purple) lines were obtained using the
algorithm described in Sec. II. For the Hubbard dimer the
results both for the imaginary and the real parts match the ex-
act results precisely, showing the success of the Carathéodory
continuation method. Data was evaluated on the Matsubara
axis on a nonequidistant intermediate representation [60,61]
grid with 36 positive Matsubara frequency points, interpo-
lated, and evaluated just above the real frequency axis at
ω + iη for η = 0.01.

The two top left panels illustrate existing capabilities: di-
agonal entries of the Green’s function are strictly negative,
as Green’s functions are Nevanlinna [41]. Standard continua-
tion methods such as the Maximum Entropy method [11,16]
obtain a broadened version of these spectra (red line in the
inset of Fig. 4), from which the real parts can be obtained
via a Kramers-Kronig relation. Padé continued fraction ex-
pansions (not shown) yield spectral functions with negative
contributions. If only spectral functions are desired, diagonal
components of the Green’s functions are sufficient.

The top middle panel exhibits the new capability developed
in this work: the analytic continuation of off-diagonal matrix
elements. Shown is G13, which is one of many off-diagonal
components. As is evident, the imaginary part contains both
positive and negative entries, and such Green’s functions can
therefore not be obtained using standard Maximum Entropy
[11]. As with the diagonal part, real and imaginary parts are
related by a Kramers-Kronig transform.

The top right panel shows a particularly difficult case: an
orbital rotation with a random unitary matrix that mixes all
Green’s function components. While individual elements of
the Green’s functions are mixed, the rotation preserves the
positive definiteness of the Green’s function and therefore
its Carathéodory character. The total spectral function, which
is basis independent in theory, remains basis independent in
practice, giving a first indication that the precision of the
continuation and its mathematical properties may be sufficient
to perform algebraic operations on the real axis.

To explicitly show that a random orbital rotation leaves
the spectral function invariant, Fig. 3 shows the total spec-
tral function of this example, both obtained in the original
site basis and in the randomly rotated basis. Peak locations
as well as peak heights of the continuations agree after the
rotation.
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FIG. 4. Diagonal and off-diagonal entries of Green’s functions, self-energies, and cumulants of a Hubbard dimer (see text for parameters).
Dashed lines: exact data evaluated at ω + iη for η = 0.01. Solid lines: analytically continued data evaluated at η = 0.01. Inset and red line:
Maximum entropy continuation of G22. Top row: Green’s function. Middle row: Self-energy. Bottom row: Cumulant. First and second column:
diagonal and off-diagonal elements obtained in site-basis. Third column: Off-diagonal entry of data rotated by a random unitary matrix.

We now turn our attention to the middle row of Fig. 4.
Shown are continuations (real and imaginary parts) of the
self-energy. The middle left panel illustrates the present ca-
pabilities: similar to Green’s functions, diagonal entries of the
self-energy are Carathéodory, and can therefore be continued
with established methods [62]. Real parts can then be ob-
tained via a Kramers-Kronig transform. However, knowledge
of the diagonal parts is not sufficient for obtaining the spectral
function, as the inversion in the Dyson equation mixes diago-
nal and off-diagonal elements. Similar to the continuation of
Green’s function, no deviation between the exact answer and
the continued spectral function is visible.

The middle panel shows off-diagonal self-energies, which
exhibit both positive and negative contributions. The right
panel contains the self-energies in a randomly rotated basis
chosen to maximize off-diagonal contributions. The fact that
off-diagonal entries are accessible now allows one to perform
arithmetic operations such as the inversion of the Dyson equa-
tion on the real axis.

Finally, the bottom three panels of Fig. 4 show the cumu-
lant [42] for this case. The cumulant has the same units as
the Green’s function and can be thought of as the Green’s
function of an interacting system without its band structure
contribution. Given the knowledge of the Fock matrix and the
matrix-valued cumulant on the real axis, the spectral functions
and self-energies can then be obtained via inversion. As in the
case of the self-energies and Green’s functions, all structure
of the system is recovered.

B. Realistic example: Silicon

Next, we present results for a realistic ab initio simulation.
As an example we show data for crystalline Si, which is a
weakly correlated system for which the band structure is well
known. The system is solved within the fully self-consistent
GW approximation in Gaussian orbitals (gth-dzvp-molopt-sr
basis [63] and gth-pbe pseudopotential [64]), using integrals
generated by the PYSCF package [65]. Calculations are per-
formed on a 6 × 6 × 6 grid [66] with 26 orbitals per unit cell
and interpolated using a Wannier interpolation of Matsubara
data [67] on 52 IR positive frequencies [60,61] on a grid with
200 k points along a high-symmetry path. The total spectral
function of the system, obtained by taking the trace of the 26
elements of the matrix-valued Carathéodory interpolation of
Sec. II, is shown in the left panel of Fig. 5. The broadening
parameter of η = 0.01 Ha ∼3157K used for all continuations
here is larger than the temperature of T = 0.001 Ha ∼316K
and broadening effects of the band structure due to correla-
tions. Changing η to η = 0.001 and η = 0.0001 (not shown)
sharpens the peak structures but does not otherwise lead to any
changes. Due to the precision of the continuation, individual
bands, band gap, and degeneracies at high-symmetry points
and directions are clearly visible. (The indirect band gap of
∼2 eV differs from the experimental band gap of 1.1eV due
to the self-consistent GW approximation, basis set effects, and
finite size effects). High- and low-frequency values near ±
10 eV show continuation artifacts. We note that continuations
for the spectral function can be obtained directly from the
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FIG. 5. Total spectral function of Si evaluated along a high-symmetry path obtained within three approaches, evaluated just above the
real axis (ω + iη for η = 0.01). Left: continuation of the Green’s function G. Middle: continuation of the self-energy � followed by Dyson
equation at ω + iη. Right: continuation of the cumulant M and application of the Dyson equation at ω + iη.

diagonal elements of the Green’s functions via Nevanlinna
continuation [41], and do not require continuation of the off-
diagonal elements.

The middle panel shows the spectral function obtained
from a continuation of the self-energy with all off-diagonal
elements, followed by the Dyson equation on the real axis (see
Fig. 2). No deviation from the Green’s function data is visible,
illustrating the precision of the self-energy continuation. As in
the left panel, bands, degeneracies, and band gaps are clearly
visible.

Finally, we show the spectral function obtained from the
cumulant in the right panel. In realistic systems, cumulants are
more convenient to work with than self-energies and Green’s
functions, as they have the same units as Green’s functions,
and as (due to the elimination of the Fock term) most of their
structure lies at low energies, thereby increasing the precision
of arithmetic operations and analytical continuations. No de-
viation from the Green’s function data is visible, illustrating
that the numerical solution of the Dyson equation is possible
on the real axis.

Carathéodory continuations are sensitive to the precision of
the input data. In practice, for large systems, we find that some
eigenvalues of the Pick matrix dip below zero due to finite
double precision and roundoff errors, and that therefore no
Carathéodory interpolant exists on the unit disk. This is illus-
trated by Fig. 6, which shows the Pick matrix eigenvalues for
the Green’s function continuations of Fig. 5 . However, even

FIG. 6. Eigenvalues of the Pick matrices, Eqs. (3) (blue) and (4)
(red). Top panel: scalar (Nevanlinna [41]) continuation of the Green’s
function of Si. Bottom panel: Eigenvalues of the generalized Pick
matrix of the matrix-valued problem.

in the case where the Pick criterion is violated, interpolations
can still be performed, and the evaluation just above the real
axis (in our case shifted by η = 0.01) often leads to positive
definite spectral functions. Negative contributions, where they
occur, lie very close to the real axis and in frequency regions
above the 10 eV shown here.

C. Diagonal approximation of the self-energy

It is common practice to perform continuations only of
the diagonal parts of the self-energy or cumulant, truncating
all off-diagonal contributions [37–40]. In systems where the
self-energy can be chosen to be diagonal for all frequencies
due to symmetry, such as in rotationally invariant three-orbital
systems [68–70] and certain model systems, this is exact.
However, self-energies are in general off-diagonal, and can
only be diagonalized for one Matsubara frequency at a time.
Performing a diagonal truncation of the self-energy is an un-
controlled approximation.

To illustrate the effect of the off-diagonal entries of the
self-energy on the spectral function, we show in Fig. 7 re-
sults from continuing the self-energy with all entries along
with results obtained by only continuing the diagonal part of
the dynamical self-energy and results that completely omit
the dynamical part of the self-energy. While overall features
remain robust, the resulting bands of the diagonal and mean
field continuation are shifted and distorted with respect to the
full matrix continuation, indicating that a correct treatment of
the off-diagonal matrix elements of the self-energy is essential
for precise results [38], even in systems that are only weakly
correlated.

IV. CONCLUSIONS

In conclusion, we have shown that matrix-valued Green’s
functions, self-energies, and cumulants are related to
Carathéodory and Schur functions. With this analytic struc-
ture, we were able to demonstrate the conditions under
which a causal positive semidefinite interpolation exists, to
construct an interpolation algorithm, and to parametrize all
causal interpolations. An application to a simple benchmark
problem showed that diagonal and off-diagonal parts of the
self-energies, cumulants, and Green’s functions could be re-
covered to high precision. A demonstration for a real materials
multiorbital problem showed that the analytic continuation
commutes with the application of the Dyson equation, and that
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FIG. 7. Effect of the commonly used diagonal approximation of the self-energy on the spectral function. Left panel: Spectral function
obtained by continuing the self-energy including all off-diagonal parts; Middle panel: Spectral function obtained by omitting the dynamical
self-energy altogether; Right panel: Spectral function obtained by continuing only the diagonal parts of the dynamical self-energy using the
method of Ref. [41].

a diagonal approximation of the self-energy did not produce
satisfactory results.

Knowledge of the off-diagonal elements of the real-
frequency Green’s functions, self-energies, and cumulants is a
prerequisite for the evaluation of the equations of many-body
theory on the real axis including the real-frequency calcula-
tion of susceptibilities and other response functions, and the
analysis and inversion of self-energies.

In systems where precise input data is available, our
method provides accurate continuations of off-diagonal terms.
In system where substantial noise is present, such as in those
solved by multiorbital QMC impurity solvers [5], a positive
definite interpolation does not exist. Causal projections or

generalizations of the maximum entropy fitting procedure
[37,38] may then be used instead. The derivation of such
methods, in addition to the development of methods for the
continuation of bosonic quantities, is an interesting problem
for future investigation.
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