
PHYSICAL REVIEW B 104, 155439 (2021)

Floquet-engineered half-valley-metal state in two-dimensional gapped Dirac materials
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The half-valley-metal (HVM) states where the gap of one valley is closed while the other valley remains
semiconducting are quite crucial for achieving 100% valley polarization and valley-Hall-effect. However, the
symmetry of materials makes the HVM states scarce. In this work, using Floquet theory, we demonstrate
the laser-dressed HVM states in two-dimensional (2D) gapped-Dirac materials. We show that as a circularly
polarized laser is applied to a 2D gapped-Dirac material, the gaps of the two valleys (K and K’) can be
regulated by varying the photon energy, amplitude and chirality of the laser. At specific photon energies and laser
amplitudes, the linear energy-momentum dispersion of Dirac materials is restituted in one valley while the gap in
the other valley is preserved. On the basis of first-principles calculations, we also propose a promising candidate
material, boron antimonide (BSb) monolayer to achieve the laser-dressed HVM states. More interestingly, the
Berry curvature in the two valleys can be tuned by changing the laser parameters.
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I. INTRODUCTION

Recently, valley characterized as local energy extrema of
the bands in momentum space, received intensive attention
as a new degree of freedom of electrons. Similar to charge
and spin, valley allows the constitution of binary logic states
which fosters potential applications for information process-
ing [1–6]. Extensive investigations have been focused on the
valley-dependent effects such as valley polarization in mono-
layer group-IV transition metal dichalcogenides (TMDs),
which requires a direct bandgap, inequivalent and large sepa-
ration of the valleys at K and K ′ points in momentum space
[3,7–11]. Meanwhile, the phenomenon of spin-valley locking
in TMDs system demonstrates that spin and valley are coupled
with each other, which excites the intersection of valleytronics
and spintronics [2,7,12–15]. The demands for the generation
and manipulation of valley polarization create many effec-
tive strategies, such as optical pumping [14,16,17], external
field including magnetic effects [18–26] and electric effects
[27–30].

Analogous to the case of spin polarization, valley polariza-
tion can also be achieved in half-valley-metal (HVM) states
where the gap of one valley is closed while the other valley re-
mains semiconducting. However, the symmetries of materials,
such as the time-reversal symmetry, make the intrinsic HVM
states scarce. Very recently, Duan et al., demonstrated that a
Dirac-type HVM state with a Dirac cone in one valley and a
gap in the other valley can be formed in H-FeCl2 monolayer
by regulating the strength of on-site Coulomb interaction [31].
Unfortunately, regulation of on-site Coulomb interaction of
materials remains challenging in experiments.
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Along with the flourishing research on topological mate-
rials [32,33], researchers have found that the periodic laser
field provides an additional mean to effectively manipulate
the dispersion of Floquet-Bloch states in electronic systems
via the coupling between electron and electromagnetic field,
generating many scenarios and properties [34–38]. With the
help of the model Hamiltonian and Floquet theory, various
materials, such as quantum wells, quantum rings, graphene,
and topological insulators [39–49] have been studied, where
the periodic laser field induces topological phase transitions.

In this work, using the Floquet-Bloch theory in combi-
nation with a model Hamiltonian, we demonstrate that a
circularly polarized laser can induce a photon-dressed Dirac-
type HVM states in two-dimensional (2D) gapped-Dirac
materials by regulating the laser energy, amplitude and chi-
rality. On the basis of first-principles calculations, we also
propose a candidate material, boron antimonide (BSb) mono-
layer to realize this model. Our results offer a promising
strategy to achieve full spin and valley polarization in HVM
states.

II. RESULTS AND DISCUSSION

A. Model of Floquet-engineered HVM state in 2D gapped Dirac
materials

2D gapped Dirac materials, such as gapped graphene,
boron nitride monolayer and transition-metal dichalcogenide
monolayers are currently considered as the candidates for the
next generation of optoelectronic devices, due to the unique
electronic band structures. The electronic band lines of these
materials is parabolic near the band edges but turn to linear
dispersion (Dirac cone) as the band gap is closed. It has been
revealed that the band gap of the gapped Dirac materials can
be regulated via the interaction of electrons with a strong off-
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resonant electromagnetic field [39]. In this work, we describe
the electronic band structure of a 2D gapped Dirac material
in the proximity of Fermi level using a two-band Hamiltonian
for the spinless case [39]:

H =
(

m1 + τλc τkx − iky

τkx + iky m2 − τλv

)
, (1)

where m1 and m2 are the mass terms which serve as the
source of gap, λc,v is the spin-orbit splitting of the conduction
(valence) band, τ = ±1 is the valley index which corresponds
to the two valleys at the corners of the Brillouin zone (K and
K ′), and k = (kx, ky) is the wave vector relative to the K and
K ′ points.

When an electromagnetic field is applied, the properties of
dressed electrons can be described by the Hamiltonian:

H (k) =
(

m1 + τλc τ (kx + Ax ) − i(ky + Ay )
τ (kx + Ax ) + i(ky + Ay ) m2 − τλv

)
, (2)

which is obtained by making Peierls substitution k → k + A
in Eq. (1). A = (Ax, Ay, 0) is the vector potential of the elec-
tromagnetic field. Here, the dressing field is assumed to be a
left-handed circularly polarized laser (CPL) in the xy plane
with the vector potential of A = A(cos(ωt ), sin(ωt ), 0). The
intensity of the laser can be correlated to the photon energy
(h̄ω) and laser amplitude (A) [39]. When the laser frequency
ω is far from all resonant frequencies of electronic system,
photons cannot be absorbed by electrons near the band edge.
In this case, Eq. (2) can be approximated to an effective
Hamiltonian [40,50], which reads

Heff = H0 + [H+1, H−1]

h̄ω
. (3)

The photon dressed Hamiltonians H0 and H±1 can be ob-
tained with Hn = 1

T

∫ T
0 H (k)einωt dt , where T is the periodicity

and h̄ω is the photon energy of the CPL.
The time-dependent Hamiltonian can be reduced to the

static equation Heff� = E� with the eigenvalues of

E± =
mA

1 + mA
2 ±

√(
mA

1 − mA
2

)2 + 4
(
kx

2 + ky
2
)

2
, (4)

where mA
1 = m1 + τ (λc − A2

h̄ω
) and mA

2 = m2 − τ (λv − A2

h̄ω
).

The renormalized band gap of the gapped Dirac materials in K
and K ′ valleys (kx = ky = 0) dressed by a CPL can be written
as

� =
∣∣∣∣m′

1 − m′
2 − 2τ

A2

h̄ω

∣∣∣∣, (5)

where m′
1 = m1 + τλc and m′

2 = m2 − τλv . �0 = m′
1 − m′

2 is
the intrinsic band gap in the two valleys. Clearly the dressed
band gap at the two valleys exhibit different variation trends
as a function of amplitude A, as shown in Fig. 1(a). The band
gap at the K ′ (τ = −1) valley increases monotonously with
increasing amplitude A, whereas the band gap at the K (τ = 1)
valley decreases to zero and then increases. The critical point
of closing the band gap at the K valley is determined by the
equation:

A =
√

2�0h̄ω. (6)

FIG. 1. Variation of the band gaps at the K and K ′ points under
circularly polarized laser as a function of amplitude and photon en-
ergy of the laser obtained from the effective Hamiltonian of Eq. (5).
(a) The photon energy is set to h̄ω = 0.5 eV . The half-valley-metal
(HVM) state emerges as the band gap at the K point is closed. (b)
The dependence of the band gaps on the photon energy varying
from 0.1 to 0.9 eV and the amplitude. The parameters are set to
m1 = −m2 = 0.155, λv = 0.0065 and λc = 0.005.

Notably, accompanied by the close of the band gap at
the K valley, a linear energy dispersion (half-Dirac cone)
emerges, according to Eq. (4), giving rise to the Dirac-type
HVM state [31]. The critical laser amplitude increases with
the increase of the photon energy of the CPL, as shown in Fig.
1(b). Apart from the HVM state, the difference of band gap
between the two valleys (referred to as valley splitting) is also
greatly enhanced by the dressed CPL, which is beneficial for
achieving the valley Hall effect. The band gap evolution of
the two valleys reverses, as a right-handed CPL is applied. It
should be stressed that Eq. (6) does not work for low photon
energy (h̄ω < �0), because the high order terms of 1/ω are
excluded.

B. Floquet-engineered HVM state in BSb monolayer

To achieve the laser-dressed HVM state described in the
above model, we consider a 2D hexagonal boron antimonide
(BSb) monolayer by means of first-principles calculations.
BSb monolayer has the same lattice structure as hexagonal
BN monolayer, except the different bond length and lattice
constant, as shown in Fig. S1 [50]. Our calculations show that
the lattice constant of BSb monolayer is 3.74 Å and the bond
length between B and Sb atoms is 2.16 Å, which are in good
agreement with the results of a previous work (lattice param-
eter is 3.68 Å and bond length is 2.12 Å) [51]. The absence of
imaginary frequencies in phonon spectrum demonstrates the
stability of BSb monolayer [51].

Figure 2(a) plots the orbital-projected band structures of
the BSb monolayer without spin-orbit coupling (SOC) effect.
It is clear that BSb monolayer exhibits the valley-shaped
dispersion near K (and K ′) point. The band gap (334 meV)
is much smaller than that of the BN monolayer, due to the
small electronegativity of Sb atom compared with N atom.
The valence band maximum (VBM) and conduction band
minimum (CBM) are mainly contributed by the pz orbitals of
B and Sb atom, respectively, which is further verified by the
spatial distribution of the Kohn-Sham electron wave functions
of CBM and VBM plotted in Figs. 2(c) and 2(d).
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FIG. 2. (a) Electronic band structures of BSb monolayer without SOC. The Fermi level is set to zero. The orange and pale blue in band
structure represent the contribution of B − pz orbitals and Sb − pz orbitals. (b) Electronic band structure of BSb monolayer with SOC. The
black solid line and red dotted line represent the results from DFT calculation and Wannier fitting, respectively. (c) and (d) The electron wave
functions of conduction band maximum and valence band maximum of BSb monolayer.

When the SOC effect is involved, spin splitting emerges
near the K and K ′ points, as shown in Fig. 2(b), due to
the heavy Sb atom. The magnitudes of the spin splitting are
about 13 meV (for VBM) and 10 meV (for CBM), which
reduce the band gap of the BSb monolayer to 310 meV. The
electronic energy spectrum of the BSb monolayer in the two
valleys can also be fitted by using the two-band Hamiltonian
of Eq. (1) with m1 = 0.155, m2 = −0.155, λv = 0.0065, and
λc = 0.005. Notably, the spins of the VBM (and CBM) at
the K and K ′ valleys of the noncentrosymmetry BSb mono-
layer are opposite due to the time-reversal symmetry. This
spin-valley locking effect offers a promising approach for spin
manipulation.

The Floquet-Bloch band structures of the BSb monolayer
dressed by CPL were then calculated by using the Wannier
functions and Floquet-Bloch theory. We construct the effec-
tive Hamiltonian (HW (k)) in the Wannier basis with pz orbital
of every B and Sb atom as projected orbitals. As shown in
Fig. 2(b), the band structures from Wannier functions agree
well with those of the first-principles results, which guaran-
tees the validity of the Hamiltonian.

According to the Floquet theorem, the effect of time-
periodic laser field is treated by the Peierls substitution

HW (k) → HW (k, t ) = HW (k + A(t )), (7)

where A(t) is the time-dependent vector potential of the ap-
plied laser field. Based on the Wannier basis, the Floquet
Hamiltonian HW

F (k) with fifth order (n = −2,-1, 0, 1,2),
which is enough to be convergent, is rewritten as [47]

HW
F (k) =

⎡
⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...

· · · H−1,−1 + Iω H−1,0 H−1,1 · · ·
· · · H0,−1 H0,0 H0,1 · · ·
· · · H1,−1 H1,0 H1,1 − Iω · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

,

(8)

where the Hm,n is a static Hamiltonian and can be written as

Hm,n = 1

T

∫ T

0
ei(m−n)ωt HW (k, t )dt, (9)
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FIG. 3. (a)–(c) Band structures of BSb monolayer around K and K ′ valley near Fermi level under the left-handed CPL with amplitudes of
320 V/c, 514 V/c and 600 V/c and phonon energy of 6 eV, respectively. (d) The variation of bandgap at the K and K ′ valley as a function of
amplitude. The solid lines represent the result from the model. The dots represent the result from BSb monolayer. (e) Three-dimensional band
structure near the K point with A = 514 V/c. (f) The renormalized Berry curvature around K and K ′ with different amplitudes.

where the integers m and n define the Hilbert space [40]. The
Floquet-Bloch band structures can be obtained by diagonaliz-
ing HW

F (k).
In our calculations, we adopted a left-handed

CPL with the time-dependent vector potential of
A = A(cos(ωt ), sin(ωt ), 0) to address the electronic band
structures of the BSb monolayer. The CPL can mix the
photon-dressed Floquet side bands to reach the possibility of
realizing the HVM state. Under the irradiation of the CPL,
the time-reversal symmetry is broken in the BSb monolayer,
which lifts the degeneracy of the K and K ′ valleys. Therefore,
the band gaps of the two valleys exhibit different evolution
with the increase of laser amplitude, as shown in Figs.
3(a)−3(d). Such a difference can be regarded as the result of
optical Stark effect [46]. In order to show the band evolution
near the critical point more clearly, we adopted a large
off-resonance photon energy of 6 eV in these figures. As
laser amplitude increases to ∼514 V/c (c is the velocity of
light), the band gap at the K valley vanishes, while the K ′
valley remains gapped, as shown in Fig. 3(b). When the laser
amplitude further increases, the band gap at the K valley is
reopened and increases with the increase of laser amplitude,
as shown in Figs. 3(c) and 3(d). Notably, the variation of band
gaps of the two valleys obtained from the density functional
theory (DFT) calculations can be well fitted by using Eq. (6),
as shown in Fig. 3(d), demonstrating the reliability of our
model without high order terms of 1/ω. Accompanied by
the closing of the band gap at the K valley, a linear energy

dispersion (Dirac cone) emerges, as shown in Fig. 3(e). These
results are in good agreement with the predictions of our
simple model. Notably, the Dirac-type HVM state in the BSb
monolayer allows the conducting electrons to be fully spin
and valley polarized, which offers a promising platform for
manipulating the spin and valley degrees of freedoms.

In the equilibrium state (without CPL), BSb monolayer has
nonzero Berry curvature in the region near the valleys, but the
Berry curvature in the K and K ′ valleys has the opposite signs
due to the time-reversal symmetry. We evaluate the Floquet-
engineered Berry curvature near the two valleys by supposing
the Fermi occupation function of the laser-dressed BSb mono-
layer is close to that of the equilibrium state. From Fig. S2
[50] and Fig. 3(f), one can find that the two valleys have the
opposite Berry curvature when the laser amplitude is smaller
than the critical point, similar to the case of the equilibrium
state. However, when the laser amplitude exceeds the critical
point, accompanied by the reopening of the band gap at the K
valley, the sign of the Berry curvature at the K valley reverses.
Similar results have also been found in Floquet-engineered
twisted bilayer graphene [49]. The fully spin-valley-polarized
carriers of the HVM state may be promising in realizing spin-
valley Hall effect without the need of vertical magnetic field.

Floquet-engineered electronic band structures at the two
valleys are highly dependent on the chirality of CPL. For
a right-handed CPL, the evaluation of band gaps and Berry
curvature at the K and K ′ valleys exchanges, i.e., band gap
closing (and reopening) and the reverse of Berry curvature
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FIG. 4. Dependence of the band gap of BSb monolayer in the
K valley on the photon energy E, and amplitude A. The half-valley-
metal state is marked by red dashed lines.

occurs at the K ′ valley, as shown in Fig. S3 [50]. The tunable
Berry curvature in the photon-dressed BSb monolayer holds
great promise in valleytronics devices.

The Floquet-engineered band gap at the K valley (under a
left-handed CPL) of the BSb monolayer as function of laser
amplitude and photon energy is plotted in Fig. 4. The phase
diagram can be divided into two regions. In region I, the two
valleys have opposite Berry curvature and the band gap at
the K point decreases with the increase (or decrease) of laser
amplitude (or photon energy). In the region II, the band gap
of the K valley is reopened and increases with the increase
(or decrease) of laser amplitude (or photon energy), and the
sign of the Berry curvature in the K valley reverses. The two
valleys have the same signs of Berry curvature. The interface
between the two regions corresponds to the half-Dirac HVM
state determined by Eq. (6). The larger the laser energy, the
greater the laser amplitude is required to realize the HVM
state, which agrees with the previous Hamiltonian model in
Fig. 1(b). The band gap in the K ′ valley increases with the
increase of laser amplitude in the whole region. The laser-
dressed HVM state can lead to fully spin-valley-polarized
currents where the carriers coming from a single valley and
a single spin channel.

It is worth mentioning that accompanied by the reversion of
the Berry curvature in the K valley, a topologically nontrivial
state is expected in region II, because the two valleys have the
same sign of Berry curvature. However, from our present cal-
culations, the corresponding state is still topologically trivial.
We notice the small negative Berry curvature regions near the
two valleys, as shown in Fig. 3(f), which can be attributed to
the abnormal peak occur near the K ′ valley, as shown in Fig.
S4 [50]. The two abnormal negative Berry curvature regions
may offset the positive Berry curvature in the whole Brillouin
zone.

Finally, we should stress that we adopt a high photon
energy of 6.0 eV to show the HVM more clearly in Fig. 3.
Actually, according to Eq. (6) and Fig. 4, HVM state can also
be achieved under lower photon energy. For h̄ω = 0.6 eV, this

corresponds to the amplitude A of 36.5 V/m, and the laser
intensity that can induce HVM state in BSb monolayer is only
about 0.18 × 1011 W/cm2, which is in the same order of the
laser employed in a previous literature [40]. This intensity is
very low and will not heat the BSb monolayer. Additionally,
adopting short intermediate timescales can also suppress the
possible heating rate [52].

III. CONCLUSIONS

In summary, we demonstrate that the coupling between
valley and electromagnetic field can lead to the HVM state in
the Floquet-engineered 2D gapped Dirac materials. The HVM
state obtained at specific photon energy and laser amplitude
has a linear energy dispersion (half-Dirac cone) in one valley
but a band gap in another valley, which guarantees 100%
valley and spin polarization. Taking the BSb monolayer as an
example, we give the phase diagram of the Floquet-engineered
electronic structures by using first-principles calculations and
Floquet-Bloch theory. Our calculations show that under a cir-
cularly polarized laser, the band gap in one valley decreases
with the increase of laser amplitude and vanishes at a crit-
ical point, while the band gap in the other valley increases
monotonously with the increase of laser amplitude. Accompa-
nied by the close of the band gap at the critical point, a linear
energy dispersion (Dirac cone) emerges in the valley. Further
increase of the laser amplitude, the band gap is reopened
along with the reversion of the Berry curvature in the valley.
The laser-dressed half-Dirac HVM state in the gapped Dirac
materials offers a promising platform for the generation and
manipulation of spins and valleys in valleytronics devices.
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APPENDIX: DETAILS FOR FIRST-PRINCIPLES
CALCULATIONS

The first-principles calculations were performed in the
Vienna ab initio simulation package (VASP) with projector
augmented wave method in the framework of DFT [53–55].
The generalized gradient approximation with Perdew-Burke-
Ermzer was applied to describe the interaction between
valence electrons and ionic cores [56,57]. All the atoms were
fully relaxed without any symmetry restriction until the resid-
ual forces on each atom are smaller than 0.01 eV/Å. The
criterion for energy convergence is 10–6 eV/cell. The energy
cutoff of the plane waves was chosen as 500 eV [58]. The
Brillouin zone integration was sampled by an 11 × 11 × 1 k-
grid mesh for calculation. A large vacuum space of 20 Å
was applied along the z direction to avoid interaction between
adjacent images.
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