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Plasmonic drag photocurrent in graphene at extreme nonlocality
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It is commonly assumed that the photocurrent in two-dimensional systems with a centrosymmetric lattice
is generated at structural inhomogeneities, such as p-n junctions. Here, we study an alternative mechanism
of photocurrent generation associated with the inhomogeneity of the driving electromagnetic field, termed
“plasmonic drag.” It is associated with direct momentum transfer from the field to conduction electrons and
can be characterized by a nonlocal nonlinear conductivity σ (2)(q, ω). By constructing a classical kinetic model
fully accounting for nonlocality, we show that the nonlinear conductivity is resonantly enhanced for wave phase
velocity coinciding with electron Fermi velocity. The enhancement is interpreted as phase locking between
electrons and the wave. We discuss a possible experiment where a nonuniform field is created by a propagating
graphene plasmon and find an upper limit of the current responsivity vs plasmon velocity. This limit is set by
a competition between resonantly growing σ (2)(q, ω) and the diverging kinetic energy of electrons as the wave
velocity approaches the Fermi velocity.
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I. INTRODUCTION

It is commonly believed that photocurrent generation in
two-dimensional (2D) systems without lattice inversion asym-
metry occurs at structural inhomogeneities, such as p-n
junctions [1–3] and contacts with metals [4,5]. At the same
time, the inversion asymmetry of the driving electromagnetic
field can lead to the emergence of the photocurrent. The
physics beyond such photocurrent is the direct transfer of
electromagnetic field momentum to the electrons, termed in
the literature the photon drag [6] or the dynamic Hall effect
[7,8]. As the optoelectronic structures become deeply sub-
wavelength, their electromagnetic response is dominated by
near fields. The mechanism of current generation by a field
with finite momentum is thus termed plasmonic drag [9–11],
implying that momentum is transferred via excitation of 2D
plasmons.

Experimental examples of systems supporting drag pho-
tocurrent are gate edges [1] and grating couplers without
inversion symmetry [12,13] (Fig. 1). It can occur upon tilted
illumination of a fully symmetric structure with identical con-
tacts or illumination of one of its contacts which acts as a
photon-to-plasmon coupler [14]. Compared to photovoltaic
and photothermoelectric effects, the plasmonic drag does not
need channel doping nonuniformity. We may therefore specu-
late that it is the most omnipresent mechanism of photocurrent
generation in two dimensions [15].

As the size L of optoelectronic devices shrinks, the charac-
teristic wave number q ∼ L−1 of electromagnetic near fields
(including plasmons) goes up [16]. At large wave vectors,
the current-field relations become nonlocal and reflect the
dynamics of individual electrons. While the linear nonlocal
response of 2D systems has been studied quite well [17–19],
the nonlinear processes of photocurrent generation at strong
nonlocality have been poorly explored.

Here, we theoretically explore the limits of plasmonic
drag in graphene at arbitrarily strong nonlocality. It is
realized when the phase velocity of plasma waves vph

approaches the Fermi velocity of electrons v0 while the
plasmon wave vector reaches q = ω/v0. According to theo-
retical [20] and experimental [19] works, this is the ultimate
(extreme) limit of nonlocality achievable in 2D systems.
Our choice of graphene is dictated by recent observations
of ultraslow and ultraconfined acoustic graphene plasmons
[19,21–23] and their potential for photocurrent harvesting
[24].

A number of works dealt with the nonlinear optical proper-
ties of graphene [11,12,25–27], but the resulting expressions
were analyzed only in the long-wavelength limit. Very re-
cently, Ref. [28] predicted an enhancement of the rectified
current in graphene at strong nonlocality via the solution
of the time-dependent Schrodinger equation. This approach
is applicable to arbitrarily strong fields but does not con-
sider carrier scattering as a limiting factor for any resonant
effect. Here, we derive the nonlocal nonlinear conductivity
of graphene σ (2)(q, ω) as the proportionality coefficient be-
tween the photocurrent density and squared ac electric field,
j2 = nqσ

(2)(q, ω)E2
1 . It possesses a square-root singularity at

a phase velocity approaching the Fermi velocity of 2D elec-
trons. We interpret this singularity as phase locking between
dragged electrons and the electromagnetic field. Second, we
quantify the electromagnetic energy flux Spl carried by 2D
plasmons at large q. The ratio of these quantities is the current
responsivity measured in photodetection experiments. The en-
ergy flux has a singularity counterbalancing that in σ (2), which
appears due to the large kinetic energy of the charge carriers
in the electromagnetic wave. As a result, the photocurrent
responsivity has a universal maximum order of 0.25e/EF ,
achieved at ω ≈ 1.4qv0.

2469-9950/2021/104(15)/155438(9) 155438-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7761-8971
https://orcid.org/0000-0001-7443-0685
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.155438&domain=pdf&date_stamp=2021-10-28
https://doi.org/10.1103/PhysRevB.104.155438


VLADIMIR SILKIN AND DMITRY SVINTSOV PHYSICAL REVIEW B 104, 155438 (2021)

FIG. 1. Possible structures where plasmonic drag can be ob-
served upon diffraction of the incident plane electromagnetic wave:
(a) graphene under the edge of a metal gate, (b) graphene con-
tacted by metal, and (c) graphene under the grating lacking inversion
symmetry.

II. KINETIC THEORY OF THE PLASMONIC
DRAG PHOTOCURRENT

Evaluation of a photocurrent j2 under illumination of any
setup with a 2D channel (including those shown in Fig. 1) can
be factored into three main steps: (1) finding the nonlinear
response relations between j2 and the electric field in the 2D
plane E(r, t ), (2) solution of the linear-response diffraction
problem for a given setup, and (3) substitution of linear-
response fields into the nonlinear material relations. At the
first stage, the electric field in the 2D plane E(r, t ) is assumed
to be fixed, and nonlinear material relations are derived from
classical or quantum kinetic equations [29]. Deriving the rela-
tion between the total field E(r, t ) and the incident field Einc

is, on the contrary, a linear-response, purely electromagnetic
problem. Its solution requires knowledge of the linear 2D
conductivity σ (1) and structure of the dielectric environment.
All effects of the self-consistent field are taken into account

at that stage and are decoupled from the evaluation of the
nonlinear response.

In further calculations, we shall specify the full field
acting on a two-dimensional system of the form E(r, t ) =
E1 cos(qr − ωt ) = 1

2 E1ei(qr−ωt ) + H.c. (the subscript 1 is the
order with respect to the electromagnetic field; 0 corresponds
to unperturbed quantities). Such an approximation implies
that most of the diffracted field is carried by 2D plasmons.
This fact is indeed justified by the numerical and analytical
solutions of the diffraction problems [13,14,30]. Possible ex-
tensions of our approach to arbitrary nonuniform fields will
be sketched in Sec. IV. Following the decoupling approach
described above, we shall not relate E1 to the incident field
Einc. These relations depend on the details of the dielectric
environment and can be found elsewhere [13,14,30–32]. The
plasmon field is longitudinal, with E1 ‖ q.

Our starting point for the evaluation of the photocurrent
is the classical kinetic equation for the electron distribution
function f (r, p, t ). The above approach is valid at classi-
cal frequencies and wave vectors, h̄ω � EF and q � qF ,
where EF and qF are the Fermi energy and wave vector,
respectively. In that case, interband transitions are blocked,
although at higher frequencies they may also contribute to
the drag photocurrent [33,34]. We search for the distribu-
tion function as a power series of the electromagnetic field,
f = f0 + f1 + f2, where fn ∝ En

1 . The linear-response part
of the distribution function is decomposed as f1(r, p, t ) =
1
2 f1(q, p, ω)ei(qr−ωt ) + H.c. It obeys the kinetic equation

−i(ω − qvp + i/τ ) f1(q, p, ω) − eE1
∂ f0

∂p
= 0, (1)

where vp is the electron velocity, τ is the momentum relax-
ation time, f0 is the equilibrium (Fermi) distribution function,
and e > 0 is the elementary charge. The nonlinear distribution
function f2(r, p, t ) will possess harmonics oscillating at zero
and double (2ω) frequency. Being interested only in the direct
photocurrent, we solve the kinetic equation only for the time-
averaged distribution function 〈 f2(r, p, t )〉t ≡ 〈 f2〉:

−e

〈
E(r, t )

∂ f1(r, p, t )

∂p

〉
t

= −〈 f2〉
τ

. (2)

By virtue of the continuity equation, the distribution function
〈 f2〉 is automatically uniform in space. We have also neglected
the second-order electric field E2 in Eq. (2). It does not emerge
in short-circuit measurements of the photocurrent. For open-
circuit measurements of the photovoltage, it is given by E2 =
j2/σdc, where σdc is the dc conductivity of graphene.

Substituting the complex representations for the electric
field E(r, t ) and distribution function f1(r, p, t ) into (2) and
performing the time averaging, we obtain

〈 f2〉 = eτ

2
Re

{
E1

∂ f1(q, p, ω)

∂p

}

= e2E2
1

2

∂

∂p

{
∂ f0/∂p

(ω − qvp)2 + τ−2

}
. (3)

The rectified current is obtained by integration over mo-
mentum space j2 = −eg

∑
p 〈 f2〉, where g = 4 is the electron

degeneracy factor in graphene. Apparently, the rectified
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FIG. 2. Color map of nonlinear conductivity σ (2)(q, ω) vs fre-
quency ν = ω/2π and wave vector q. Vertical line (a) corresponds
to the constant wave vector q = qF ; line (b) shows the dispersion of
graphene plasmons. Momentum relaxation time τ = 10−13 s; carrier
density n = 1010 cm−2.

current is proportional to E2
1 and directed along nq = q/q.

Introducing the nonlinear conductivity j2 = σ (2)(q, ω)E2
1 nq,

we find (see Appendix A for details)

σ (2)(q, ω) = ge3

2π h̄2v0

f0(0)

q2

×
(̃

vph + Im
(̃vph − iνeff )

√
(̃vph − iνeff )2 − 1

2νeff

)
,

(4)

where ṽph = ω/qv0 is the dimensionless phase velocity, νeff =
(qv0τ )−1 is the effective collision frequency, and f0(0) is the
equilibrium electron distribution function evaluated at zero
energy. Accounting for the holes in graphene amounts to the
replacement f0(0) → 2 f0(0) − 1.

The most remarkable property of nonlinear conductivity
(4) is the presence of the square-root singularity as the wave
phase velocity ω/q approaches the electron Fermi velocity
from either side, as shown in Fig. 2. A detailed inspection
shows that the singular contribution to the current comes
from electrons moving in phase with the wave, i.e., at angles
cos θ ≈ ω/(qv0). We may say that these electrons are trapped
in the minima of the harmonic potential induced by the wave
and move synchronously with the wave velocity. The growth
of σ (2) with increasing wave vector q is linear at the initial
stage, as dictated by symmetry considerations [8]. Further, it
becomes superlinear as q approaches the singularity.

The effect of the finite scattering rate τ−1 on nonlinear
conductivity is highly nontrivial. It depends critically on the
ratio of the phase velocity ω/q and Fermi velocity v0, which

FIG. 3. Dependence of the nonlinear conductivity σ (2) on (a) the
normalized phase velocity at constant wave vector q = qF =
20 μm−1, corresponding to line cut (a) in Fig. 2, and (b) ω and q
bound by plasmon dispersion at various carrier densities n = 1010,
1011 and 1012 cm−2. Momentum relaxation time τ = 10−13 s.

is illustrated in Fig. 3(a). For slow waves with ω/qv0 < 1, the
nonlinear conductivity σ (2) is approximately proportional to
the relaxation time. This result is interpreted as follows: the
amount of momentum transferred from the field to electrons is
proportional to the rate of Landau damping. Being a collision-
less process, it does not depend on τ . The current established
at a given momentum transfer rate (i.e., at given force density)
is inversely proportional to the electron scattering rate.

The situation for fast waves, ω/qv0 > 1, is different. Such
waves cannot induce intraband Landau damping by virtue
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of momentum conservation, and the finite scattering rate is
required to soften the momentum constraint. At the same time,
scattering acts to dissipate the generated current. As a result,
σ (2) becomes independent of the scattering time for relatively
fast phase velocities ṽph � 1. The nonlinear conductivity in
this limit is given by Eq. (A9). This τ independence of σ (2)

breaks down as we approach the singularity at ω = qv0.
For real 2D plasmons, the wave vector is bound to the

frequency via the dispersion relation. Therefore, the nonlinear
conductivity σ (2)(q, ω) can be probed only for a restricted set
of ω and q. To inspect the accessible values of σ (2), we use the
dispersion of ungated plasmons in graphene [20]:

ωpl(q) = qv0
1 + gαqF /q√
1 + 2gαqF /q

, (5)

where α = e2/(κ h̄v0) is the effective coupling constant and κ

is the background dielectric constant. A distinctive property of
dispersion (5) lies in the complete absence of Landau damp-
ing. This is guaranteed by the phase velocity of the graphene
plasmon, which always exceeds the Fermi velocity v0. There-
fore, the singularity of nonlinear conductivity at q = ω/v0

can be approached from the side of smaller wave vectors but
cannot be addressed exactly.

To study this situation quantitatively, we bind q and ω via
Eq. (5) and plot σ (2) vs frequency. The result is shown in
Fig. 3(b). Once the frequency is small, the nonlinear con-
ductivity decreases. Indeed, the initial part of the plasmon
dispersion curve has both low frequency and a small char-
acteristic wave vector (transferred momentum). At very high
frequencies, σ (2) becomes small again. Although the plasmon
dispersion approaches a singular line ω = qv0 at large ω, the
inertia of electrons does not let them keep up with the rapidly
oscillating electric field.

The only way to probe the singular nonlinear conductivity
is thus to bring the whole plasmon dispersion closer to the
singular line ω = qv0. This can be achieved via a reduction
of the carrier density and/or an increase in the background
dielectric constant. The result is illustrated in Fig. 3(b), where
reducing n = q2

F /π from 1012 to 1010 cm−2 leads to an order
of magnitude enhancement of the nonlinear conductivity.

III. LIMITS TO PLASMONIC DRAG RESPONSIVITY

Experimental measurement of the nonlinear conductivity
at finite wave vector q is very challenging as the amplitude
of the electric field E1 in the 2D plane is different from the
incident field Einc. This difference stems from strong self-
consistent field effects which, in fact, are responsible for the
launching of the plasmons. In this regard, we note that the
predicted resonance in σ (2) is conceptually different from nu-
merous “plasmonic enhancement” phenomena occurring via
self-consistent fields [25,27,35]. The latter effects should be
included in the linear-response fields E1 via the solution of
the plane-wave diffraction problem.

A more common measurable quantity is the photocurrent
responsivity RJ = j2/S, where S is the incident power density.
Under perfect matching conditions, the power flow of the
incident electromagnetic wave S is fully transformed into the
power flow carried by the 2D plasmon Spl. A nearly perfect
conversion is attainable with the proper design of the grating

couplers [36]. In simpler systems, such as metal edges, the
conversion coefficient is well below unity, Spl/S � 1 [14,37].
Approximating Spl ≈ S, we obtain a natural upper bound of
the plasmonic drag responsivity.

The power flow density s carried by the plasmon is the sum
of electromagnetic and kinetic contributions [38]:

s = c

8π
[E1 × H∗

1] + 1

4

∂Imσ (1)(q, ω)

∂q
(E1, E∗

1 )δ(z), (6)

where the plasmon fields, in the quasistatic limit, are given by

E1z = 1
2 E1e−|q||z|eiqxsgnz + H.c., (7)

H1y = −ωε

cq
E1z (8)

and σ (1)(q, ω) is the linear conductivity of graphene. In the
classical limit, it is given by

σ (1)(q, ω) = ig
e2

h̄

EF

2π h̄

ω

q2v2
0

[
ω√

ω2 − q2v2
0

− 1

]
. (9)

Integrating the flow density (6) over the vertical coordinate
z, we obtain the full power flow Spl = ∫

sxdz in the form

Spl = E2
1

4

1

q

∂

∂q
[q σ (1)(q, ω)]

∣∣∣∣
ω=ωpl (q)

. (10)

It is now apparent that the plasmon power flow diverges
as its phase velocity approaches v0. Physically, it comes from
a very large contribution of the carrier kinetic energy to the
net energy flow. Formally, it comes from differentiating the
singular conductivity σ (1) ∝ [ω2 − q2v2

0]−1/2; differentiation
enhances the strength of the singularity. As a result, the cur-
rent responsivity RJ = j2/Spl is bounded from above as the
plasmon phase velocity approaches v0. The singular growth
in σ (2) at ω/q → v0 is overwhelmed by a faster growth in Spl.
This situation is illustrated in Fig. 4. Figure 4(a) shows RJ as
a function of independent q and ω; naturally, the maximum
of RJ lies above the singular line ω = qv0. Figure 4(b) shows
the responsivity evaluated at ω and q bound by dispersion (5);
again, this function has a pronounced maximum.

Instructively, it is possible to present the current responsiv-
ity in a universal form at T = 0:

RJ = e

EF
f (̃vph), (11)

where f (̃vph) is the dimensionless function of the scaled phase
velocity ṽph = ω/qv0 (Appendix B ). The function f (̃vph)
reaches a maximum value of 0.243 at ω = 1.38qv0. Remark-
ably, the result does not depend on the carrier density and
dielectric environment.

The ultimate plasmonic drag responsivity (11) can be
compared to that of a perfect photovoltaic cell Rpv < e/h̄ω.
Naturally, the drag responsivity is below the photovoltaic
limit, as all our calculations were performed in the classical
domain EF � h̄ω. Nevertheless, the maximum responsivities
of 2–20 A/W in Fig. 4 are large compared to those of typical
graphene photodetectors operating in the terahertz [39,40]
and infrared [41] frequency ranges. It should be also noted
that plasmonic drag mechanism provides a fast photoresponse
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FIG. 4. (a) Dependence of the current responsivity RJ on fre-
quency ω/2π and wave vector q calculated at carrier density n =
1010 cm−2. (b) Plasmonic drag responsivity evaluated at ω and q
bound by plasmon dispersion relation at various carrier densities
indicated in inset.

[42], as the timescale for the decay of the photocurrent is the
momentum relaxation time τ .

All previous calculations carried out at T = 0 have in-
dicated that plasmonic drag responsivity benefits from low
carrier density. At finite temperature, the density is limited by
thermal excitation of the carriers, and the plasmon velocity
cannot get very close to v0. Accounting for the finite temper-
ature amounts to a simple replacement of the “effective Fermi
energy” in the expressions for linear conductivity and plasmon
dispersion,

EF → kT ln(1 + eEF /kT )(1 + e−EF /kT ). (12)

FIG. 5. Plasmonic drag responsivity vs Fermi energy evaluated
at different frequencies of incoming radiation. The wave vector is
obtained from the plasmon dispersion relation. Temperature T =
300 K.

It is possible to evaluate RJ at finite temperature, which is
done in Fig. 5 at T = 300 K. The obtained dependence of RJ

on the Fermi energy is an antisymmetric function of EF , with a
maximum located at EF ∼ kT . The functional dependence of
RJ on the frequency is quite peculiar. Namely, the responsivity
grows with increasing frequency at large Fermi energies. This
growth is associated with an increased plasmon wave vector at
higher frequencies and higher average momentum transferred
to an electronic system.

FIG. 6. Comparison of the approximation [(A11)] with the exact
expression (A4) for nonlinear conductivity for σ (2).
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FIG. 7. The dependence of the dimensionless function f govern-
ing the universal behavior of plasmonic drag responsivity.

IV. DISCUSSION AND CONCLUSIONS

The above calculations of the plasmonic drag photocurrent
were based on a specific spatial profile of the electric field,
E ∝ cos(qr − ωt ). Real fields in the vicinity of asymmetric
scatterers, such as those shown in Fig. 1, have more complex
spatial profiles. In addition to a plasmonic component, they
have an evanescent part that is responsible for the lightning-
rod effect at the metal contacts. The solution of the kinetic
equation for an arbitrary spatial profile of the field E (x, t ) =
1
2 E1(x)e−iωt + H.c. does not represent a problem if the field is
longitudinal and depends only on the x coordinate. In particu-
lar, the result for f1(x, p, ω) reads

f1(x, p, ω) = e
∂ f0

∂ε

∫ x

−∞
dx′E1(x′)e

iω−τ−1

vx
(x−x′ ) (13)

for right-moving electrons (vx = v0 cos θ > 0) and

f1(x, p, ω) = −e
∂ f0

∂ε

∫ +∞

x
dx′E1(x′)e

iω−τ−1

vx
(x−x′ ) (14)

for left-moving electrons (vx < 0). In a similar fashion, one
can obtain the second-order distribution function 〈 f2〉 in a
nonuniform field. Indeed, its governing equation has only
first-order x derivatives and is analytically solvable for an
arbitrary nonuniform field.

The structure of the solutions for an arbitrary electric field
enables us to understand better the origins of the singular
conductivity at ω = qv0 (both linear and nonlinear) and to un-
derstand its limiting factors. When the electric field represents
a purely running wave, E1(x′) ∝ eiqx′

, the phase factor of the
field partially compensates the phase factor of the perturbed
electrons. This compensation is complete if the wave phase
velocity equals the electron velocity. Integration of the nearly
constant function over a very large length leads to divergent
conductivity. Of course, the scattering of electrons renders

all integrals convergent, the same role is played by the finite
extent of the fields in real samples [43].

Experimental manifestations of the plasmonic drag can be
present in all graphene-based structures with an asymmetric
electromagnetic environment. It can be distinguished from
well-known photothermoelectric and photovoltaic effects by
the nonvanishing current in the absence of p-n junctions in
graphene channels. Particularly, the plasmonic drag current
can appear upon illumination of the top gate edge above
graphene at zero top gate voltage, i.e., at uniform channel
doping [Fig. 1(a)]. It can also appear upon illumination of
gratings with an asymmetric unit cell [Fig. 1(c)] at zero volt-
age applied to the gratings. Illumination of a metal in contact
with graphene [Fig. 1(b)] also results in a plasmonic drag
current but can be masked by photovoltaic and photothermo-
electric effects at the Schottky junction. A salient feature of
the plasmonic drag photocurrent is its strong sensitivity to the
angle of incidence of the electromagnetic wave. This results
from the strong angular dependence of the photon-to-plasmon
conversion coefficient [14].

To conclude, we have shown resonant enhancement of the
nonlinear conductivity of graphene being a proportionality
coefficient between the rectified current and squared elec-
tric field. The resonance occurs whenever the wave vector
and frequency of the wave satisfy qv0 = ω. The condition
is interpreted as phase locking between surface electromag-
netic waves and dragged electrons. The responsivity of the
graphene photodetector exploiting this effect of plasmon drag,
however, remains finite in the phase-locking condition. This
occurs due to a counterbalancing singularity in the power
density carried by a plasmon. We expect that similar phase-
locking singularities would also appear in a closely related
effect of second-harmonic generation [44].
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APPENDIX A: CALCULATION OF
NONLINEAR CONDUCTIVITY

We calculate σ (2) = j2/E2
1 by integrating the second-order

distribution function over momentum space:

j2 = − g

(2π h̄)2
e
∫ +∞

−∞
vp〈 f2〉d pxd py. (A1)

After revealing the derivatives in 〈 f2〉, Eq. (3), we move to
the polar coordinates:

d pxd py = pd pdφ,
∂ f0

∂ px
= ∂ f0

∂ p
cos φ,

∂2 f0

∂ p2
x

= cos2 φ
∂2 f0

∂ p2
+ sin2 φ

p

∂ f0

∂ p
,

∂vx

∂ px
= sin2 φ

p
v0.

(A2)
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The integrals over the absolute value of the momentum yield∫ +∞

0

∂ f0

∂ p
d p = − f0(0),

∫ +∞

0

∂2 f0

∂ p2
p d p = f0(0). (A3)

These identities are valid at arbitrary T . As a result, σ (2) is
expressed as

σ (2) = − g

(2π h̄)2

e3 f0(0)

q2v0
Iφ

(
ω

qv0
,

1

qv0τ

)
, (A4)

where

Iφ (a, b) =
∫ 2π

0

{
cos φ(cos2 φ − 1/2)

(cos φ − a)2 + b2

+ cos2 φ sin2 φ(cos φ − a)

[(cos φ − a)2 + b2]2

}
dφ. (A5)

The latter integral can be calculated analytically with the
residue theorem. We introduce a complex variable:

z = eiφ, cos φ = 1 + z2

2z
, dφ = 1

iz
dz, (A6)

and the integration line is now the unit circle |z| = 1. Inside
of it, the integrand has three poles:

z1 = a − ib −
√

(a − ib)2 − 1 (second-order pole),

z2 = a + ib −
√

(a + ib)2 − 1 (second-order pole),

z3 = 0 (first-order pole). (A7)

Thus, we can find the residues of the integrand and the exact
form for the integral (A5):

Iφ (a, b) = −2π
(

a + Im
(a − ib)

√
(a − ib)2 − 1

2b

)
. (A8)

Upon transformations, we have used the fact that the
residues at poles z1 and z2 are complex conjugate to each

other, so that the whole integral is real. The branch cut of the
square-root function f (z) = √

z here is chosen to run along
the real axis from −∞ to 0.

In the collisionless electron plasma (τ → ∞ and b → 0)
the integral (A5) is nonzero only for fast waves, ω > qv0. It
equals

Iφ (ω > qv0, b → 0) ≈ 2π

(
2a2 − 1

2
√

a2 − 1
− a

)
. (A9)

For slow waves with ω/qv0 < 1, the nonlinear conductiv-
ity σ (2) is approximately proportional to the relaxation time.
In this case and in the nearly collisionless electron system
(b → 0), we find

Iφ (ω < qv0, b → 0) ≈ 2π
a
√

1 − a2

2 b
. (A10)

It is possible to expand the nonlinear conductivity (A4) in
the long-wavelength limit (q → 0):

σ (2)(q, ω)

∣∣∣∣∣
q→0

= − g

(2π h̄)2

e3 f0(0)

v0

π

4

v3
0

ω3

(ωτ )4

((ωτ )2 + 1)2
q.

(A11)

This dependence is shown in Fig. 6 with a dashed line. The
full form of the nonlinear conductivity is shown with a solid
line. Apparently, the limiting form coincides with the full one
at small q, while near the resonance the full conductivity is
much larger.

APPENDIX B: UNIVERSAL RESPONSIVITY FUNCTION

The universal function in the expression for the plasmonic
drag responsivity (11) is given by

f (a) = 2(a2 − 1)[a3 − (a2 − 1)
√

a2 − 1]

a(a4 − a2 − 1)
. (B1)

It is readily obtained by combining the linear- and nonlinear-
response conductivities. Its plot is shown in Fig. 7.
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