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Envelope-function-based analysis of the dependence of shot noise
on the gate voltage in disordered graphene samples

Paolo Marconcini ,* Demetrio Logoteta , and Massimo Macucci
Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Via Caruso 16, I-56122 Pisa, Italy

(Received 4 July 2021; revised 10 October 2021; accepted 12 October 2021; published 25 October 2021)

We perform simulations, by means of an envelope-function-based approach, of shot noise in disordered
monolayer graphene devices, as a function of the gate bias voltage. In order to approach the experimental
conditions, large graphene samples with characteristic sizes of the order of hundreds of nanometers or microns
have been considered. We investigate different device geometries, including back-gated graphene samples with
different aspect ratios and a graphene constriction biased by two side gates. We compare our results with available
experimental data that were collected by a few authors in an attempt to validate an interesting prediction made
by Tworzydło et al. [Phys. Rev. Lett. 96, 246802 (2006)] on the shot noise dependence on carrier density in
samples with a large aspect ratio. On the basis of the comparison of our results with the experimental data,
we conclude that the effect predicted by Tworzydło et al. (resulting from the distribution of the transmission
eigenvalues associated with propagation via evanescent modes) has not been observed yet. Finally, we provide
some guidelines for the design of experiments aimed at the verification of such an effect.
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I. INTRODUCTION

Graphene, the most recently isolated allotrope of carbon,
has been the focus of many research efforts in the last decades.
Its lattice structure, consisting of a planar honeycomb lattice
of sp2 hybridized carbon atoms, gives rise to a very pecu-
liar transport behavior and establishes unexpected links with
other fields of physics [1–4]. Indeed, its envelope functions
satisfy the Dirac-Weyl equation [2,5], which also describes
relativistic massless spin-1/2 particles. As a consequence,
in graphene, charge carriers experience relativistic-like phe-
nomena [6], such as Klein tunneling and Zitterbewegung, at
velocities much lower than that of light (the Fermi velocity in
graphene is of the order of 106 m/s).

Moreover, this one-atom thin and very stable material
combines large charge carrier mobility with high thermal con-
ductivity, transparency, mechanical flexibility, and strength.
These properties make it very appealing for a broad spectrum
of applications, spanning from electronic and optoelectronic
devices to electrodes, sensors, energy and gas storage, lubri-
cants, membranes, and coatings [7,8].

Significant theoretical and experimental efforts have fo-
cused on the possible application of graphene for the
fabrication of electron devices [9]. The absence of an en-
ergy gap and the difficulty in introducing it in a controlled
and reproducible way have been hampering the usage of
graphene for the implementation of field effect devices for
digital electronics and this has tempered the enthusiasm about
it in the device community. However, different approaches,
based for example on the use of alternative device con-
cepts, such as tunnel field-effect transistors, are presently
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investigated, and applications in other fields of electronics,
such as radio-frequency circuits and sensors, have been pro-
posed and are being actively developed. This interest is
motivated by the very high mobility of graphene at room
temperature and by the possibility to widely tune the transport
properties by properly biasing gates located close to it.

In order to increase the signal-to-noise ratio of graphene-
based devices, it is important to examine the properties of
this material in terms of noise. Several studies have been
performed on noise in graphene [10–12] and in particular
on shot noise (the noise deriving from the granularity of
charge) [13–36]. A commonly used parameter which provides
information about the correlation between charge carriers is
the Fano factor, i.e., the ratio of the actual shot noise to the
full shot noise 2 e I that would be expected in the case of a
Poissonian distribution of the charge carrier crossing events
(e is the unit charge, while I is the average current flowing
through the device).

In their seminal paper [13], Tworzydło et al. showed, with
an analytical envelope-function calculation, that the Fano fac-
tor for a short and wide ideal graphene strip takes on the
maximum value of 1/3, which is reached at the Dirac point. In
this condition, charge transport through the strip occurs only
via evanescent modes: these modes, tunneling through the
short graphene sample (which actually represents a thin poten-
tial barrier for charge carriers flowing from the input contact to
the output one), make the conductance value nonzero, despite
the vanishing density of states in the sample.

Tworzydło et al. demonstrated that this relevant result
holds as long as there is a very large number of modes prop-
agating in the leads and the aspect ratio of the strip, i.e., the
ratio of its width to its length, is around 4 or larger. The value
1/3 is the same as the one characteristic for the Fano factor in
disordered conductors [37–39].
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It was suggested [13] that the reason for this similarity
could be the presence of rapid oscillations of the charge
carriers, deriving from the interference between the positive-
and negative-energy components of the wave packet (this
phenomenon, called Zitterbewegung, is characteristic of the
relativistic quantum dynamics of confined Dirac fermions).
These oscillations could give rise to a distribution of trans-
mission eigenvalues analogous to that observed in coherent
diffusive conductors, thus resulting in the same value of the
Fano factor.

Due to the relevance of the prediction by Tworzydło et al.,
there have been a few experimental efforts aimed at verifying
it by measuring the Fano factor in graphene strips with differ-
ent aspect ratios and different geometries.

Two papers were published almost simultaneously in 2008,
one by DiCarlo et al. [17] and the other by Danneau et al. [14].
Both papers focused on the measurement of the Fano factor
in large aspect ratio graphene samples, obtained by means
of exfoliation from highly oriented pyrolytic graphite and
deposited on a 300-nm-thick silicon oxide layer grown on
top of a heavily doped silicon substrate, which was used as
a back gate to control the carrier density in graphene. While
DiCarlo et al. performed measurements at a temperature of
0.3 K and at a frequency of 1.5 MHz, applying a bias of 300
μV to the device, Danneau et al. had a sample temperature of
8.5 K, which required a larger applied bias (40 mV) to obtain
a prevalence of shot noise over thermal noise. An increase by
about two orders of magnitude of the bias current (resulting
from an increase by two orders of magnitude of the bias
voltage) implies an increase by two orders of magnitude of
the shot noise power spectral density and by four orders of
magnitude of the flicker noise power spectral density (which
is proportional to the square of the mean current through the
device). Thus, in order to be above the flicker noise corner
frequency (the frequency at which the flicker noise power
spectral density equals the white noise floor, corresponding to
the shot noise power spectral density in the case of interest),
the measurement frequency had to be increased by about two
orders of magnitude, up to the 600–850-MHz range [14,15].
This was done with a very careful approach [15], but the
overall accuracy is unavoidably decreased by the increased
difficulty in measuring differential resistances and parasitic
parameters at higher frequencies.

DiCarlo et al. measured, for all but one of their samples
(which likely did not consist of monolayer graphene), a Fano
factor of about 1/3, which, however, did not exhibit any sub-
stantial dependence on the back-gate voltage (and thus on the
carrier concentration).

Danneau et al. obtained instead quite a different result, ob-
serving a variation of the Fano factor as the back-gate voltage
was varied, which they attributed to the effect predicted by
Tworzydło et al., although the variation occurred over a range
of back-gate voltage much larger than the one that could be
derived from Ref. [13], as pointed out also by Lewenkopf
et al. [20].

Lewenkopf et al. performed simulations of transport and
noise in disordered graphene samples using a tight-binding
approach implemented with the recursive Green’s function

method. The atomistic scale of the approach limited the max-
imum nanoribbon width that they could simulate to about
20 nm. They considered a disorder formed by a superposition
of Gaussian functions and presented their results as a func-
tion of a parameter K0 quantifying the disorder strength [40].
They observed that, as the strength of the disorder is in-
creased, the effect predicted by Tworzydło et al. gradually
disappears and the Fano factor becomes substantially constant
as a function of the charge density, in reasonable agreement
(as long as one assumes that the disorder in the measured
samples is strong enough) with what has been observed in
the experiment by DiCarlo et al., but not with the results by
Danneau et al.

A large aspect ratio graphene ribbon was more recently
investigated by Mostovov [19]. The ribbon was obtained by
lithographically defining a constriction in a larger, exfoliated
graphene sample. The electrostatic potential in the constric-
tion region (which, being much narrower than the rest of
the ribbon, dominates the overall conductance and noise be-
havior and represents the actual sample under analysis) was
controlled by means of two side gates. Measurements were
performed at a temperature of about 7.5 K (this is the esti-
mated temperature of the electron gas, which is higher than
the cryostat base temperature, 4.2 K, due to Joule heating
of the sample) using a cross-correlation technique, with an
applied bias of 4 mV and at a frequency of 3.33 MHz. The
observed behavior of the Fano factor exhibited a smooth vari-
ation as a function of the bias voltage applied to the gates,
with a maximum at the Dirac point which was less than 1/3
(approximately 0.24–0.25).

Our purpose in this paper is to overcome the sample size
limitation that affected previous simulations, treating devices
with a size corresponding to those used in the experiments,
i.e., with a length of a few hundred nanometers and a width
up to ≈1 μm. This has been possible with an envelope-
function (�k· �p) based [5] approach that we have previously
developed [41]. While this approach may miss some effect
deriving from atomistic-level details, it has proven to be valid
in the low energy range as far as potentials varying slowly
with respect to the lattice constant are considered [41].

On the basis of the outcome of our simulations, we seek
to find a common interpretation of the experimental data,
reaching the conclusion that in none of them has the effect
predicted by Tworzydło et al. been observed yet, and we
provide suggestions for experiments aiming at the detection of
such an effect, because we believe that it would be important,
also from the point of view of basic theory, to finally achieve
an experimental confirmation.

The paper is organized as follows. In Sec. II, we describe
the simulation model. In Sec. III, we present the results
obtained for back-gated samples and compare with the re-
sults of the experiments by DiCarlo et al. and by Danneau
et al. In Sec. IV, we report the simulation of the structure
experimentally investigated in Ref. [19]. Finally, in Sec. V,
we draw our concluding remarks and discuss guidelines for
future experiments for the detection of the effect predicted in
Ref. [13].
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FIG. 1. Sketch of a W -wide and L-long armchair graphene rib-
bon connected to source and drain contacts.

II. TRANSPORT SIMULATION APPROACH

The numerical simulations that we have performed are
based on an envelope-function approach that we have de-
veloped [41] for the investigation of transport in graphene
samples up to a few microns in size.

In monolayer graphene, the wave function near the Dirac
points can be written in terms of four envelope functions
F �α

β (�r), each one corresponding to one of the two graphene
sublattices β = A, B and of the two inequivalent Dirac points
�α = �K, �K ′. As previously mentioned, it can be proven that
these four functions satisfy the Dirac-Weyl equation [5]:

[ − ih̄vF (∂xσx + ∂yσy) + U (�r)I] �F �K (�r) = E �F �K (�r), (1)

[ − ih̄vF (∂xσx − ∂yσy) + U (�r)I] �F �K ′
(�r) = E �F �K ′

(�r), (2)

where �F �α (�r) = [F �α
A (�r), F �α

B (�r)]T , h̄ is the reduced Planck con-
stant, vF is the Fermi velocity of graphene, ∂x = ∂/∂x, ∂y =
∂/∂y, the matrices σ are the Pauli matrices, E is the energy
of the charge carriers, and U is the potential energy (which
depends on the position �r). We consider W -wide armchair
graphene ribbons, for which x denotes the transport direction
and y denotes the in-plane transversal one (see Fig. 1).

Our transport simulation code [41] relies on a recursive
scattering matrix algorithm. The graphene ribbon is first sub-
divided into a series of cascaded slices (each one parallel
to the y direction), sufficiently thin that we can neglect the
dependence of the potential energy U on x. Therefore, in
each slice the four envelope functions can be factorized as
F (x, y) = eiκxx�(y). By substituting this form into the Dirac-
Weyl equation and enforcing Dirichlet boundary conditions
on the overall wave function at the edges of the ribbon, we
obtain the following system:

(σx f (y) + σz∂y) �ϕ �K (y) = −κx �ϕ �K (y), (3)

(σx f (y) − σz∂y) �ϕ �K ′
(y) = −κx �ϕ �K ′

(y), (4)

�ϕ �K (0) = �ϕ �K ′
(0), (5)

�ϕ �K (W ) = ei2K̃W �ϕ �K ′
(W ), (6)

where Eqs. (5) and (6) represent the boundary conditions,

�ϕ �K (y)= [� �K
A (y),� �K

B (y)]T, �ϕ �K ′
(y)= i[� �K ′

A (y),� �K ′
B (y)]T , f (y)=

[U (y) − E ]/(h̄vF ), K̃ = K − (π/W ) round [K/(π/W )], and
K = | �K|. By defining, within a suitably enlarged domain

[0, 2W ], the two-component function [41]

�ϕ(y) =
{�ϕ �K (y) for y ∈ [0,W ]

ei2K̃W �ϕ �K ′
(2W − y) for y ∈ [W, 2W ],

(7)

the system can be rewritten, over [0, 2W ], in the following
form:

[σz∂y + σx f (W − |W − y|)]�ϕ(y) = −κx �ϕ(y), (8)

e−i2K̃W �ϕ(2W ) = �ϕ(0). (9)

Equations (8) and (9) define a differential eigenvalue prob-
lem [with periodic boundary conditions on the function
e−iK̃y �ϕ(y)], which can be efficiently solved in the Fourier
domain [41,42]. Once the eigenvalues and eigenmodes have
been computed in all the slices, we enforce the continuity of
the components of the wave function at each interface between
adjacent slices. In more detail, we inject a single transport
mode at a time into the region straddling the interface and
we write the resulting wave function on both sides of the
interface as a linear combination of the modes, with unknown
transmission and reflection coefficients. Then, we project this
set of continuity relations onto a basis set of sine functions,
obtaining a system of linear equations with the transmission
and reflection coefficients as unknowns. Solving this system,
we obtain the scattering matrix of the region which includes
the interface. If the width of the ribbon is not uniform (as in the
structure of Ref. [19]), the ribbon boundary includes vertical
zigzag edges along a portion of each interface between slices
of different width. Along such edges, the continuity of the
wave function has to be enforced only for one of the two sub-
lattice components. This is achieved by projecting the set of
the continuity equations for the other sublattice onto the sine
basis of the narrower slice [43]. The overall scattering ma-
trix, and therefore the transmission matrix t of the ribbon, is
obtained by recursively composing all the scattering matrices
associated to the interfaces between adjacent slices. Finally,
the conductance G, the shot noise power spectral density SI ,
and the Fano factor F are computed using the formulas due to
Landauer and Büttiker [44,45]:

G = 2 e2

h

∑
n,m

|tnm|2, SI = 4
e3

h
|V |

∑
i

wi(1 − wi ), (10)

F = SI

2 e I
=

∑
i wi (1 − wi )∑

i wi
, (11)

where n and m run over the modes propagating in the input
and output leads, h is the Planck constant, the wi’s are the
eigenvalues of the matrix t†t , V is the average voltage applied
between the input and output lead, and I = GV is the average
current flowing through the sample. This numerical approach
has already been successfully applied to the study of different
graphene properties and devices [43,46–49].

The numerator and the denominator of Eq. (11) must be
averaged over energy within the transport window before
taking their ratio. If the bias voltage is such that eV � kT ,
the transport window eV is much wider than the interval
over which the Fermi function undergoes an almost unitary
variation. Therefore, the Fermi function can be approximated
with a step function and the energy averages can be computed

155429-3



MARCONCINI, LOGOTETA, AND MACUCCI PHYSICAL REVIEW B 104, 155429 (2021)

as uniform averages over the transport window eV . For shot
noise measurements the condition eV � kT is usually veri-
fied, in order to make the thermal noise component negligible
with respect to the shot noise component.

Let us now discuss the model that we adopt for the descrip-
tion of the contacts and of the potential disorder.

It has been shown [50] that, for large and weakly doped
graphene samples, a wide range of contact models leads to
analogous transport results. In general, however, it is nec-
essary to guarantee, in every bias condition, a number of
propagating modes in the leads sufficiently larger than the
one in the sample. This is crucial in order to correctly take
into account the contribution of evanescent modes, which do
play a dominant role when transport in a large aspect ratio
sample at energies close to the Dirac point is considered.
Indeed, in Eqs. (10) and (11) the sums run only over the modes
propagating in the input and output leads. Let us consider
the simple case of a thin and wide clean graphene sample
connected between the two leads. If we considered the same
potential in the contacts and in the sample, when the Fermi
energy coincides with the Dirac point (and thus there is no
propagating mode in the sample) Eqs. (10) and (11) would
yield a null conductance and shot noise. The correct physical
result (with a nonzero conductance and a 1/3 Fano factor,
derived from the contribution of the evanescent modes) is
recovered using a model which guarantees a sufficient number
of propagating modes in the contacts. Accordingly, we have
set the (constant) potential energy in the leads at a value
sufficiently far from the Fermi energy. In particular, for the
bias conditions for which the dominant injected/extracted car-
riers are electrons (holes) we have chosen a potential energy
value in the contacts lower (higher) than the Fermi energy.
This ensures that a large number of propagating modes is
injected into the sample in all operating conditions, with a
symmetric treatment for electrons and holes. Two alternative
descriptions have been considered to model the interfaces
between the leads and the sample. We have considered either
an abrupt, steplike transition or a gradual transition of the po-
tential, with a continuous profile given by the expression [1 +
tanh(x/x0)]. The latter choice, in which the transition takes
place over a range of about 6 x0, reduces the reflections at the
interfaces.

Such contact models are consistent with physisorbed con-
tacts, in which the interaction energy is very small, and the
transfer of charge between the graphene and the metal low-
ers the graphene Fermi level in the contact area, while the
electronic structure of graphene is left substantially unper-
turbed [51,52]. In the approach by Tworzidło et al., contacts
are represented with graphene regions with infinite potential
steps, which involve an infinite number of propagating modes,
a situation that can be handled in an analytical calculation
but not in a numerical one. This is the reason why we have
considered a finite potential step, which is also consistent with
actual physisorbed contacts [51]. We have also verified that
the sensitivity of the results for the Fano factor on the height
of the potential step is substantially negligible, as long as a
value of at least 100 meV is assumed.

We do not consider chemisorbed contacts in our simula-
tions because they involve a much larger interaction energy,
with the hybridization of metal and graphene orbitals, to the

extent that the conical K points may be destroyed [51]. Thus
the model by Tworzidło is not directly applicable to the case
of chemisorbed contacts and physisorbed contacts should be
chosen in experiments seeking to validate it.

Potential disorder has been modeled with a superposition
of Gaussian functions, each one corresponding to the electro-
static action of one impurity or defect [53]. These Gaussians
have been randomly spread all over the graphene sample,
with a surface concentration cimp, which represents the surface
impurity density of Coulomb scatterers. In particular, the two
coordinates on the graphene plane of the centers of the Gaus-
sians have been numerically generated according to random
uniform distributions. Each Gaussian is characterized by a
half width at half maximum (HWHM), which is assumed to
be the same for all the scatterers of a disorder distribution,
and by an amplitude which in general differs for the vari-
ous scatterers and is given by a random number uniformly
distributed between −δ and δ. Therefore, the disorder distri-
bution is characterized by the three parameters cimp, HWHM,
and δ. The potential landscape given by the superposition of
these Gaussians has a Gaussian autocorrelation function [54].
The relation between the amplitude and variance of this au-
tocorrelation function and the parameters cimp, HWHM, and
δ of the distribution of Gaussian scatterers has been reported
by Koschny and Schweitzer in Ref. [54]. On the other hand,
Adam et al. [55,56], using a self-consistent random-phase-
approximation method, have found the relation between the
parameters which characterize the sample and the amplitude
and variance of the resulting autocorrelation function. Com-
bining these two sets of relations [53], it is possible to relate
cimp, HWHM, and δ to the actual sample parameters.

III. SIMULATION OF BACK-GATE BIASED
GRAPHENE SAMPLES

In order to obtain a preliminary validation of our approach,
we have first simulated a structure similar to the one studied
by Tworzydło et al. [13]. In detail, we have considered a clean
40-nm-long and 200-nm-wide semiconducting graphene rib-
bon (therefore, with aspect ratio W/L = 5) with constant
potential energy, contacted with two doped graphene leads
of the same width. The potential energy in the two leads is
assumed to be equal, in absolute value, to 0.8 eV, while the
Fermi energy is set at 0 eV. The effect of the bias applied to the
back gate is taken into account through a shift of the potential
energy μ in the ribbon. The simulation has been performed
for 201 uniformly spaced values of μ between −0.1 and
0.1 eV. By assuming a geometrical capacitance between the
back gate and the graphene sheet of ≈0.1151 mF/m2, as in
Refs. [14,15,17,18], the interval spanned by μ corresponds
to a back-gate voltage window with a width of about 55 V.
The mobile charges in the ribbon are holes for μ > 0 and
electrons for μ < 0, while for μ = 0 (charge neutrality point)
the current is sustained by evanescent modes. The Fano factor
as a function of μ, obtained by considering an abrupt poten-
tial transition at the lead-sample interfaces (as in the model
investigated by Tworzydło et al.), is plotted in Fig. 2 with
dotted black lines. These results are substantially coincident
with those reported by Tworzydło et al. in Ref. [13]. The
corresponding plot for smooth lead-sample interfaces (with
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FIG. 2. Fano factor as a function of the potential energy μ in a
40-nm-long and 200-nm-wide armchair ribbon. The Fermi energy
is set to 0 eV and abrupt lead-sample interfaces are assumed. The
dotted black curves have been obtained in the absence of disorder;
the solid red ones have been obtained in the presence of a disorder
with cimp = 5 × 1011 cm−2, HWHM = 5 nm, and δ = 120 meV; and
the dashed blue ones have been obtained in the presence of a disorder
with cimp = 5 × 1011 cm−2, HWHM = 5 nm, and δ = 400 meV.
Panel (a) reports the results obtained for a single impurity distribu-
tion, while the results in panel (b) have been obtained by averaging
over 48 different impurity distributions.

x0 = 20 nm) is shown in Fig. 3. This model entails an increase
of the effective length of the sample and, as a consequence,
the central lobe of the plot narrows with respect to the abrupt
interface case (we will observe a similar behavior considering
abrupt interfaces and increasing the sample length). Further-
more, the value of the Fano factor for increasing modulus of
the potential energy μ drops down to zero instead of reaching
an asymptotic value around 0.1, which can be explained as
a result of the reduced scattering in the case of a smooth
interface.

In order to test to what extent this behavior is pre-
served in the presence of disorder, we have first repeated
our simulations including a random distribution of charged
impurities with cimp = 5 × 1011 cm−2, HWHM = 5 nm, and
δ = 120 meV. According to Adam et al.’s relations [55,56],
these parameters coherently describe the effect of a distri-
bution of impurities with a concentration of 5 × 1011 cm−2

and located at an average distance of 1 nm from the graphene
sample. The results are shown with solid red lines in Figs. 2
and 3, for the case of abrupt and smooth contact-sample in-
terfaces, respectively, as a function of the average value μ of
the potential energy in the sample. In the panels (a) of these

FIG. 3. Same as Fig. 2 for smooth lead-sample interfaces.

figures we report the results obtained for a single impurity
distribution. Then, in order to achieve a representative mean
behavior, we have averaged the Fano factor over 48 different
impurity distributions; the corresponding results are reported
in the panels (b) of Figs. 2 and 3. It can be noticed that
the main features observed in the case of a clean graphene
sample are preserved, with a main lobe of the shot noise
behavior around the Dirac point, although with a maximum
value slightly lower than 1/3.

Qualitatively different results are obtained by increasing
the maximum disorder amplitude to a much larger value
of δ = 400 meV. We report the corresponding results with
dashed blue lines in Figs. 2 and 3, for abrupt and smooth
contact-sample interfaces, respectively. Also in this case, the
panels (a) refer to a single impurity distribution, while the
panels (b) refer to the average over 48 different distributions.
Here, disorder completely washes out the behavior predicted
in Ref. [13] and an average Fano factor almost independent of
μ is found.

We have then extended our numerical analysis to graphene
samples with lower aspect ratios, but larger sizes. Figure 4
shows the results, averaged over 48 impurity distributions, ob-
tained for a square sample with W = L = 200 nm [W/L = 1,
panel (a)] and for a rectangular sample with W = 200 nm
and L = 600 nm [W/L = 1/3, panel (b)]. Abrupt lead-sample
interfaces and the same set of δ values previously adopted
have been considered (the dotted black, solid red, and dashed
blue curves have been obtained for δ = 0, 120, and 400 meV,
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FIG. 4. Fano factor as a function of the potential energy μ in
a 200-nm-wide armchair ribbon with a length of 200 nm (a) and
600 nm (b). The Fermi energy is set to 0 eV and abrupt lead-sample
interfaces are assumed. The dotted black curves have been obtained
in the absence of disorder; the red solid ones have been obtained in
the presence of a disorder with cimp = 5 × 1011 cm−2, HWHM = 5
nm, and δ = 120 meV; and the blue dashed ones have been obtained
in the presence of a disorder with cimp = 5 × 1011 cm−2, HWHM = 5
nm, and δ = 400 meV. The results have been obtained by averaging
over 48 different impurity distributions.

respectively). Figure 5 illustrates the corresponding results in
the case of smooth lead-sample interfaces.

In Figs. 4 and 5 we observe that, for a given set of dis-
order parameters, as the length of the sample increases (and
therefore the aspect ratio W/L decreases) the value of the
Fano factor raises. This is a consequence of the decrease of
the transmission probability for increasing ribbon length, and
is particularly evident in clean samples close to the Dirac
point. It is also consistent with the results in Fig. 2(b) of
Ref. [13]. Since in this case transport only occurs via modes
which exponentially decay along the device, an increase of
the length implies a rapid fall of the transmission to zero.
As a consequence, already for L = 600 nm the shot noise
power spectrum exhibits a Poissonian behavior (F = 1). For
a given aspect ratio of the ribbon, increasing the disorder
strength results in a decrease of the Fano factor close to the
Dirac point, while it increases far away from the Dirac point.
This is the consequence of the fact that disorder increases the
transmission probability close to the Dirac point, by enabling
transport via localized states. In contrast, away from the Dirac
point, where many transport channels are open, the effect of

FIG. 5. Same as Fig. 4 for smooth lead-sample interfaces.

disorder is to enhance the backscattering, which results in a
decrease of the transmission probability and therefore in an
increase of F . We also notice that a significant dependence
of the results on the sample-lead interface model is only
found for clean samples and moderately disordered 40-nm-
long samples. Indeed, this dependence disappears as soon as
the scattering induced by the disorder becomes dominant with
respect to the reflections at the lead-sample interfaces.

We now move on to a semiconducting graphene ribbon
with a size analogous to that considered in the experiments
(W = 1 μm, L = 200 nm, and thus W/L = 5). We consider
abrupt boundary conditions (with a potential step of 0.25 eV)
and in Fig. 6 we report the Fano factor as a function of
the potential energy μ for no disorder (purple curve); for
an intermediate disorder with cimp = 5 × 1011 cm−2, HWHM
= 10 nm, and δ = 50 meV (green curve); and for a stronger
disorder with cimp = 5 × 1011 cm−2, HWHM = 5 nm, and
δ = 120 meV (red curve). Using the relations obtained by
Adam et al. [55,56], these values reproduce the electrostatic
effect of a distribution of impurities, with concentration cimp,
at an average distance from graphene equal to 2.15 and 1 nm,
respectively.

This result is directly comparable with an experiment per-
formed with a very small applied bias (less than 1 mV, as in
the measurements by DiCarlo et al.), while we need to average
over the transport window for larger values of the applied bias.
In particular, if we want to compare with the experiment by
Danneau et al., in which a bias of the order of a few tens of
millivolts has been applied, we have to average the numerator
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FIG. 6. Fano factor as a function of the potential energy μ for a
200-nm-long and 1000-nm-wide graphene flake (W/L = 5) in the
absence of disorder (purple line); in the presence of an interme-
diate disorder with cimp = 5 × 1011 cm−2, HWHM = 10 nm, and
δ = 50 meV (green line); and in the presence of a stronger disorder
with cimp = 5 × 1011 cm−2, HWHM = 5 nm, and δ = 120 meV (red
line).

and the denominator of Eq. (11) over the transport window.
In Fig. 7 we report the Fano factor obtained averaging over
30 meV (the results by Danneau et al. are actually for a
slightly larger applied bias, 40 mV, corresponding to a slightly
larger transport window): it is apparent that the narrow feature
expected from Tworzydło et al.’s theory is almost washed out
as a result of the averaging.

This implies that a maximum bias voltage of around 2 mV
should be used in an experiment seeking to detect the effect
predicted in Ref. [13], at least for samples with a length of the
order of a few hundred nanometers.

In order to perform a more direct comparison with experi-
mental data, in Figs. 8 and 9 we plot the results of Figs. 6 and 7
as a function of the applied back-gate voltage. An approximate

FIG. 7. Fano factor, obtained averaging both noise and conduc-
tance over a window of 30 meV before taking their ratio, represented
as a function of the potential energy μ for a 200-nm-long and
1000-nm-wide graphene flake (W/L = 5) in the absence of disorder
(purple line), and in the presence of the intermediate disorder (green
line), and of the stronger disorder (red line) specified in Fig. 6.

FIG. 8. Fano factor as a function of the applied back-gate voltage
VG for a 200-nm-long and 1000-nm-wide graphene flake (W/L = 5)
in the absence of disorder (purple line), in the presence of the in-
termediate disorder (green line), and in the presence of the stronger
disorder (red line) specified in Fig. 6.

but reliable relationship between the potential energy μ and
the gate voltage VG can be obtained with an analytical proce-
dure. Under the hypotheses that there is a single back gate,
that the graphene sheet is uniform, that the modulus of the
potential energy variation |�μ| is small compared to |e�VG|
(where �VG is the variation of the gate voltage in V), and that
the oxide thickness is 300 nm, a very simple expression can
be obtained [53,57]:

∣∣∣∣�μ

−e

∣∣∣∣ =
√

π (h̄νF )2CG

e3

√
|�VG| = 27.322 × 10−3

√
|�VG|,

(12)
where �μ is the variation of the potential energy [and
�μ/(−e) is expressed in V].

FIG. 9. Fano factor, obtained averaging both noise and conduc-
tance over a window of 30 meV before taking their ratio, represented
as a function of applied back-gate voltage VG for a 200-nm-long and
1000-nm-wide graphene flake (W/L = 5) in the absence of disorder
(purple line), in the presence of the intermediate disorder (green
line), and in the presence of the stronger disorder (red line) specified
in Fig. 6.
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FIG. 10. Conductance as a function of the potential energy μ for
a 200-nm-long and 1000-nm-wide graphene flake (W/L = 5) in the
absence of disorder (purple line), in the presence of the intermediate
disorder (green line), and in the presence of the stronger disorder (red
line) specified in Fig. 6.

In Fig. 8 we report the Fano factor as a function of the
backgate voltage for the same cases as in Fig. 6: for no
disorder (purple curve), for the intermediate disorder (green
curve), and for the stronger disorder (red curve). It is apparent
that for a realistic device length (in this case 200 nm) the
peak resulting from the Zitterbewegung effect is extremely
narrow, while a much wider peak results from the presence of
disorder. Indeed, the expected width of the peak predicted by
Tworzydło et al. is inversely proportional to the device length
L, because in their Eq. (5) the argument of the sine and cosine
functions is knL, where kn is the longitudinal wave vector of
the associated mode. Thus the peak seen in the experiments
by Danneau et al., if attributed to the Zitterbewegung effect,
would be associated with a much shorter and unrealistic de-
vice length, but can instead be simply explained with the
action of the disorder. Furthermore, we notice that the Fano
factor variation over the considered bias voltage interval de-
creases (with the exception of a very narrow region around the
Dirac point) as the disorder is increased. In Fig. 9 we plot the
Fano factor for the very same cases, but after averaging over a
transport window of 30 meV. We notice that in the absence of
disorder we have an even more suppressed peak, while the
peak in the presence of disorder, in particular for the case
of the lowest disorder amplitude, has a behavior resembling
that observed in the experiments by Danneau et al., although
with a smaller maximum value. It is interesting to observe
the behavior of the conductance for the same sample with
W/L = 5: it is plotted in Fig. 10, with the same association
between colors and disorder strength: the purple curve is for
the situation without disorder, the green curve is for the lower
disorder strength, and the red curve is for the higher disorder
strength.

Far away from the Dirac point a higher disorder strength
leads to a lower conductance, as a result of increased scat-
tering, but around the Dirac point, as it is possible to observe
from the inset (containing an enlargement of the region around
the origin), we notice that disorder increases conductance,
because the irregular fluctuations of the potential create pud-
dles with a potential energy below the Fermi level, among

FIG. 11. Shot noise power spectral density as a function of the
potential energy μ for a graphene flake 200 nm long and 1000 nm
wide (W/L = 5) in the absence of disorder (purple line), in the
presence of the intermediate disorder (green line), and in the presence
of the stronger disorder (red line) considered in Fig. 6.

which electrons can tunnel. We point out that the maximum
conductance is achieved for the lower disorder strength, since
there is a tradeoff between the conductance increase due to
the presence of the electron (or hole, depending on the sign
of the potential energy shift) puddles and the conductance
suppression resulting from the scattering associated with the
disordered potential landscape.

A better understanding of the overall behavior of the Fano
factor can be obtained from an analysis of the noise behavior,
too. In Fig. 11, we report the behavior of the shot noise power
spectral density, in units of 4e3|V |/h, as a function of the
potential energy μ for the same cases as for the previous fig-
ures: the purple curve is for the absence of disorder, the green
curve is for the intermediate disorder, and the red curve is for
the stronger disorder. We see that, while for conductance the
fastest growing curve is the one for no disorder, the opposite
is true for noise, which means that, as we move away from
the Dirac point, the Fano factor, corresponding to the ratio
of noise to conductance, will have a larger value for stronger
disorder. It will however decay for increasing module of the
potential energy, because of the decreasing slope of noise and
the increasing slope of conductance. The situation is different
close to the Dirac point, because the significant conductance
increase in the presence of disorder may lead to a minimum of
the Fano factor at the Dirac point, as in the case of the disorder
with largest amplitude.

Going back to Fig. 10, we notice that the value of the
conductance at the Dirac point in the absence of disorder is
approximately 3.25 × 2e2/h, which, dividing by the aspect
ratio W/L = 5, yields a conductivity σ = 1.3e2/h, which is
in good agreement with the value of 4e2/(πh) = 1.273e2/h
obtained by Tworzydło et al..

A relevant difference between the experimental results by
DiCarlo et al. and those by Danneau et al. is that, in their most
significant samples, they obtain quite different conductivities
at the Dirac point: while DiCarlo et al. report a value of
approximately 4e2/h for their sample (A1), the one with the
largest aspect ratio (W/L = 5.71, with W = 2 μm and L =
0.35 μm), which is the value usually found in bulk graphene
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samples [58], Danneau et al. report, for their device with
W/L = 24, a value of about 4e2/(πh), which is consistent
with the predictions by Tworzydło et al. for large aspect
ratios (W/L � 4) and with the results of our simulations.
Measurements performed on graphene samples with several
different values of the aspect ratio [59] appear to confirm the
theoretically predicted [13] dependence of the minimum con-
ductivity on W/L. More recent numerical models [60] predict
a minimum conductance raising to about 4e2/h as disorder is
increased, regardless of the aspect ratio of the sample.

Therefore it is possible that the effective aspect ratio of
device A1 by DiCarlo et al. is actually smaller than expected
from the fabrication, and/or that such device is character-
ized by a very strong disorder. This could also explain the
observed independence on carrier density of the measured
noise.

Finally, we notice that there are indeed other possible
situations leading to a minimum conductivity of 4e2/(πh),
such as the presence of a relatively low concentration of reso-
nant impurities or vacancies [61,62]. However, in experiments
aiming to reproduce the effect predicted in Ref. [13], such a
minimum value should derive, as in the analytical calculations
by Tworzydło et al., from the transmission of evanescent
modes through the potential barrier represented by the high
aspect ratio graphene sample between the contacts. Thus,
in our simulations we have not included resonant scatterers
(which would also be very hard to treat with our envelope-
function model), but only the electrostatic scattering induced
by charged impurities.

IV. SIMULATION OF A SIDE-GATE BIASED GRAPHENE
SAMPLE

More recently, Mostovov [19] sought to achieve an exper-
imental demonstration of the effect predicted by Tworzydło
et al. with a different type of device: a graphene constriction
modulated with side gates.

The representation of their device that we have considered
for our simulations is sketched in Fig. 12. It consists of a
1600-nm-wide graphene sample with a 200-nm-long and 500-
nm-wide constriction in the center. The size of the constriction
was approximately deduced from Fig. 5.11(b) of Ref. [19].
The constriction is biased by means of two gates, deposited
around it on the SiO2 substrate. The gates have been assumed
to be 140 nm wide along the x direction and 50 nm thick along
z. The distance between them and the graphene sample is set
to 30 nm, both in the x and in the y direction. In the previous
simulations we have taken into account the effect of the back
gate by shifting the potential energy in the sample with re-
spect to the Fermi energy in the contacts. In the present case,
however, due to the more complex electrostatics, the potential
profile as a function of the gate voltage has been obtained by
means of an approximate self-consistent procedure.

A complete numerical self-consistent computation of the
electrostatic potential typically requires the solution through
a fixed point iterative algorithm of the system of the transport
and Poisson equations. At each iteration, the mobile charge
density is extracted from the transport results and passed on
to the Poisson solver. The latter provides an updated po-
tential profile, to be used in the transport computations at

FIG. 12. Geometry of the simulated side-gate structure, model-
ing the device experimentally studied by Mostovov [19].

the next iteration. The loop ends when the variation of the
potential between two consecutive iterations is smaller than
a predetermined threshold. Here, we have instead followed
the simplified approach of Refs. [46,53], which considerably
reduces the computational burden with respect to the previ-
ously outlined self-consistent procedure. In detail, the effect
in the ribbon of the potential U (x, y), slowly varying in space,
can be approximately described as a local, rigid shift in en-
ergy of the graphene band structure. As a consequence, the
local density of states can be expressed as LDOS(E , x, y) =
DOS[E − U (x, y)], where DOS(E ) is the density of states in
the ribbon. Accordingly, at low temperature, when the Fermi-
Dirac distribution can be approximated with a step function,
and in quasiequilibrium conditions, the charge density reads

ρ(x, y) = e
∫ U (x,y)

EF

LDOS(E , x, y) dE

= e
∫ U (x,y)

EF

DOS[E − U (x, y)] dE . (13)

ρ(x, y) is positive (hole puddle) for EF < U (x, y) and nega-
tive (electron puddle) for EF > U (x, y). For relatively large
graphene samples, the density of states can be approxi-
mated with the one of unconfined graphene [63]: DOS(E ) =
2|E |/[π (h̄vF )2]. By substituting this expression into Eq. (13),
we obtain

ρ(x, y) = sign[U (x, y) − EF ]
e

π (h̄vF )2
[U (x, y) − EF ]2,

(14)

which directly yields the charge density as a function of the
potential. We assume to know the potential profile U0(x, y) at
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a reference gate voltage VG0 . This reference potential profile
U0(x, y), which actually depends on the unknown properties,
such as doping density, of the sample, is chosen in such a
way as to obtain the best fit with the experimental results at
the corresponding gate voltage VG0 . The corresponding charge
density profile ρ0(x, y) is given by Eq. (14). In order to es-
tablish a differential relation between the charge density and
the gate bias, we adopt a linearized capacitive model [53,64],
which replaces the Poisson equation. Within this approxi-
mation, the deviations �ρ(x, y) and �U (x, y) of the charge
density and potential from ρ0(x, y) and U0(x, y), respectively,
induced by a deviation �VG of the gate voltage from the
reference value VG0 , satisfy the equation

�ρ(x, y) = CG(x, y)

(
�U (x, y)

−e
− �VG

)
, (15)

where CG(x, y) is the (spatially varying) capacitance per unit
area between the point (x, y) on the graphene ribbon and the
gates. By setting U = U0 + �U and ρ = ρ0 + �ρ, Eq. (14)
can be recast as

ρ0 + CG

(
�U

−e
− �VG

)
= sign(U0 + �U − EF )

× e

π (h̄vF )2
(U0+ �U − EF )2,

(16)

which represents a simple quadratic equation in �U . At each
point (x, y), the potential energy U (x, y) corresponding to the
gate voltage VG is obtained as U (x, y) = U0(x, y) + �U (x, y),
where �U (x, y) is computed by solving Eq. (16).

This technique requires the knowledge of the electrostatic
capacitance between the graphene sample and the double side
gate.

In order to compute this quantity, we have numerically
solved the Laplace equation in a cubic domain with a 4-μm
edge, surrounding the constriction (see Fig. 12). Dirichlet
boundary conditions equal to zero and VG have been enforced
on the ribbon and on the side-gate surface, respectively, while
Neumann conditions have been enforced on the boundary of
the cubic domain. Moreover, the continuity of the normal
component of the electric displacement field has been en-
forced at the interface between the SiO2 substrate and the air
region. According to Gauss’s law, the value of the electrostatic
potential V close to the graphene sample has then been used
to compute the surface charge density σ (x, y) on the ribbon:

σ (x, y) = εair (Ez )|z=0+ − εSiO2 (Ez )|z=0−

= εSiO2 (∂V/∂z)|z=0− − εair (∂V/∂z)|z=0+ (17)

(z is null on the graphene sample and increases in the upward
direction, εair is the permittivity of air, and εSiO2 is that of
silicon oxide). The capacitance CG(x, y) per unit area which
exists between each point [with coordinates (x, y)] of the
graphene sample and the double side gate is obtained dividing
the charge density σ (x, y) by the potential difference −VG

between the graphene sample and the double side gate:

CG(x, y) = −σ (x, y)/VG. (18)

The transport simulation domain is sketched in Fig. 13(a).
In Fig. 13(b) we show a map of CG(x, y) over this domain.

FIG. 13. (a) Sketch of the region of the side-gate biased graphene
sample for which transport simulations have been performed. The
represented hexagonal lattice is not to scale. (b) Map [in the region
of the device sketched in panel (a)] of the capacitance per unit area
CG(x, y) between the double side gate and the point (x, y) of the
graphene sample, as a function of the coordinates x and y of the
point. (c) Map [in the region of the device sketched in panel (a)] of
the graphene potential energy profile U (x, y) obtained for VG = 90 V.

The left and right leads have been modeled as 1600-nm-wide
doped graphene regions, with a potential energy equal, in
absolute value, to 0.2 eV. A smooth profile (with x0 = 25 nm)
is included to connect the potential energy profile in the leads
with the one in the sample. The reference voltage has been
chosen as VG0 = 60 V, i.e., the value at which the measured
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FIG. 14. Fano factor F as a function of the gate voltage VG. Our
numerical results are shown with a red solid line, while the experi-
mental results of Mostovov, extracted from Fig. 9.7 of Ref. [19], are
reported with blue dots.

resistance of the device is maximum, and therefore corre-
sponds to the condition in which the lead Fermi energy EF is
aligned with the Dirac point in the sample. The corresponding
potential profile U0 has been obtained by adding the effect
of a random impurity distribution to a smooth potential with
average value EF inside the constriction. The best fit with
the experimental measurements has been obtained by assum-
ing for the impurity distribution cimp = 5 × 1010 cm−2, δ =
40 meV, and HWHM = 17 nm. According to Refs. [55,56],
this set of parameters describes a realistic distribution of
charged impurities with concentration 5 × 1010 cm−2 and lo-
cated at an average distance of 1 nm from the sample. As an
example, in Fig. 13(c) we show a map over the transport simu-
lation domain of the potential energy obtained for VG = 90 V.
In Fig. 14, the result of our simulation for the Fano factor (red
line), reported as a function of the gate bias, is compared with
the experimental data extracted from Fig. 9.7 of Ref. [19].
The simulation results appear to provide a reasonable fit to
the experimental data. It is apparent that also in this case the
variation of the Fano factor visible in the simulation results
occurs over a gate bias voltage range far larger than that which
would be characteristic of the effect predicted by Tworzydło
et al., and therefore can be attributed to an effect analogous
to the one we have discussed for the back-gated disordered
sample with W = 1 μm and L = 200 nm. Such an effect is
thus of a general nature in samples with a relatively low degree
of disorder and appears to be independent of the specific
details of the sample geometry and electrostatics.

V. CONCLUSIONS

We have performed envelope-function-based simulations
of shot noise in disordered gate-biased graphene samples with
the aim of interpreting published measurement results aiming
at the experimental verification of the interesting effect on the
Fano factor of large aspect ratio graphene samples predicted
in Ref. [13]. Contrary to existing atomistic simulations, our
continuum approach has allowed us to study relatively large
graphene structures, with a size of the order of microns, com-

parable to that of most of the actually measured samples. To
provide a physical picture as comprehensive as possible, we
have simulated graphene samples with different geometries,
levels of disorder, contact models, and gate arrangements.
Our conclusion is that in none of the experiments that we
have reviewed was the effect predicted by Tworzydło et al.
actually detected, because either no peak of the Fano factor
was observed as a function of the gate bias voltage or the
observed peak had a width inconsistent by orders of mag-
nitude with that predicted by Tworzydło et al. and should
therefore be attributed to the interplay of disorder and carrier
density.

On the basis of our results, further experiments seeking to
confirm the effect of Ref. [13] should follow a few guidelines.

(a) The applied bias voltage should be as small as possible,
preferably less than 1 mV (in order to prevent averaging over
the transport window, which would significantly suppress the
expected peak, at least for a reasonable length of the sample,
of the order of a few hundred nanometers), and therefore the
sample temperature should be below 1 K or less (to achieve a
shot noise power spectral density at least an order of magni-
tude larger that that of thermal noise).

(b) The disorder in the graphene sample should be as small
as possible, because, at least for samples of a realistic size,
disorder leads to a significant variation of the dependence of
the Fano factor on gate voltage or even to a complete suppres-
sion of the sought-after effect: it would thus be advisable to
use suspended samples, which are not affected by the disorder
in the substrate.

(c) Contacts should be physisorbed, because, as discussed
in Sec. II, only physisorbed contacts are fully consistent with
the model in Ref. [13], and, in addition, they should exhibit the
least possible resistance, unless the device geometry allows
four-probe measurements.

(d) The sample conductivity at the Dirac point should be
equal to 4e2/(πh), consistent with the results in Ref. [13] (al-
though this by itself is not a guarantee that the same conditions
as those considered by Tworzydło et al. are present, because,
as previously mentioned, such a minimum conductivity could
also be the result, for example, of resonant impurities).

(e) Compatibly with the flicker noise level, measurements
should be performed at a frequency as low as possible, be-
cause correction and calibration procedures become more
complex and more susceptible to errors as the frequency is
increased.

A carefully designed experiment following the above
guidelines should allow detection of the peculiar behavior
of shot noise predicted by Tworzydło et al., as long as the
parasitic effects (in particular those due to disorder) are kept
under control.
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