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Phonon-induced magnetoresistivity of Weyl semimetal nanowires
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We study longitudinal magnetotransport in disorder-free cylindrical Weyl semimetal nanowires. Our theory
includes a magnetic flux � piercing the nanowire and captures the finite curvature of the Fermi arc in the surface
Brillouin zone through a boundary angle α. Electron backscattering by acoustic phonons via the deformation
potential causes a finite resistivity which we evaluate by means of the semiclassical Boltzmann approach. We
find that low-energy transport is dominated by surface states, where transport observables are highly sensitive to
the angle α and to Aharonov-Bohm phases due to �. A generic subband dispersion relation allows for either one
or two pairs of Fermi points. In the latter case, intranode backscattering is possible and implies a parametrically
larger resistivity than for a single Fermi point pair. As a consequence, large and abrupt resistivity changes take
place across the transition points separating parameter regions with a different number of Fermi point pairs in a
given subband.
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I. INTRODUCTION

Weyl semimetal (WSM) materials represent one of the
most intensely studied topics in current condensed matter
physics; for recent reviews, see Refs. [1–6]. WSM materials
have pairs of Weyl nodes in the Brillouin zone which act
as sources of Berry curvature, with topological Fermi arc
surface states connecting the surface projections of different
Weyl nodes. Experimental evidence for Fermi arcs has already
been accumulated for several WSM materials by means of
surface probe techniques [2,4], and experimental studies of
other interesting phenomena such as the chiral anomaly [5]
or nonlocal Weyl orbits [6] are well advanced. Nonetheless,
a satisfactory understanding of the transport properties of
WSM materials is often difficult to reach due to the intricate
interplay between topological protection and backscattering
mechanisms. In addition, it is important to include electro-
magnetic fields and finite-size effects in specific device setups.
To give just one example, while measurements of the magne-
toresistivity could in principle reveal the chiral anomaly [7],
the precise relation between transport observations and the
chiral anomaly remains under intense debate [5].

In this paper, we present a theory of magnetotransport
in disorder-free WSM nanowires, taking into account elec-
tron backscattering by acoustic phonons. Since this device
geometry is experimentally realizable and at the same time
analytically tractable, the interplay between topological Fermi
arcs, backscattering effects, electromagnetic fields, and finite-
size effects can here be analyzed in a comprehensive manner.
The band structure and the noninteracting transport properties
of clean WSM nanowires have been studied in Refs. [8–13]. In
particular, for cylindrical wires, the authors of Ref. [12] have
shown that the contribution of Fermi arcs to the conductance
often outweighs the effect of bulk states. This conclusion

also applies for large values of the nanowire radius; see
Refs. [14,15] for related studies. One of the goals of this
work is to quantify phonon-induced backscattering effects on
the magnetoresistivity of WSM nanowires, in particular in
parameter regions where transport is dominated by surface
states.

The importance of phonons in WSMs has been estab-
lished by recent experiments [16–19]. Phonon effects can be
identified, for instance, through the characteristic tempera-
ture dependence of phonon-induced contributions to transport
observables. Theoretical studies of electron-phonon cou-
pling effects have so far mainly focused on optical phonons
and/or phenomena unrelated to transport; see, e.g., Ref. [20].
Phonon-induced backscattering effects on transport in WSMs
have been studied for the slab geometry [21] but (to the
best of our knowledge) not for nanowires. We note that the
phonon-induced resistivity of conventional one-dimensional
(1D) quantum wires with parabolic (or linear) dispersion was
studied by many authors [22–29]. However, the dispersion
relations of 1D subbands in WSM nanowires turn out to be
more complex. For instance, a given 1D subband may allow
for more than one pair of Fermi momenta. In such cases,
new scattering processes appear which in turn directly affect
the dependence of the resistivity on key parameters such as
temperature, Fermi energy, and magnetic field.

The consequences of this enriched complexity will here
be studied for cylindrical WSM nanowires. We employ a
two-band model describing WSMs with broken time-reversal
symmetry and just two bulk Weyl nodes [14,30–33], where
a boundary condition ensures that the current density per-
pendicular to the cylinder surface vanishes. This boundary
condition is parametrized by a boundary angle α [11,34],
where the commonly used infinite mass boundary conditions
are recovered for α = 0. For a planar surface with α = 0, the
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Fermi arc curves in the surface Brillouin zone are straight
lines. For α �= 0, however, one finds that Fermi arcs acquire
curvature. By including the phenomenological parameter α,
we therefore can also address the case of WSM materials with
curved Fermi arcs.

We use the well-known phonon modes predicted by
isotropic elastic continuum theory with stress-free boundary
conditions in the wire geometry [35], and we assume that the
deformation potential provides the dominant electron-phonon
coupling. Including a constant magnetic field along the wire
axis, we then compute the resistivity from Boltzmann the-
ory [36,37]. For a complementary study in the context of
topological insulator nanowires, see Ref. [38]. In addition,
we will discuss the two-terminal conductance of clean WSM
nanowires in the zero-temperature limit, where phonon effects
are frozen out. It is interesting to compare WSM nanowires
and topological insulator nanowires [39,40]. Even though
only the latter have gapped bulk states, we show below that
surface states in both types of nanowires show a similar
response to a magnetic flux threading the wire. With some
modifications along the lines of Ref. [13], our theory can also
be adapted to Dirac semimetal nanowires. Nanowires made
of the Dirac semimetal material Cd3As2 have recently been
synthesized; for transport experiments, see Refs. [41–45]. We
note that first transport experiments have recently been re-
ported for WSM nanowires as well [46,47].

The paper is structured as follows. In Sec. II, we derive
and discuss the electronic band structure. Assuming that the
deformation potential produces the dominant electron-phonon
coupling, the phonon-induced resistivity has been computed
within the semiclassical Boltzmann approach as explained in
Sec. III. Our results for transport observables are then dis-
cussed in Sec. IV. The paper concludes with a brief summary
and an outlook in Sec. V. Details about our calculations can
be found in several appendices, and we often put h̄ = e = c =
kB = 1.

II. ELECTRONIC BAND STRUCTURE

In this section, we address the band structure of WSM
nanowires. In Sec. II A, we describe a two-band model for
magnetic WSMs and derive the spectral equation for cylindri-
cal wires. We then discuss the band structure in Sec. II B, in
particular its dependence on magnetic flux and on the bound-
ary angle α.

A. Model

We start from a well-known inversion-symmetric two-band
model for the single-particle electron states of a magnetic
WSM [14,30–33]. This model describes the simplest case
with just two Weyl points located at momenta k = ±bêz in
the Brillouin zone, where the unit vector êz is along the z
direction. We will study a cylindrical nanowire geometry with
radius R and wire axis êz by imposing a boundary condition
at the cylinder surface. In addition, we include the effects of
a constant magnetic field B = Bêz along the wire axis, with
B > 0. We note that for a magnetic field perpendicular to the
wire axis, transport observables are strongly suppressed; see
Ref. [10] for a detailed study.

Electronic states are then described by the low-energy
model [14,30–33]

H0 = v[σx(−i∂x + Ax ) + σy(−i∂y + Ay)] + mkσz, (2.1)

with the bulk Fermi velocity v and Pauli matrices σx,y,z acting
in a combined spin-orbital space. Clearly, the momentum k
along êz is a good quantum number, and the effective mass
function is given by

mk = v

2b
(k2 − b2). (2.2)

Throughout we focus on energies |E | � vb/2 such that the
two Weyl nodes at k = ±b can be clearly distinguished. The
magnetic field is given by B = ∂xAy − ∂yAx, where we use the
symmetric gauge, A = 1

2 B(−y, x, 0). In units of the flux quan-
tum �0 = hc/e, the magnetic flux through the cross section of
the nanowire is encoded by the dimensionless flux parameter

� = πR2B

�0
= R2

2l2
B

, (2.3)

with the magnetic length lB = √
h̄c/eB. For a nanowire of ra-

dius R = 25 nm, one finds � ≈ 1 for a magnetic field B ≈ 2 T.
We note that the magnetic Zeeman term has been neglected in
Eq. (2.1). As shown in Ref. [48], even though the g factor can
be large in typical WSM materials, the Zeeman coupling is
expected to cause only small quantitative changes in the band
structure. The orbital effects of the magnetic field, on the other
hand, cause qualitative differences.

Before turning to the derivation of the spectrum, let us
summarize the relevant energy scales. First, the scale vb/2
corresponds to the mass gap at k = 0; see Eq. (2.2). Sec-
ond, transverse quantization introduces the finite-size scale
v/R. Third, the magnetic energy scale is v/lB. We are in-
terested in relatively thin wires and consider low energies,
|E | � vb/2. The number of bands in this energy range can
be roughly estimated by ∼vb/(v/R) = bR. Throughout this
paper, we consider the case bR � 1; in concrete examples,
we set bR = 10. Taking a typical value b ∼ 0.5 nm−1 in WSM
materials [1,2], this choice corresponds to a nanowire radius
R ∼ 20 nm. The ratio between the magnetic scale v/lB and
the finite-size scale v/R remains as free parameter determined
by �.

We proceed by employing polar coordinates, (x, y) =
r(cos φ, sin φ), with unit vectors êr and êφ . Below we will also
use the dimensionless radial variable

ξ = r2

2l2
B

, i.e., ξ/� = (r/R)2. (2.4)

From Eq. (2.1) one then finds that the angular momentum
operator Jz = −i∂φ + 1

2σz with half-integer eigenvalues j is
conserved. Spinor eigenfunctions are thus given by

	k, j (r) = eikz

√
L

ei jφ

√
2π

(
e−iφ/2 Y+(ξ )
ieiφ/2 Y−(ξ )

)
, (2.5)

where the wire length L appears for normalization. The real-
valued radial eigenfunctions Y±(ξ ) are combined to form
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radial spinors,

Yk, j (ξ ) =
(

Y+(ξ )
Y−(ξ )

)
, l2

B

∫ �

0
dξ (Y 2

+ + Y 2
− ) = 1, (2.6)

where the normalization condition has been adapted to the
cylindrical geometry. Using Eqs. (2.5) and (2.6), H0	 = E	

reduces to the radial equation

⎛
⎝ −E−

√
ξ∂ξ + ξ+ j+ 1

2

2
√

ξ

−√
ξ∂ξ + ξ+ j− 1

2

2
√

ξ
−E+

⎞
⎠Yk, j (ξ ) = 0, (2.7)

with the dimensionless quantities

E±(k, E ) = E ± mk√
2v/lB

. (2.8)

We require regularity of Y (ξ ) at the origin ξ = 0. Then the
general solution of Eq. (2.7) can be expressed in terms of the
confluent hypergeometric function M(a, b; ξ ) [49]. Using the
notation

aj = ( j + 1/2)
( j) − E+E−, (2.9)

with the Heaviside step function 
 and keeping the depen-
dence on k and E implicit, we obtain (up to normalization)

Yk, j (ξ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ
1
2

(
j− 1

2

)
e−ξ/2

((
j + 1

2

)
M

(
a j, j + 1

2 ; ξ
)

E−
√

ξ M
(
a j, j + 3

2 ; ξ
) )

, j > 0,

ξ
− 1

2

(
j+ 1

2

)
e−ξ/2

(E+
√

ξ M
(
a j + 1,− j + 3

2 ; ξ
)(

j − 1
2

)
M

(
a j,− j + 1

2 ; ξ
) )

, j < 0.

(2.10)

The finite cylinder radius R now enters through a boundary
condition at the surface r = R, i.e., for ξ = �. Following
Refs. [11,34], this boundary condition is written in the form

M(α)	(R) = ±	(R), M(α) = σφ cos α + σz sin α,

(2.11)
with σφ = e−i φ

2 σzσyei φ

2 σz . We consider the +1 eigenvalue in
Eq. (2.11) for −π/2 < α � π/2 in what follows. The bound-
ary condition (2.11) imposes that on the surface of the wire
the pseudospin direction lies in the tangent plane, at an angle
α with respect to the circumferential direction êφ . Importantly,
this condition preserves angular momentum conservation and
ensures a vanishing local current density through the surface.
This last condition is the same one would impose on a conven-
tional semiconducting nanowire, but the form of the effective
Hamiltonian in a WSM allows for one free parameter, the
boundary angle α. This is a nonuniversal parameter which in
general will depend on both the WSM material and the precise
surface structure.

Using Eq. (2.5) to express 	 in terms of radial functions,
Eq. (2.11) is equivalently written as

Y+(�)

Y−(�)
= tan

(α

2
+ π

4

)
. (2.12)

The choice α = 0 implements infinite mass boundary condi-
tions [10,12], defined by a ξ -dependent mass given by mk in
Eq. (2.2) for ξ < � but mk → ∞ for ξ > �.

B. Band structure

The solutions admitted by the boundary condition (2.12)
determine the energy spectrum of the nanowire, which con-
sists of 1D subbands labeled by the angular momentum j
and a radial band index p. By inversion symmetry, the re-
spective subband dispersion εk ≡ Ek, j,p is always symmetric,
ε−k = εk . The qualitative features of the spectrum depend on
the interplay of the three dimensionless parameters bR,�, and
α characterizing our system.

In general, the spectral condition (2.12) has to be solved
numerically, but in several limiting cases, analytical progress
is possible. In particular, an approximate solution for the
dispersion of Fermi arc surface states will be given below.
The full spectrum can be obtained in closed form for the
boundary angle α = π/2, see Appendix A, and is illustrated
in Fig. 1 for several values of the magnetic flux parameter �.
For all angular momenta j > 0, we obtain degenerate Fermi
arc surface states with the �-independent dispersion relation
εk = mk . However, the point α = π/2 is quite special since
for α < π/2, we will see below that the Fermi arc degeneracy
is lifted and the arc dispersion depends on �. To illustrate the
typical band structure found for α < π/2, results obtained by
numerical solution of Eq. (2.12) are shown for α = 0 in Fig. 2,
and for α = π/4 in Fig. 3. The radial probability density
distribution is shown for selected states in Fig. 4.

In order to better understand the band structure, we next
discuss surface states. As we show in Appendix B, the ra-
dial Dirac-Weyl equation (2.7) admits solutions where the
radial spinor wave function is localized at the surface, Y (r) ∝
e−κ (R−r)Y (R). The inverse decay length must satisfy κR � 1
to describe a proper surface state and follows as

κ =
√

( j + �)2

R2
+ m2

k − E2

v2
, (2.13)

where the surface state dispersion is given by

Ek, j = v( j + �)

R
cos α + mk sin α (2.14)

under the condition

v( j + �)

R
sin α − mk cos α > 0. (2.15)

Equations (2.14) and (2.15) describe Fermi arc states in
WSM nanowires in the presence of a magnetic flux thread-
ing the wire. This flux enters only through the shift j →
j + �, just as for the surface states in topological insulator
nanowires [38,39]. In the absence of a magnetic field and
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FIG. 1. Energy bands Ek, j,p vs momentum k for a WSM nanowire with α = π/2, bR = 10, and magnetic flux parameter � = 0 (left),
� = 2 (center), and � = 4 (right panel); see Eq. (A1). Dashed blue (solid black) curves represent j < 0 ( j > 0) states. For this value of α,
the Fermi arc surface states with Ek, j>0 = mk are degenerate. For all other bands, we find states with −21/2 � j � 27/2 in the shown energy
range. Green dotted curves show E = ±mk .

for very large R, Eq. (2.14) reproduces the known Fermi
arc dispersion for a planar surface [33]. The approximations
leading to Eqs. (2.14) and (2.15), see Appendix B, hold under
the condition ∣∣∣∣ j − �

j + �

∣∣∣∣ � κR. (2.16)

We observe that for κR � 1, Eq. (2.16) is always fulfilled
except for nearly half-integer values of �, where the subband
with the angular momentum j closest to −� can violate
Eq. (2.16).

A comparison to the numerical solution of Eq. (2.12)
shows that under the above conditions, the dispersion of
Fermi arc states in cylindrical WSM nanowires is well ap-
proximated by Eq. (2.14); see Appendix B. For α = 0, the
spectrum in Fig. 2 exhibits a sequence of almost flat Fermi
arc states for −b < k < b, with energy spacing given by the
finite-size scale v/R. This numerical result is in accordance
with Eq. (2.14). For finite α, the bands disperse. This case
is illustrated for α = π/4 in Fig. 3, where the Fermi arc dis-
persion again agrees with Eq. (2.14). Apart from an increase
in radial probability density as the surface is approached,
see Fig. 4, surface states can therefore also be identified
by a strong sensitivity of the dispersion to the boundary
angle α.

Next we turn to bulk states, where the probability density
is large away from the surface. For R → ∞, Landau states
follow by standard steps from the expressions in Sec. II A.
Using the magnetic length lB = √

h̄c/eB and the index

n = 0, 1, 2, . . ., their dispersion is given by

Ek, j,p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

±
√

2(n+ j+ 1
2 )v2

l2
B

+ m2
k , j > 0, p = (n,±),

±
√

2nv2

l2
B

+ m2
k , j < 0, p = (n � 1,±),

−mk, j < 0, p = n = 0.

(2.17)
The states with j < 0 and n = 0 are chiral zero modes [1]. For
a finite radius R, these bulk dispersions are obtained as long
as lB � R and the corresponding wave functions are centered
within the nanowire, far from the surface. For a given Landau
level, upon decreasing j, the states have increasing weight
near the surface and eventually become chiral edge states. In
general, surface states can thus represent Fermi arc or chiral
edge states. By monitoring the magnetic field dependence, the
character of a given surface state can be revealed, as only
Fermi arcs remain well-defined surface states for B → 0.

We finally note that in the finite-size geometry considered
here, there is not a sharp distinction between surface bands
and bulk bands. The character of the states (bulk vs surface)
within a given subband depends on k. This is illustrated in
Fig. 4, where we show the radial profile of the probability am-
plitude for states with energy E = −0.15vb in bands with j =
±1/2 as an example. The probability density mainly accumu-
lates near the surface for the state with j = 1/2. However, for
the two states in the j = −1/2 subband, which correspond to
opposite sides of the extremum in the dispersion at k ≈ b, we
observe that one is a bulk state and the other a surface state.
Specifically, in Fig. 4, the j = −1/2 state with k = 1.08b has

FIG. 2. Energy bands Ek, j,p vs momentum k for α = 0 and several �. All other parameters and conventions are as in Fig. 1.
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FIG. 3. Energy dispersion Ek, j,p vs k for α = π/4 and several �. All other parameters and conventions are as in Fig. 1.

a large probability density near the center of the nanowire
(bulk state), while the state with k = 0.62b is peaked near its
boundary (surface state).

III. PHONON-INDUCED RESISTIVITY:
BOLTZMANN THEORY

In this section, we derive the phonon-induced resistivity in
WSM nanowires with the band structure described in Sec. II.
Our model for including electron-phonon scattering effects
is summarized in Sec. III A. We compute the longitudinal
magnetoresistivity, ρ = ρ(T, μ,�, α), in the linear response
regime from semiclassical Boltzmann theory [36,37]; see
Sec. III B. We separately consider the resistivity contribu-
tions from bands with a single pair of Fermi points (see
Sec. III C) and from bands with two pairs of Fermi points
(see Sec. III D).

A. Electron-phonon coupling

We first describe the effects of a deformation poten-
tial coupling between phonons and electrons at low energy
scales, where we include only acoustic phonon modes that
are able to generate such a coupling. Experiments on WSM
nanowires are often carried out on nanowires deposited
on a substrate (see, e.g., [41–43]), and we here focus on
phonon modes which remain gapless even in the presence
of a substrate. Since the flexural (bending) modes with

FIG. 4. Probability density |	k, j |2 vs radial coordinate ξ/� =
(r/R)2 for three eigenstates with energy E = −0.15vb, using α =
π/4, bR = 10, and � = 2; see central panel in Fig. 3. The case
k = 0.32b and j = 1/2 corresponds to a Fermi arc state. For the
j = −1/2 subband, we find a bulk state at k = 1.08b but a surface
state at k = 0.62b.

finite angular momentum are expected to be gapped, in what
follows we only take into account the longitudinal acoustic
phonon mode with zero angular momentum and dispersion
ωq = cL|q|, where the sound velocity cL is typically small
against the Fermi velocity v and the phonon momentum q
is defined along êz. Using typical parameters for cL and v

in the WSM material TaAs [50] for an order-of-magnitude
estimate, we find cL/v ∼ 0.01. The phonon momenta q re-
sponsible for low-temperature backscattering processes then
satisfy qR � 1 and correspond to effectively 1D phonon
modes.

We assume an isotropic elastic continuum model with
stress-free boundary conditions at the cylinder surface [35].
The resulting phonon modes are well known. In contrast
to most previous works, where phonon backscattering in
1D wires has been examined for three-dimensional phonon
modes, we focus on the 1D phonon mode corresponding
to longitudinal acoustic phonons with zero angular mo-
mentum. With the bosonic annihilation operators bq, the
bulk mass density ρM , and Poisson’s ratio ν (where 0 <

ν < 1/2), the displacement field operator is then given
by [35,38]

u(r) =
∫

dq

2π

sgn(q)eiqz√
2πR2ρMωq

(νqrêr + iêz )[bq + b†
−q]. (3.1)

Assuming that the deformation potential is the dominant cou-
pling mechanism, the electron-phonon interaction reads

Hep = g0

∫
dr ρe(r)∇ · u(r), (3.2)

where the coupling constant g0 has dimension of energy and
ρe(r) is the electron density operator. Unfortunately, it is
hard to get reliable theoretical predictions for the value of g0

since this coupling constant is strongly affected by screen-
ing processes. A standard Thomas-Fermi argument predicts
g0 ∝ 1/nb(μ), where nb(ε) is the bulk density of states. Since
the latter vanishes for chemical potential μ → 0, we expect
large couplings for |μ| � vb. Recent experimental results on
the WSM material NbIrTe4 indicate that the electron-phonon
coupling is of the order of 10 meV but varies substantially in
a small energy range [51]. In any case, the value of g0 affects
the phonon-induced resistivity only via the overall resistivity
scale ρ0 discussed below.

We then express the electronic density ρe(r) in terms of
the normalized radial eigenstates Yk, j,p(ξ ) in Eq. (2.6), with
fermion annihilation operators ck, j,p. Using Eq. (3.1) and
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taking the limit L → ∞, we obtain

Hep = −(1 − 2ν)g0

∑
j,p,p′

∫
dk

2π

dk′

2π

dq

2π
δ(k − k′ − q)

× |q|Rl2
B√

2πρMωq

∫ �

0
dξ Y †

k′, j,p′ (ξ ) · Yk, j,p(ξ )

× (bq + b†
−q)c†

k′, j,p′ck, j,p. (3.3)

Since we include only longitudinal acoustic phonons
with zero angular momentum, the electron-phonon interac-
tion (3.3) only couples electronic states with the same angular
momentum j. In principle, scattering processes between
different radial eigenmodes with the same j are possible.
However, we here focus on parameter regions where at most
a single radial band for given j crosses the Fermi level. This
simplification is justified for relatively thin nanowires at low
energies, |μ| � vb/2. (We have explicitly verified this point
by monitoring the band structure for all results presented in
this work.) We note that in order to describe the resistiv-
ity in the ultimate bulk limit bR → ∞, arbitrary scattering
processes involving different radial modes with the same j
become relevant. This problem is, however, beyond the scope
of this work.

B. Boltzmann theory

For a translationally invariant nanowire in a weak constant
electric field Eêz, Ohm’s law states that a steady-state charge
current density Jêz with J = σE will flow. In the Boltzmann
approach, one uses transition rates obtained from Fermi’s
golden rule to compute the linear conductivity σ [36]; the
resistivity then follows as ρ = 1/σ . On this perturbative level,
electron-phonon scattering processes generated by Hep always
scatter an initial electronic state with angular momentum j to
a final state with the same angular momentum. Ohm’s law
then implies that the conductivity contributions σ j = 1/ρ j

from different angular momentum channels simply add up,

1

ρ
=

∑
j

1

ρ j
, (3.4)

and we only have to tackle the problem for fixed angular
momentum j. However, in cases where processes beyond
Fermi’s golden rule become important, Eq. (3.4) represents
an approximation.

We obtain the resistivity contribution ρ j by solving a lin-
earized Boltzmann equation for the 1D subband with angular
momentum j. We use the notation εk = Ek, j,p = ε−k and Yk =
Yk, j,p, and as discussed in Sec. III A, we focus on parameter
regions with a single radial band for given j. The steady-state
distribution function is then written as

nk = nF (εk ) + δnk, nF (ε) = 1

eβ(ε−μ) + 1
, (3.5)

where δnk is the nonequilibrium correction to the Fermi
equilibrium distribution and β = 1/T . We follow standard
practice and parametrize δnk by a function g(εk ) [36],

δnk = −eE

(
−∂nF (εk )

∂εk

)
vkg(εk ), vk = ∂kεk . (3.6)

With ωq = cL|q| and following the notation of Ref. [37], the
linearized Boltzmann equation can be written as

vk
∂nF (εk )

∂εk
= 1

T

∫ ∞

−∞

dk′

2π
D(k, k′)[vk′g(εk′ ) − vkg(εk )]

×
∑
ν=±

δ(εk − εk′ − νωk−k′ ), (3.7)

with the symmetric kernel

D(k, k′) = W (k, k′)
nF (εk )nF (εk′ )

|e−β(εk−μ) − e−β(εk′ −μ)| . (3.8)

Here W (k′, k) denotes the transition probability for scattering
from an initial state with an electron with momentum k to a
final state with an electron with momentum k′ under emission
of a phonon with momentum q = k − k′. Microreversibility
dictates that the same probability also describes the phonon
absorption process [36,37], where the initial state contains an
electron with momentum k and a phonon with momentum q =
k′ − k, and the final state has an electron with momentum k′.
We thus have W (k, k′) = W (k′, k).

For the electron-phonon interaction (3.3), Fermi’s golden
rule yields

W (k, k′) = 2πZv2|k − k′| Ik,k′ , (3.9)

with (squared) dimensionless overlap integrals,

Ik′,k = Ik,k′ =
∣∣∣∣l2

B

∫ �

0
dξ Y †

k′ (ξ ) · Yk (ξ )

∣∣∣∣
2

, (3.10)

and the dimensionless electron-phonon coupling parameter

Z = g2
0(1 − 2ν)2

2π h̄R2ρMcLv2
. (3.11)

For an order-of-magnitude estimate, we assume g0(1 − 2ν) ∼
1 eV and consider TaAs material parameters with ρM ≈
10 g/cm3, cL ≈ 2000 m/s, and cL/v ∼ 0.01. For a nanowire
with radius R ∼ 20 nm, Eq. (3.11) then gives Z ∼ 10−8.

Once the solution to Eq. (3.7) has been determined, the
resistivity follows from

1

ρ j
= e2

∫
dk

2π
v2

k

(
−∂nF (εk )

∂εk

)
g(εk ). (3.12)

The linearized Boltzmann equation (3.7) can be solved by a
constant function g(ε) = g. Following [37], we find

g = C

A
, C =

∫
dk

2π
v2

k

(
−∂nF (εk )

∂εk

)
,

A = 1

2T

∫
dk

2π

dk′

2π
D(k′, k)(vk′ − vk )2

×
∑
ν=±

δ(εk − εk′ − νωk−k′ ). (3.13)

Since the linearized Boltzmann equation is a nonsingular
linear integral equation, it has a unique solution. Within the
validity regime of the approximations made above, Eq. (3.13)
therefore describes the only solution.

Below we separately consider subbands with one or two
local extrema (dubbed “valleys” or “nodes”). Both single-
valley and two-valley subbands appear in the spectrum of
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WSM nanowires; see Sec. II B. Single-valley subbands have a
local extremum at k = 0 and closely resemble the dispersion
encountered in conventional 1D quantum wires with a single
pair of Fermi points, k = ±kF . Two-valley subbands instead
have local extrema near k ≈ ±b, giving rise to a regular or
inverted Mexican hat shape of the dispersion. In that case,
the number of Fermi point pairs (one or two) depends on the
chemical potential.

C. One pair of Fermi points

We first consider the case characterized by a single pair
of Fermi points at k = ±kF (with kF > 0), where the Fermi
velocity is given by vF = |∂kεk=kF |. We consider low tem-
peratures and assume that typical phonon energies are much
smaller than the relevant electron energies εk and εk′ in
Eq. (3.13); i.e., the latter energies are very close to the
Fermi energy μ = ε±kF . The integration over momenta in
Eq. (3.13) is then limited to a small region around the Fermi
momenta, and we can linearize the dispersion for k ≈ ±kF .
The linearization breaks down near the band bottom (or when
approaching the transition to a regime with two pairs of Fermi
points in a two-valley subband), where the respective resis-
tivity contribution may formally diverge. However, as long as
other bands with finite resistivity remain present, no contribu-
tion to the total resistivity (3.4) arises from such a divergence.

As detailed in Appendix C, from Eq. (3.13) we then find
C  vF /π and

A  4kF

π
Zv2 F (TBG/T ), (3.14)

where we use the function

F (X ) = X/2

sinh2(X/2)
. (3.15)

The Bloch-Grüneisen temperature is defined by

TBG = ω2kF = 2cLkF . (3.16)

To give a typical order of magnitude, for kF ∼ b and TaAs
parameters, we find TBG ∼ 10 K. Since only phonons with
momentum q ∼ 2kF can efficiently backscatter electrons,
phonons with energy ∼TBG are required in such 2kF pro-
cesses. From Eq. (3.12), we then find

ρ j  π h̄

e2vF

A

C
. (3.17)

With the overall resistivity scale

ρ0 = h

e2
Zb, (3.18)

we thus arrive at

ρ j

ρ0
= 2kF

b

v2

v2
F

F (TBG/T ). (3.19)

We emphasize that both vF and kF , and therefore also TBG,
depend on the angular momentum j. These quantities can
be obtained numerically from the band structure discussed in
Sec. II.

Equation (3.19) describes the phonon-induced resistivity
for a 1D electron channel with a single pair of Fermi points
and agrees with previous results [27,28,38]. In particular, we

FIG. 5. Schematic illustration of the different types of scattering
processes contributing to the resistivity ρ j for a two-valley subband
with two pairs of Fermi points; see Sec. III D

obtain a linear dependence ρ j ∝ T for T � TBG. However,
for T � TBG, Eq. (3.19) predicts an exponentially small resis-
tivity, ρ j ∝ e−TBG/T , since the probability for having thermal
phonons with the energy required for 2kF scattering processes
is exponentially small.

D. Two pairs of Fermi points

Next we turn to the resistivity contribution generated by
a two-valley band with the Fermi level adjusted to realize
two pairs of Fermi points k = ±kγ=±, with Fermi momenta
k+ > k− > 0 and Fermi velocities vγ = |∂kεk=kγ

|. Note that
the group velocities for k ∼ k+ and k ∼ k− have opposite sign.
Three different scattering channels are now important; see
Fig. 5. In particular, we distinguish the following processes:

(1) In analogy to 2kF scattering, see Sec. III C, we have
internode backscattering (“inter-bs”) processes, where an
electron scatters between k ∼ kγ and k′ ∼ −kγ (with γ = ±).
The momentum exchange 2kγ has to be supplied by phonons.

(2) For a two-valley band, the dispersion has two local
extrema inherited from the Weyl nodes at k = ±b. As a
consequence, for appropriate values of the chemical poten-
tial, intranode backscattering (“intra-bs”) processes become
possible, where scattering takes place between k ∼ sk+ and
k′ ∼ sk− with s = ±. Since the momentum transfer k+ − k− is
typically small against the other relevant momentum transfers,
the contributions due to intra-bs processes are particularly
important at low temperatures.

(3) Finally, internode forward scattering (“inter-fs”) pro-
cesses couple states with the same sign of the velocity, i.e.,
k ∼ sk+ and k′ ∼ −sk−. Even though right movers scatter to
right movers again, and similarly for left movers, resistivity
contributions arise because of the velocity change for v+ �=
v−. We note that forward scattering processes near a single
Fermi point are always negligible; see Appendix C.

Repeating the analysis of Sec. III C for two pairs of
Fermi points, see Appendix C for details, the solution of
the Boltzmann equation follows from Eq. (3.13) with C 
(v+ + v−)/π and

A  Ainter-bs + Aintra-bs + Ainter-fs. (3.20)

The inter-bs contribution is given by, cf. Eq. (3.14),

Ainter-bs  4

π
Zv2

∑
γ=±

kγ F
(
T (γ )

inter-bs/T
)
, (3.21)
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with F (X ) in Eq. (3.15) and the Bloch-Grüneisen scales
T (±)

inter-bs = 2cLk±. Intra-bs processes imply the contribution

Aintra-bs  1

π
Zv2 (v+ + v−)2

v+v−
(k+ − k−) Ik+,k−

×F (Tintra-bs/T ) (3.22)

with the overlap matrix element (3.10) and the Bloch-
Grüneisen scale Tintra-bs = cL(k+ − k−). Finally, inter-fs con-
tributions are given by

Ainter-fs  1

π
Zv2 (v+ − v−)2

v+v−
(k+ + k−) Ik+,k−

×F (Tinter-fs/T ) (3.23)

with Tinter-fs = cL(k+ + k−). We here used Ik+,−k− = Ik+,k− ,
which holds because the radial spinor eigenfunctions Yk (ξ )
only depend on |k|.

Collecting all terms, the resistivity contribution ρ j follows
as

ρ j = ρinter-bs + ρintra-bs + ρinter-fs. (3.24)

With the reference scale ρ0 in Eq. (3.18), we obtain

ρinter-bs

ρ0
=

∑
γ

2kγ

b

v2

(v+ + v−)2
F

(
T (γ )

inter-bs

/
T

)
,

ρintra-bs

ρ0
= k+ − k−

b
Ik+,k−

v2

2v+v−
F (Tintra-bs/T ),

ρinter-fs

ρ0
= k+ + k−

b
Ik+,k−

(
v+ − v−
v+ + v−

)2

× v2

2v+v−
F (Tinter-fs/T ). (3.25)

From Eq. (3.24), the contributions from different backscat-
tering channels simply add up and Mathiessen’s rule [36]
seems to be valid. However, Mathiessen’s rule is not valid for
the two different inter-bs processes related to 2k+ and 2k−
backscattering, which cannot be treated separately because of
the factor 1/(v+ + v−)2 in ρinter-bs. We stress that in Eq. (3.25),
the quantities k± and v±, and thus also the overlap integral
Ik+,k− and the various Bloch-Grüneisen temperatures, depend
on the specific subband under consideration, in particular on
the angular momentum j.

In general, the scattering channel with the smallest of the
above Bloch-Grüneisen scales (denoted by TbBG) dominates
the low-temperature resistivity. In particular, ρ j ∝ T for T �
TbBG while ρ j ∝ e−TbBG/T for T � TbBG. In many cases of
interest, TbBG can be well below the inter-bs scale TBG. The
low-temperature resistivity is thus dominated by those sub-
bands which allow for intra-bs processes.

IV. TRANSPORT OBSERVABLES

In this section, we describe our results for transport observ-
ables. In Sec. IV A, we consider the two-terminal conductance
for an ideal WSM nanowire in the zero-temperature limit,
where phonons are frozen out. The conductance is then di-
rectly determined by the total number of transport channels
at the Fermi level. In Sec. IV B, we present results for the

phonon-induced resistivity as obtained from the Boltzmann
theory in Sec. III.

A. Conductance of ideal WSM nanowires

We first consider the two-terminal linear magnetocon-
ductance of a WSM nanowire without disorder and in the
absence of electron-phonon interactions, assuming perfectly
adiabatic contacts between the nanowire and the attached
source and drain electrodes. This problem can be described by
the Landauer-Büttiker scattering approach [52], which implies
that the two-terminal conductance G0 is given by [10,12,13]

G0(μ,�, α) = N
e2

h
, (4.1)

where N = N (μ,�, α) is the number of transport channels at
the Fermi level, which coincides with the number of positive
Fermi momenta. The conductance in Eq. (4.1) then follows
directly from the band structure in Sec. II. We note that G0

has been studied before for WSM nanowires with boundary
conditions corresponding to α = 0 [10,12,13]. Our results
are consistent with those works and extend them to arbitrary
values of α.

We illustrate the dependence of G0 on the magnetic field
in Fig. 6, both for chemical potential μ = 0 and various α

(left panel), and for α = π/4 and several values of μ (center
panel). The number N , and thus G0, jumps in discrete units
upon changing �. The addition (or removal) of one pair of
Fermi points to (from) the Fermi surface implies conductance
steps of size �G0 = ±e2/h from Eq. (4.1). We also see steps
with �G0 = ±2e2/h, where a two-valley band with two pairs
of Fermi points is added or removed.

The flux dependence shown in Fig. 6 reveals that conduc-
tance steps occur with a typical spacing of order �� ≈ 1.
To rationalize this observation, we recall that the Fermi arc
dispersion depends on the Aharonov-Bohm phase through
the shift j → j + �; see Eq. (2.14). Changing � → � + 1
shifts the sequence of surface subbands by one unit. In a
surface-dominated regime, conductance variations thus have
the (approximate) period �� ≈ 1. Similar features have been
experimentally observed in Dirac semimetal wires [41,42].

From the left panel of Fig. 6, we observe that the boundary
angle α has a major impact on the conductance. This strong
sensitivity of G0 on a boundary parameter is consistent with
the fact that for the parameters in Fig. 6, we mainly have
surface states at the Fermi level. In our model, the phe-
nomenological parameter α encodes the surface feature of
the WSM material. This sensitivity thus indicates that the
surface structure of the material can strongly influence the
conductance.

The rich band structure exemplified in Fig. 3 also im-
plies that the two-terminal conductance is not a monotonic
function of the magnetic flux. In an infinite WSM, a nega-
tive magnetoresistance is expected when E ‖ B, as a direct
consequence of the chiral nature of the lowest Landau level.
In our cylindrical geometry, the spectrum is qualitatively
very different from the bulk case; hence one may expect
a different behavior. Indeed, as seen in the left panel of
Fig. 6 for 0 � α < π/2, the magnetoconductance shows a
nonmonotonic behavior with a minimum at � ≈ �min(α),
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FIG. 6. Zero-temperature two-terminal conductance G0 of a nanowire with bR = 10 as obtained from Eq. (4.1). The left and center panels
show the dependence on the magnetic flux parameter � for μ = 0 and several values of α (left), and for α = π/4 and several values of μ

(center). The right panel shows the dependence on μ for � = 0 and several values of α.

even for the clean case under consideration, and strongly
depends on the surface parameter α. This nonmonotonicity
of the magnetoresistance is a manifestation of the predomi-
nance of the surface over the bulk transport in this geometry.
Interestingly, the value of �min can be determined by an
approximate fit of G0(�) to a third-order polynomial func-
tion. For the conductance curves shown in the left panel of
Fig. 6, we observe that �min is linked to the boundary an-
gle by the empirical relation α  0.28�min − 0.01�2

min. By
determining the position of the magnetoconductance mini-
mum, one can thus infer information about α from transport
measurements, at least in the parameter regime under study
here.

In analogy to the stepwise dependence on the flux, we also
find conductance steps when varying μ at fixed magnetic flux,
as shown in the right panel of Fig. 6 for several values of α.
For α = 0, this parameter region was identified in Ref. [12],
via the conductance steps, as the regime in which surface
states dominate transport. Our results confirm this scenario.
At the same time, we observe that a finite value of the bound-
ary angle α can dramatically change the low-temperature
transport properties. In fact, only for special values of α, we
obtain insulating behavior at zero magnetic field and T �
v/R. For generic α, the two-terminal conductance is finite
and can even become large. This observation again high-
lights the importance of nonuniversal surface physics in this
geometry.

Finally, we note that even though we have a finite two-
terminal conductance G0, the local resistivity ρ vanishes in
the absence of phonon-induced (or other) backscattering pro-
cesses.

B. Phonon-induced resistivity

We here discuss our results for the phonon-induced longi-
tudinal magnetoresistivity (3.4) obtained in Sec. III using the
semiclassical Boltzmann approach. We start by illustrating the
α dependence of ρ for fixed chemical potential μ = 0 and
temperature T = 0.1cLb in Fig. 7. While it is not possible
to experimentally change the boundary angle α in a given
device, Fig. 7 shows that the resistivity strongly depends on α.
Typically, with increasing α, 1D subbands with different j fall
below the Fermi level one by one. As a consequence, the num-
ber N increases and the resistivity tends to become smaller
according to Eq. (3.4). Once a new subband becomes just
accessible, the corresponding resistivity contribution will be-
come very large because of the smallness of the Fermi velocity
and of the Fermi momentum in this limit. From Eq. (3.4), we
see that such a contribution makes little difference as long as
other subbands with finite ρ j are present. The dependence of
ρ on α (or other parameters) thus remains smooth even when
N changes, with an important exception discussed below.

For the parameters corresponding to the left panel in Fig. 7,
where � = 1/2, only j > 0 bands with a single pair of Fermi

FIG. 7. Resistivity ρ (in units of ρ0) vs boundary angle α for T = 0.1cLb, μ = 0, bR = 10, and cL = 0.01v, with magnetic flux parameter
� = 1/2 (left panel) and � = 2 (right panel). We use logarithmic scales for ρ/ρ0 (solid black curves). The number of Fermi points N is shown
by red dashed curves. The divergence at small values of α in the left panel and around α = π/8 in the right panel is due to the fact that for
these values there are no available bands at the Fermi level.
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FIG. 8. Resistivity ρ/ρ0 vs magnetic flux parameter � for α = π/4 and T = 0.1cLb, with μ = 0 (left panel) and μ = 0.1vb (right panel).
All other parameters and conventions are as in Fig. 7.

points contribute. The expected smooth decrease of ρ(α) with
increasing α is observed. In particular, for small α, there are
no bands at the Fermi level and thus ρ → ∞. On the other
hand, for α → π/2, the resistivity becomes extremely small
since N increases to very large values. The right panel of Fig. 7
shows that for � = 2, the α dependence of the resistivity
is more complex. In a finite window around α ≈ π/8, N
vanishes and ρ → ∞. For α � π/8, only j > 0 bands with
a single pair of Fermi points are present, and ρ(α) shows a
smooth decrease again. For α � π/8, we have contributions
from subbands with j = −1/2 and j = −3/2. At a critical
value of α slightly above π/16, a transition from one to two
pairs of Fermi points takes place within the two-valley sub-
band with j = −1/2. As detailed below and in Appendix D,
such a transition causes an abrupt and very large resistiv-
ity increase as seen in Fig. 7. This prominent feature arises
because only for cases with more than one pair of Fermi
points, intranode backscattering processes become possible;
see Sec. III D. Such processes dominate the resistivity at low
temperatures.

Next, Fig. 8 shows the magnetic field dependence of the
resistivity. Let us first discuss the case μ = 0 (left panel). We
again see that ρ(�) is a smooth curve except for an abrupt
resistivity drop near � ≈ 6. Recalling the logarithmic scales,
the resistivity increase is very steep for small �. Again, the
jumplike behavior at � ≈ 6 takes place at the transition point
from two to one pairs of Fermi points within the two-valley
subband with j = −1/2. For large �, we observe that ρ(�)
also shows variations governed by the Aharonov-Bohm scale

�� ∼ 1; see Sec. IV A. For μ = 0.1vb (right panel in Fig. 8),
we find similar features.

We now turn to Fig. 9, which shows the μ dependence of
ρ. While for � = 2 (left panel), no abrupt resistivity changes
occur in the shown chemical potential range, such behavior is
found for � = 4 (right panel) near μ = μc  −0.136vb. We
can trace this resistivity change to the two-valley subband with
j = −1/2. For μ < μc, this band contributes a single pair
of Fermi points. For μ > μc, on the other hand, we get two
pairs of Fermi points. At the transition, μ  μc, the resistivity
exhibits a sharp increase. We discuss this mechanism in some
detail in Appendix D for a simple toy model dispersion. For
μ → μc from above, the Bloch-Grüneisen temperature for
intra-bs processes sets the relevant scale, TbBG = Tintra-bs =
cL(k+ − k−); see Sec. III D. When approaching the transition
from the other side, however, only inter-bs processes can take
place, with TBG = 2cLk+. As a consequence, the resistivity
is much larger for μ > μc. We note that the linearized band
structure used in Sec. III D is not applicable for μ → μc.
However, while the precise μ dependence of ρ is expected to
be continuous when going beyond the linearized band struc-
ture, the large low-temperature resistivity changes predicted
here should be robust.

Finally, we briefly turn to the temperature dependence of
ρ, which is shown for μ = 0 and different � in Fig. 10. For
T � Tb = 2cLb, we find a universal ρ ∝ T dependence, but
for T → 0, the resistivity becomes exponentially small since
all phonon backscattering mechanisms are frozen out in that
limit.

FIG. 9. Resistivity ρ/ρ0 vs μ for α = π/4 and T = 0.1cLb, with � = 2 (left panel) and � = 4 (right panel). All other parameters and
conventions are as in Fig. 7.
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FIG. 10. Resistivity ρ/ρ0 vs temperature T (in units of Tb =
2cLb) for α = π/4, μ = 0, and several values of �. Note the double-
logarithmic scales. All other parameters are as in Fig. 7.

V. CONCLUSIONS

In this work, we have discussed magnetotransport in a
cylindrical WSM nanowire. Our analysis includes the effects
of a magnetic flux threading the wire (via the Aharonov-Bohm
flux �) and the consequences of a finite curvature of the
Fermi arc (via the boundary angle α). We have presented
detailed results for the band structure, in particular how the
dispersion of Fermi arc states depends on � and α. The
magnetic flux is here effectively captured by the replacement
j → j + �, where j is the half-integer angular momentum of
the Fermi arc state. Importantly, we have taken into account
the electron-phonon interaction via deformation potential. We
have focused on phonon modes with zero angular momentum,
since for nanowires deposited on a substrate, phonon modes
with finite angular momentum are expected to be gapped.

Our analysis shows that the phonon-induced resistivity
contains rich information about the underlying physics of the
WSM material. The resistivity strongly depends on the bound-
ary angle α and on the magnetic flux parameter �. We find
that large and abrupt changes of the resistivity arise because
of the Mexican hat shape of the dispersion for two-valley sub-
bands, where a change of the chemical potential can induce a
transition between one vs two pairs of Fermi points. Since in
the case of two pairs of Fermi points intranode backscattering
processes with small momentum transfer are possible, a much
larger low-temperature resistivity is obtained than for the case
with a single pair of Fermi points, where such processes are
not available.

Comparing our results for WSM nanowires to the case of
conventional quantum wires [22–29], we find a noteworthy
difference. Even though it is difficult to quantify the impact
of chiral anomaly on the phonon-induced magnetoresistivity
in this finite-size wire geometry, the observed strong sensi-
tivity of the resistivity on a boundary condition parameter
is in marked contrast to the conventional setting and can be
rationalized by the crucial role of Fermi arc surface states.

Our work also points to several topics of interest for
future studies: (i) For freely suspended WSM nanowires,
phonon modes with finite angular momentum have to be
included. In particular, flexural modes with l = ±1 will be
the energetically lowest modes [35]. One then has to account
for scattering processes connecting subbands with different

angular momenta. (ii) Similarly, at higher energy scales
and/or very large nanowire radius, the restriction to a single
radial band for given angular momentum j has to be lifted
even when keeping only l = 0 phonon modes. One may then
encounter more than two pairs of Fermi points at fixed an-
gular momentum j, and many additional scattering processes
beyond those considered in Sec. III become possible. (iii) The
above two points are important also for the proper description
of nonequilibrium transport beyond the linear response regime
considered here. (iv) In the present work, we have studied
type-I WSM materials. In type-II WSM materials, one has
(over)tilted Dirac-Weyl cones with interesting analogies to
black hole physics [53]. In such a setting, phonons may give
spectacular effects; cf. Ref. [54]. (v) At very low temperatures,
disorder effects will dominate the resistivity in real samples.
While the zero-field resistivity of disordered WSM nanowires
(without phonon effects) has been studied in Ref. [14], the
magnetoresistivity has not been analyzed in a systematic way
so far. (vi) In this work, we have neglected the Zeeman effect
due to the magnetic field. While one expects such effects
to be subleading [48], for a precise comparison to future
experimental results, it may be necessary to include them
in the theoretical description. (vii) An interesting general-
ization of our work could study WSM materials with more
than two Weyl nodes. For instance, if the material enjoys
time-reversal symmetry at zero magnetic field, there will be
at least four Weyl nodes. In the presence of phonons and in
a magnetic field, one then expects a multitude of possible
scattering processes. (viii) Our theory assumes angular mo-
mentum conservation. Indeed, we consider a cylindrical wire
geometry, where the magnetic field is aligned both with the
wire axis and with the direction of the separation between
Weyl nodes in reciprocal space. A weak violation of these
conditions could be handled by perturbation theory, but for
stronger deviations, one has to resort to a generalization of our
theory and a corresponding numerical study. (ix) Finally, apart
from the real magnetic field, it may be of interest to study the
consequences of pseudomagnetic fields generated by straining
the sample [55].

To conclude, we hope that our paper will stimulate future
work along these or other directions.
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APPENDIX A: BAND STRUCTURE FOR α = π/2

We here summarize the exact band structure for the spe-
cial value α = π/2, where the boundary condition (2.12)
simplifies to Y−(�) = 0. Then, for j > 0, Eq. (2.10) gives
a solution either for E− = 0 (band index p = 0) or from the
zeros of the confluent hypergeometric functions (with respect
to the first argument), a = a j,p with p = 1, 2, . . ., solving
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M(a, j + 3/2; �) = 0. Using Eqs. (2.8) and (2.9), the disper-
sion relations of the respective subbands follow as

Ek, j>0,0 = mk, Ek, j,±p = ±
√

2Cj,p(v/lB)2 + m2
k , (A1)

with Cj>0,p = j + 1/2 − a j,p; the zeros a j,p are all negative
numbers. The radial eigenfunctions (2.6) for p = 0 are given
by

Yk, j>0,0(ξ ) ∝ ξ
1
2

(
j− 1

2

)
eξ/2

(
1
0

)
. (A2)

The associated probability density increases with ξ and has
a maximum at the surface, i.e., for ξ = �. The dispersion
relation εk = mk for the degenerate p = 0 subbands with
j > 0 agrees with the Fermi arc dispersion for α = π/2 in
Eq. (2.14). On the other hand, for j < 0, the p = 0 band
does not exist at finite R, and all p �= 0 bands occur in pairs
as follows from Eq. (A1) with Cj<0,p = −a− j−1,p. The band
structure for α = π/2 is illustrated in Fig. 1 for few different
values of �.

Let us further discuss Eq. (A1) in two limiting cases.
(i) For � → 0, Eq. (A1) reduces to

Ek, j>0,0 = mk, Ek, j,±p = ±
√

(vz j,p/R)2 + m2
k , (A3)

where z j,p > 0 is the pth zero of the Bessel function Jj+1/2(z).
The p �= 0 bands correspond to bulk states, which involve the
finite-size quantization energy scale v/R. The states in the

p = 0 bands have radial eigenfunctions Yk, j>0,0(r) ∝ r j− 1
2 (

1
0)

and correspond to degenerate Fermi arc surface states. From
Eq. (A1), we observe that the dispersion relation of the p = 0
subbands is not affected by the magnetic field, although the
states are. (The j = 1/2 state is obviously not localized at the
surface. However, taking the limit of large j and large R at
fixed ratio j/R, the corresponding states represent bona fide
surface states.)

(ii) For very large but finite �, the zeros of the confluent
hypergeometric functions approach negative integer values,
a j,p → −(p − 1). As a consequence, we recover the bulk
Landau level spectrum (2.17). The Fermi arc states with p = 0
and j > 0 exist for any finite � but disappear in the limit of
infinite radius. From Eq. (A1), we also observe that the dis-
persion of the bulk states 	k, j<0,±1 approaches ±|mk|, with an
avoided crossing at k = ±b. The latter is formally due to the
fact that a = 0 is never a solution of M(a,− j + 1

2 ; �) = 0. In
the limit R → ∞, the gap closes. The branch with E = −mk

reduces to the usual bulk zero mode, see Eq. (2.17), and the
branch E = mk disappears.

APPENDIX B: ON FERMI ARC SURFACE STATES

In this Appendix, we construct approximate surface state
solutions and compare the analytical result for their dispersion
relation with the band structure obtained numerically from
Eq. (2.12).

Starting from the radial Dirac-Weyl equation for the spinor
Y (r) (the indices k, j are understood),⎛

⎝ − 1
v

(E − mk ) ∂r + j+ 1
2

r + r
2l2

B

−∂r + j− 1
2

r + r
2l2

B
− 1

v
(E + mk )

⎞
⎠Y (r) = 0, (B1)

we first write the radial coordinate as r = R + x with −R <

x < 0. We search for solutions localized at the surface, with
main weight at |x| � R and decaying for increasing |x|. Ex-
panding Eq. (B1) to lowest nontrivial order in |x|/R � 1 and
writing Y (r) = e(x−R)2/4R2

χ (x), we arrive at( − 1
v

(E − mk ) ∂x + j+�

R − j−�

R2 x

−∂x + j+�

R − j−�

R2 x − 1
v

(E + mk )

)
χ (x) = 0. (B2)

This equation can be solved exactly, but we here consider
a simpler approximate solution. We neglect the term ∝ x in
Eq. (B2), so that χ (x) ∝ eκxχ (0) is a solution, with the in-
verse decay length κ given by Eq. (2.13). The consistency of
the approximation requires κR � 1. Imposing the boundary
condition (2.12) on the eigenstate χ (0), we arrive at the dis-
persion relation (2.14) with the condition (2.15). To estimate
the neglected term ∝ x in Eq. (B2), we put |x| ∼ 1/κ . We then
require | j + �|/R � |( j − �)x|/R2, which in turn implies
the condition (2.16).

We next compare the approximate dispersion relation
Eq. (2.14) to the numerically exact band structure. In Fig. 11,
we show the dispersion of Fermi arc states with j = ±1/2
for bR = 10 and several values of � and α. We find a fair
agreement between numerical and analytical results. In accor-
dance with Eq. (2.16), the deviations are more pronounced for
j < 0 and � �= 0, but even for j = −� = −1/2, Eq. (2.14)
provides a rather good approximation. Since the penetration
length κ−1 becomes very large near the arc ends, the analytical
expression in Eq. (2.14)—which assumes κR � 1—becomes
less accurate in these limits, in accordance with Fig. 11.

APPENDIX C: SOLUTION OF THE BOLTZMANN
EQUATION

We present here the derivation of Eqs. (3.14) and (3.20)
for one and two pairs of Fermi points, respectively. Following
Ref. [37], we begin by rewriting the coefficient A in Eq. (3.13)
as

A = 1

2T

∫
dεdε′

∫ ∞

0
dω F (ε, ε′, ω)

× ωnF (ε)nF (ε′)
|e−β(ε−μ) − e−β(ε′−μ)|

∑
ν=±

δ(ε − ε′ − νω) (C1)

with the auxiliary function

F (ε, ε′, ω) = 1

ω

∫
dk

2π

dk′

2π
W (k′, k)(vk′ − vk )2

× δ(ε − εk )δ(ε′ − εk′ )δ(ω − ωk−k′ ). (C2)

At low temperatures, the momentum integrations in Eq. (C2)
can be restricted to the vicinity of the Fermi points.

Let us first consider the case of a single pair of Fermi
momenta; see Sec. III C. Writing k = skF + k̃ and k′ =
s′kF + k̃′ with s, s′ = ± and |k̃|, |k̃′| � kF , we first linearize
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FIG. 11. Dispersion relation for Fermi arc states with j = ±1/2 for several values of �. Results are shown for bR = 10 with α = 0 (left
panel) and α = π/4 (right panel). The solid curves were obtained by numerical solution of Eq. (2.12). The dashed curves follow from the
approximate analytical dispersion relation (2.14) and terminate according to Eq. (2.15). Note that the analytical (but not the numerical) results
for ( j, �) = (−1/2, 1) and (1/2, 0) coincide.

the dispersion relation, ε±kF +k̃ − μ  ±vF k̃. We then have
backscattering contributions to Eq. (C2) when k and k′ are
near opposite Fermi points (s = −s′), and forward scatter-
ing contributions when k and k′ are near the same Fermi
point (s = s′). The forward scattering terms are strongly sup-
pressed by the factor (vk′ − vk )2 ∝ (k̃ − k̃′)2 in Eq. (C2),
and they are always neglected in what follows. With vk 
svF , the backscattering contributions follow by approximat-
ing W (k, k′)  W (kF ,−kF ) = W (−kF , kF ) ≡ Wbs. Since the
k dependence of the radial eigenfunctions Yk (ξ ) arises only
through mk , which is an even function of k, we have Ik,−k =
Ik,k , and the normalization in Eq. (3.10) implies Ik,k = 1.
Thus, with Wbs = 4πZv2kF from Eq. (3.9), we obtain

F (ε, ε′, ω)  4Zv2

πcL
δ(ω − 2cLkF ). (C3)

Using the auxiliary relation [37]

∫
dεdε′ nF (ε)nF (ε′)

|e−β(ε−μ) − e−β(ε′−μ)|
×

∑
ν=±

δ(ε − ε′ − νω)

= ω

2 sinh2(βω/2)
(C4)

in Eq. (C1), we finally arrive at Eq. (3.14). The above approx-
imations also imply C  vF /π from Eq. (3.13).

Next we turn to a two-valley band with the Fermi level
adjusted to allow for two pairs of Fermi momenta at k = ±kγ

with γ = ±; see Sec. III D and Fig. 5. The symmetry εk = ε−k

then implies that the group velocity at k ∼ skγ is given by
vs,γ = sγ vγ (where s = ±), with the positive Fermi velocities
v+ and v−. Linearizing the dispersion relation for k ≈ skγ ,
contributions to Eq. (C2) from the three types of scattering
processes illustrated in Fig. 5 arise. We find

F (ε, ε′, ω)  Finter-bs + Fintra-bs + Finter-fs, (C5)

where, in analogy to the 2kF backscattering result (C3), in-
ternode backscattering processes give

Finter-bs  4Zv2

πcL

∑
γ=±

δ(ω − 2cLkγ ). (C6)

Intranode backscattering processes produce the term

Fintra-bs  2Zv2

πcL

(v+ + v−)2

v+v−
Ik+,k−δ(ω − 2cL|k+ − k−|),

(C7)
with Ik,k′ in Eq. (3.10), and internode forward scattering con-
tributions give

Finter-fs  2Zv2

πcL

(v+ − v−)2

v+v−
Ik+,k−δ(ω − 2cL|k+ + k−|).

(C8)
Inserting the above results into Eq. (C1), we arrive at
Eq. (3.20).

FIG. 12. Resistivity ρ (in units of ρ0) vs chemical potential μ (in
units of vb) for a two-valley band with dispersion (D1) across the
transition point μ = μc separating regions with N = 1 and N = 2
pairs of Fermi points. The curves are obtained from Eq. (3.25) with
Ik+,k− = 0.5. Results are shown for different temperatures (in units
of Tb = 2cLb) on a logarithmic scale for ρ.
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APPENDIX D: ABRUPT RESISTIVITY CHANGES

To demystify the jumplike behavior of the resistivity re-
ported in Sec. IV B, we consider a toy model for a two-valley
subband with the dispersion relation (v = b = 1)

εk = −|k2 − 1|, (D1)

and analyze how the resistivity depends on the chemical po-
tential μ < 0. For μ > μc = −1, there are N = 2 pairs of
Fermi points, ±k±, with k± = √

1 ± |μ| and respective Fermi
velocities v± = 2

√
1 ± |μ|. On the other hand, for μ < μc,

there is only a single pair (N = 1), ±kF , with kF = k+ and
vF = v+. Therefore, according to Eq. (3.25), for μ > μc, the

dominant resistivity contribution comes from intra-bs pro-
cesses with Bloch-Grüneisen temperature Tintra-bs = cL(k+ −
k−). For μ < μc, instead, only inter-bs processes are possible
and the relevant Bloch-Grüneisen temperature is Tinter-bs =
2cLk+. The resistivity is thus parametrically larger on the N =
2 side since intra-bs processes are then possible, which are not
available on the N = 1 side. This gives rise to a large jump of
the resistivity when μ crosses the critical value μ = μc, as
illustrated in Fig. 12.

We then conclude that the abrupt resistivity changes
observed in Sec. IV B originate from transitions between
one and two pairs of Fermi points within a two-valley
band.
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