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Josephson photonics with simultaneous resonances
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Inelastic Cooper pair tunneling across a voltage-biased Josephson junction in series with one or more
microwave cavities can generate photons via resonant processes in which the energy lost by the Cooper pair
matches that of the photon(s) produced. We generalize previous theoretical treatments of such systems to analyze
cases where two or more different photon generation processes are resonant simultaneously. We also explore in
detail a specific case where the generation of a single photon in one cavity mode is simultaneously resonant with
the generation of two photons in a second mode. We find that the coexistence of the two resonances leads to
effective couplings between the modes which in turn generate entanglement.

DOI: 10.1103/PhysRevB.104.155424

I. INTRODUCTION

Circuits in which voltage-biased Josephson junctions (JJ)
are combined with microwave cavities provide an ideal plat-
form for exploring a wide range of microwave photonics.
All of the voltage energy associated with tunneling Cooper
pairs must be transferred into photons, and the properties of
JJ-cavity systems can be tuned over a wide range either in
situ or by design [1–6]. Furthermore, the energy transferred
by tunneling Cooper pairs into microwave modes can be
tracked by monitoring either the resulting dc current or the
microwaves leaking out of the circuit [1]. Recent experimental
[1–6] and theoretical work [7–18] has explored a wide range
of ways in which JJ-cavity systems can be used to generate
nonclassical microwave states.

Energy exchange between charge carriers and microwaves
in JJ-cavity systems is concentrated at resonances where the
energy lost by a given Cooper pair is commensurate with that
of the photons in one or more microwave mode(s) [1–3]. Such
resonances can be selected by simply tuning the voltage and
are modeled theoretically using a rotating wave approxima-
tion (RWA) which leads to a convenient time-independent
Hamiltonian for the system [9,10,12,19]. The simplest reso-
nances involve a single mode and can be exploited to provide a
single-photon source [4,5], although higher-order resonances
in which two or more photons are generated within a particu-
lar mode also occur [9,18,20].

Resonances involving two modes (realized, e.g., within the
same cavity or in two separate cavities in series with the JJ)
can be used to produce entangled photons via processes in
which photons in both are generated simultaneously via a
single tunneling process [4,6]. The effective coupling between
modes generated by the JJ also supports resonances where
Cooper pair tunneling is accompanied by an exchange of
photons between modes, processes which could be exploited
to engineer efficient heat engines [21].

Despite the very wide range of possibilities offered by
JJ-cavity systems, so far attention has generally focused
only on cases where a single-photon generation/exchange

process is resonant. In this paper we instead consider situa-
tions where two or more distinct resonant processes can occur
at the same time, leading naturally to competition between
them. Here we show how the theoretical formalism used to
obtain time-independent Hamiltonians for single-resonance
problems can be generalized to address cases with multiple
coexisting resonances. We introduce a compact analytic de-
scription of the resulting RWA Hamiltonians and show that
it leads naturally to an efficient description of the system’s
classical dynamics. We illustrate our analysis by investigat-
ing in detail a specific example of competing resonances: A
two-mode system where a single tunneling Cooper pair can
generate either two photons in the first mode or one photon
in the second mode (see Fig. 1). We find that the quantum
dynamics does not produce a clear “winner” in the compe-
tition between resonant processes; instead, they can coexist
with similar strengths. Furthermore, the coexistence of the
resonances generates effective couplings between the modes
which can lead to significant entanglement.

The rest of this article is organized as follows. We start
by introducing the theoretical model for the JJ-cavity system
in Sec. II. In Sec. III we show how special functions can be
used to obtain compact expressions for RWA Hamiltonians
describing competing resonances, and the corresponding clas-
sical description is derived in Sec. IV. Then in Sec. V, we
explore the quantum dynamics that arise for the example with
two coexisting resonances. Finally, we conclude in Sec. VI.

II. MODEL SYSTEM

We consider a system of N harmonic modes, with indi-
vidual frequencies ω1, . . . , ωN , in series with a JJ and with a
voltage bias V applied, as sketched in Fig. 1(a). The modes
could be different harmonics within one or more microwave
cavities [1–3,6,22], or they could be realized as lumped ele-
ment LC oscillators [4]. The circuit can be described by the
following time-dependent Hamiltonian [9],

Ĥ =
N∑

n=1

h̄ωnâ†
nân − EJcos

[
ωJt +

N∑
n=1

�n(â†
n + ân)

]
, (1)
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FIG. 1. (a) Equivalent circuit of a JJ, biased by a voltage V =
h̄ωJ/2e, in series with a set of N microwave modes modeled as series
of LC oscillators with frequencies ω1, ω2,..., ωN . (b) As an example
we consider the case where a tunneling Cooper pair can transfer
energy into photons via two distinct resonant processes: Two photons
into mode 1 or one photon into mode 2 (2h̄ω1 = h̄ω2 = 2eV ).

where ωJ = 2eV/h̄, ân are the annihilation operators of the
modes, �n is the zero-point displacement (determined by
the corresponding mode capacitance, Cn, and inductance, Ln)
�n = (2e2√Ln/Cn/h̄)1/2, and EJ is the Josephson energy of
the junction. Almost all of the parameters in this circuit can
be varied either through circuit design [4] (ωn, �n) or in
situ within a given device, e.g., via a change of voltage [1]
(ωJ). The value of EJ can be tuned in situ by using a parallel
combination of two JJs (SQUID) and applying a flux bias.

The time dependence makes Eq. (1) a difficult Hamil-
tonian to work with. In cases where only a single mode
is included, resonances where ωJ is an integer multiple of
the mode frequency can be described by an approximate
time-independent Hamiltonian obtained via a rotating wave
approximation [4,9,10]. A similar method was applied to
study two-mode systems with ωJ chosen to match the sum of
the mode frequencies, defining a single resonance [3,12,19].
We will now consider how this approach can be generalized
to problems involving a wider set of modes and allowing for
cases where more than one process can be resonant.

Multiple resonances involving a set of N modes arise nat-
urally when their frequencies and that of the drive frequency
ωJ are all commensurate. For convenience, we shall start by
assuming that all of the frequencies can be expressed as in-
teger multiples of the fundamental (lowest) mode frequency
ω1, i.e., the values of ql = ωl/ω1 with l = 1, . . . , N and
p = ωJ/ω1 are all positive integers. Resonances in the system
associated with the inelastic tunneling of a Cooper pair across
the junction [23] are then described by vectors m, with N
integer components that satisfy

∑N
l=1 ql ml = p, with positive

(negative) components ml describing the gain (loss) of |ml |
photons in the l-th mode. In cases where more than one such
vector can be found, the system has competing resonances.

For the simple competing resonance illustrated in Fig. 1(b),
we have N = 2 and ωJ = ω2 = 2ω1; hence, p = 2 and the set
{q} = (q1, q2) = (1, 2). We can think of this as a competition
between two resonances, as to lowest order in the number of
photons created/destroyed, creation of either one photon in
mode 2 or two photons in mode 1 are both resonant. However,
the behavior described by Eq. (1) is rather more complex,
and higher-order processes involving an exchange between

the modes must also be accounted for. In fact, all vectors of
the form m(k) = (2k, 1 − k) satisfy the resonance condition
with k = 0, ±1, ±2, . . . . This illustrates the basic problem
in dealing with competing resonances: As soon as there are
two modes with frequencies that are both commensurate with
ωJ, direct processes in which just one mode, or the other, is
excited by inelastic tunneling are accompanied by a whole
host of others in which photons are exchanged between the
modes. This is a manifestation of the complex mode-mode
coupling that the Hamiltonian (1) gives rise to.

In the following we will consider systems where the res-
onance condition(s) are met up to some small detunings, δl ,
such that ωl = (ql/p)ωJ + δl (with ql , p positive integers and
q1 = 1 as before). We proceed by transforming into a rotating
frame via the unitary transform:

Û (t ) = exp

(
i

N∑
l=1

(ql/p)ωJâ
†
l âl t

)
. (2)

The RWA is then made, assuming that terms that retain a time
dependence in the rotating frame can be neglected. This is
equivalent to assuming that only the terms describing (close
to) resonant processes need to be retained.

The simplest way of expressing the resulting Hamiltonian
is to simply pick out the matrix elements in the number state
basis that have no time dependence in the rotating frame [11].
For the multimode case, we can do this formally via a filter
which selects only the relevant time-independent terms. This
results in the following recipe for the RWA Hamiltonian,

ĤRWA =
N∑

n=1

h̄δnâ†
nân − EJ

2

{
E
[
ei

∑N
n=1 �n(â†

n+ân )] + H.c.
}
,

(3)

with the filter, E , defined by the relation

E[Ô] =
∑

n

∑
m∈S

|n〉〈n|Ô|n + m〉〈n + m|, (4)

where |n〉 = |n1, n2, . . . , nN 〉 is an N-mode Fock state. The
sum over n runs over all states while the other sum is over the
vectors m belonging to the set S that satisfy the resonance con-
straint,

∑
l ql ml = p, while also having nl + ml � 0 for all

l . Hence for the two-mode competing resonance where ωJ =
ω2 = 2ω1, the set S is over the vectors m(k) = (2k, 1 − k),
leading to the states |n1 + 2k, n2 + 1 − k〉, with k an integer
within the range −n1/2 � k � n2 + 1.

In addition to the coherent drive represented by Eq. (3), a
model of the system dynamics must also include the inevitable
photon leakage from the modes. This could represent un-
wanted losses, coupling to collection lines or a mixture of the
two. For simplicity we assume a standard zero-temperature
Lindblad master equation [24],

ρ̇ = − i

h̄
[HRWA, ρ] +

∑
l

γl

2
(2âlρâ†

l − â†
l âlρ − ρâ†

l âl ), (5)

with γl the loss rate for mode l .
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III. SPECIAL FUNCTION FORM OF HAMILTONIAN

The filtering out of the resonant terms to produce a power
series embodied by Eq. (3) is a convenient route for numerical
calculations, but it is difficult to connect with simpler approx-
imate descriptions based, e.g., on a coherent state ansatz (see
Sec. IV below) in particular. Instead it is convenient to derive
compact functional forms for the power series of operator
terms left after the RWA has been implemented, an approach
that is facilitated by the use of normal ordering.

In the simple case of a single-mode system where ω1 =
(ωJ/p) + δ, the Taylor series of a Bessel function can be
identified in the normally ordered expansion that follows after
the RWA is made. This leads to the compact expression [9,10],

Ĥ (1)
RWA = h̄δâ†â − ẼJ

2
:

(
(iâ)p + (−iâ†)p

(â†â)p/2

)
Jp(2�

√
â†â) :,

(6)

where : . : indicates normal order, Jp(x) is a Bessel func-
tion of the first kind of order p, and ẼJ = EJe−�2/2 is the
renormalized value of the Josephson energy [4,25]. For single-
resonance circuits containing multiple cavities, the normally
ordered operator power series in the RWA Hamiltonians can
be written as products of Bessel functions, one for each cavity
involved in the process [12,19].

We now generalize this approach to find a compact rep-
resentation for the RWA Hamiltonian for situations where
two or more resonances compete. To do so we go back to
consider the full Hamiltonian [Eq. (1)] transformed into the
rotating frame using Eq.(2). Making the RWA by discarding
the time-dependent terms leads to complicated algebra which
significantly complicates an analytic derivation, but this diffi-
culty is sidestepped by instead introducing the RWA with an
integral over the fundamental period, T = 2pπ/ωJ,

ĤRWA =
N∑

l=1

h̄δl â
†
l âl − EJ

∫ +T/2

−T/2

dt

T

× cos

[
ωJt +

N∑
l=1

�l (â
†
l ei(ql /p)ωJt + H.c.)

]
. (7)

The time-dependent terms average to zero over a period, so
this integral form is fully equivalent to directly discarding
those terms. Formulating the RWA Hamiltonian in this form
provides a straightforward way to express it in terms of special
functions which can be defined via integrals as we now show.

To simplify Eq. (7) for the N mode system, we intro-
duce special functions denoted Z , defined via the generating
function

∞∑
p=−∞

Z {q}
p (x̂)yp =: exp

[
1

2

N∑
l=1

(
x̂l y

ql − x̂†
l

yql

)]
:, (8)

with the colons indicating normal ordering, as usual. The
function Z {q}

p (x̂) = Zq1,q2,...qN
p (x̂1, x̂2, ...x̂N ) with x̂l in our case

a mode raising or lowering operator, up to a constant factor.
The N superscript indices, {q}, together with the subscript
index, p, together fully encode the resonance conditions that
will need to be incorporated in the reformulation of Eq. (7).
These functions are essentially multidimensional Bessel

functions [26,27], but with minor modifications to incorpo-
rate complex and operator arguments more readily. As with
the single-mode case, normal ordering removes all ambigu-
ity from the corresponding power series involving operator
arguments.

For a single-mode (N = 1) case, the Z function for the
c-number argument Aeiθ is just an ordinary Bessel function
multiplied by a phase factor, Z (1)

p (Aeiθ ) = Jp(A)eipθ . The two-
mode (N = 2) version of the Z function is closely related
to the 2D generalization of the Bessel function [27]. Many
properties of these functions such as Taylor series represen-
tations, derivatives, and relational properties are derived in
the Appendix. These relations prove to be surprisingly simple,
allowing expressions involving the Z functions to be manipu-
lated quite straightforwardly.

A useful integral representation of the Z functions is ob-
tained by setting y = exp(it ) in Eq. (8), then inserting a factor
of (1/2π )

∫ π

−π
dt exp(−imt ) on both sides of the equality.

Noticing that on the left the integral reduces to a Kronecker
δ-function [27], one finds

Z {q}
p (x̂) =:

∫ π

−π

dt

2π
exp

[
N∑

l=1

1

2
(x̂l e

iql t − H.c.) − ipt

]
: .

(9)
Returning to the RWA Hamiltonian, the expression is

simplified by splitting the cosine in Eq. (7) into a sum of
exponentials, each of which is rearranged to achieve nor-
mal order and then identifying the integral representations of
the Z functions, Eq. (9). The Hamiltonian can therefore be
expressed as

ĤRWA =
∑

l

h̄δl â
†
l âl − ẼJ

2

[
Z {q}

p (x̂) + H.c
]
, (10)

where x̂l = 2i�l âl and we have redefined ẼJ =
EJ exp[−∑N

l=1 �2
l /2]. Although apparently rather abstract,

Eq. (10) facilitates analytic manipulations, as we demonstrate
in the next section.

As expected, the general expression, Eq. (10), reduces to
Eq. (6) in the single-mode limit (N = 1). Similarly, the Hamil-
tonians considered in Refs. [12,13,19,21,28,29] are recovered
for cases with a unique resonance, but with more than one
mode.

IV. COHERENT STATE ANSATZ

A coherent state ansatz can be used to obtain a simpler
approximate description of the system’s dynamics [9,30,31].
The idea is to assume that each mode is in a coherent state,
ρα = ⊗N

l=1 |αl〉〈αl |, described by a complex amplitude αl .
Substituting this into the master equation (5) leads to a set
of equations of motion for the amplitudes, the fixed points
of which provide a valuable framework for understanding the
dynamics of the system [9,18,32,33]. This approach can be
thought of as providing an essentially classical description
of the dynamics as (quantum) fluctuations in the amplitudes
are neglected [34]. When applied to systems with a unique
resonance, the resulting fixed-point amplitudes have been
shown to provide an increasingly accurate way of predicting
properties, like the average occupation numbers of the modes,
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as the strength of the quantum fluctuations (measured by
�l ) is reduced [14]. However, one key limitation is that no
information is provided about the way in which the density
operator spreads between two or more coexisting stable fixed
points [18].

To apply the coherent state ansatz to the competing-
resonance case, we evaluate α̇l = Tr(âl ρ̇) using Eq. (5),
exploiting the relation [â, f (â, â†)] = ∂ f (â, â†)/∂ â† and then
substituting in ρα . The analytic properties of the Z functions
(discussed in the Appendix), and in particular their derivatives
[see Eq. (A5)], make this a straightforward calculation. The
amplitudes are thus found to obey the following coupled set
of equations,

α̇l = −
(

iδl + γl

2

)
αl − ẼJ�l

2h̄

[
Z {q}

p+ql
({2i�mαm})

− Z {q}
p−ql

({−2i�mα∗
m})

]
. (11)

The classical fixed point(s) are obtained by solving the
algebraic equations for αl obtained by setting α̇l = 0 for all
l . The stability of these points (and hence their role in the sys-
tem’s long-time dynamics) is determined by the eigenvalues
of the Jacobian matrix,

J = ( ∂
∂α1

∂
∂α∗

1

∂
∂α2

∂
∂α∗

2
...

)T
(α̇1 α̇∗

1 α̇2 α̇∗
2 ...).

(12)
If any of the eigenvalues have positive real parts, the classical
fixed point is unstable.

The fact that the Z functions can be differentiated and
evaluated fairly easily is invaluable in locating the stable fixed
points of the classical system. In particular, Eq. (9) provides a
convenient way of carrying out the numerical evaluations of Z
functions with complex arguments that arise when calculating
the fixed points and the Jacobians needed to determine their
stability.

V. EXAMPLE: TWO-MODE COMPETITION

Having obtained formal expressions for the RWA Hamil-
tonian in cases where competing resonances exist, we now
look in detail at the specific example of the two-mode problem
with p = 2 and {q} = (1, 2) [see Fig. 1(b)]. Our main aim is
to gain insight into how competing resonances can affect the
quantum dynamics of the system, but the analysis also serves
to illuminate the very general formulations presented in the
preceding sections.

On-resonance, the RWA Hamiltonian (10) for our two-
mode system with competing resonances takes the form

H (2)
RWA = − ẼJ

2

[
Z1,2

2 (2i�1â1, 2i�2â2) + H.c.
]
. (13)

We note that one can use the properties of the Z functions
detailed in the Appendix to re-express this as an infinite
sum over products of Bessel functions of different orders,
or equivalently as an operator power series with three nested
summations, but the resulting expressions are unwieldy. How-
ever, some insight into the interaction between the modes can
be gained by analyzing the parts of the Hamiltonian related to
the lowest-order processes. Including just the terms up to the

fourth order in the creation/annihilation operators:

H (2)
RWA ≈ − ẼJ

2
:

[
i�2â2

(
1 − �2

1n̂1 − �2
2n̂2

2

)

− 1

2
(�1â1)2

(
1 − �2

1n̂1

3
− �2

2n̂2

)

+ 1

4
(�1�2â†

1â2)2 + H.c.

]
:, (14)

with n̂l = â†
l âl . We can see that two qualitatively rather differ-

ent effects are present. The first two lines of Eq. (14), together
with their corresponding Hermitian conjugates, describe pro-
cesses where photons are added/removed to just one of the
modes, but in both cases the effective rates are modified by
the photon populations of both modes. This provides a form
of nonlinear coupling similar to that arising, for example, in
cavity optomechanics [35]. In contrast, the last line of Eq. (14)
consists of a more direct form of interaction involving the
conversion of quanta between the modes, though it occurs at
the fourth order in the operators.

It is interesting to note that this effective interaction is very
different to that which arises for a single resonance where the
energy from a Cooper pair generates photons in two modes
simultaneously [6,12,19,29]. In the latter case, the interaction
contains terms that are bilinear, reducing to a parametric am-
plifier to the lowest order in the operators.

A. Fixed-point analysis

For our two-mode case, the equations of motion for the
mode amplitudes that follow from Eq. (11) are

α̇1 = −γ1

2
α1 − ẼJ�1

2h̄

[
Z1,2

3 (x1, x2) − Z1,2
1 (x∗

1, x∗
2 )

]
α̇2 = −γ2

2
α2 − ẼJ�2

2h̄

[
Z1,2

4 (x1, x2) − Z1,2
0 (x∗

1, x∗
2 )

]
,

with x j = 2i� jα j . To obtain the corresponding fixed points,
we use standard optimization methods, evaluating the Z func-
tions through numerical integration (9). It is possible to
instead proceed by splitting the Z functions into sums over
products of Bessel functions (see Appendix). However, direct
use of Z functions, evaluated by integration has a number of
advantages. First, it readily scales to higher dimensions (more
modes) [36]. Second, it avoids the subtleties of working out
where to truncate the (in principle infinite) summations that
arise. Indeed, we found the integration method to be much
faster in our calculations.

The fixed points are given by pairs of values α1, α2, the
amplitudes of which are shown in Fig. 2 as a function of
the drive strength, EJ, normalized by a threshold value E (T )

J
(defined below). Initially there is only one stable solution with
the amplitude of mode 2 (which is resonantly driven ω2 = ωJ)
growing linearly at first while the amplitude of mode 1 (ω1 =
ωJ/2) remains zero throughout. This fixed point represents
the case where mode 2 wins completely in the competition
between resonances. Indeed, the behavior of α2 for this fixed
point matches exactly what one gets with a single resonantly
excited mode [9]: It grows more slowly with increasing EJ and
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FIG. 2. Classical fixed-point amplitudes, |α1| (red) and |α2|
(blue) as a function of EJ/E (T )

J ; full (dashed) lines indicate points
that are stable (unstable), with E (T )

J the threshold beyond which both
modes can be excited. Numbers 1© and 2© indicate the pairings be-
tween the amplitudes of the individual modes at the two stable fixed
points. Also shown for comparison are results from the numerical
solution of the master equation (crosses):

√〈n̂1〉 (red) and
√〈n̂2〉

(blue). We have set �1 = 0.5, �2 = �1/
√

2, and γ1 = γ2 unless
otherwise indicated. Labels (a)–(f) on the upper axis indicate EJ/E (T )

J

values illustrated in Fig. 3.

its amplitude eventually becomes locked to a constant value
(at EJ/E (T )

J 
 1.69).
At larger drive strengths, the picture changes significantly

with a second stable fixed point emerging. A saddle-node
bifurcation occurs at ẼJ/h̄γ ≈ 6.87, where we have assumed
γ = γ1 = γ2. Since the first mode can now become excited,
we use this bifurcation point to define the threshold value
for the drive strength, E (T )

J . The bifurcation is collective: The
amplitudes of both modes change abruptly. The new stable
solution has nonzero amplitudes in both modes, though with
that of mode 1 significantly larger than that of mode 2. The
threshold occurs at a higher drive strength than that required
to excite a single mode at the two-photon resonance [9], and
hence one can think of the presence of the resonantly driven
mode 2 as tending to suppress the excitation of mode 1.

There are in fact two bifurcations that occur simultane-
ously at the threshold, although the two are identical up to
phases leading to pairs of fixed points with matching am-
plitudes, leading to only one set of curves in Fig. 2 [37].
Interestingly, the amplitude in mode 2 of the new stable points
initially drops with increasing drive, until it touches zero for
EJ/E (T )

J ∼ 1.055, after which it grows again. Seen in the full
phase space the complex amplitude of the fixed point moves
continuously through the origin. We can think of this second
stable fixed point as representing a case where mode 1 wins
the competition between resonances, winning completely for
EJ/E (T )

J ∼ 1.055.

B. Quantum steady state

We now move on to examine the full quantum dynamics
of the mode competition using numerical solutions of the
master equation (5) obtained using the QuTiP package [38].
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FIG. 3. Steady-state joint photon number distribution, P(n1, n2),
for a variety of EJ/E (T )

J values: (a) 0.80 (b) 1.00 (c) 1.16 (d) 1.38 (e)
1.67, and (f) 1.89. In each panel, the color of the pixel at location
(x, y) indicates the probability of finding exactly y photons in the
first mode and exactly x in the second. The filled (empty) circles
superimposed on the number distribution indicate the locations of
the stable (unstable) classical fixed points. The probabilities found in
the quantum case are concentrated near the stable classical solutions.

Figure 2 compares the steady-state expectation values
√〈n̂1〉

and
√〈n̂2〉 with the stable fixed-point amplitudes. Although

the connection between these quantities is apparent at low
EJ (for mode 2 in particular), it is no longer clear after the
bifurcation which leads to bistability with the emergence of
the second stable fixed point.

A much clearer understanding of the quantum behavior
can be obtained by looking instead at the joint number state
probability distribution of the two-mode system, given by
P(n1, n2) = 〈n1, n2|ρss|n1, n2〉 with ρss the steady-state den-
sity operator. Several examples of P(n1, n2) for different
choices of EJ are shown in Fig. 3, overlaid with the locations
of the corresponding classical fixed points. While there can
be more than one stable classical fixed point for a given
parameter set, the quantum dynamics always have a unique
steady-state solution. We see that at low EJ the probability
distribution is peaked around the location of the only classical
stable fixed point, albeit with a significant spread due to quan-
tum fluctuations. For EJ > E (T )

J , the probability distribution
becomes bimodal with peaks roughly concentrated around the
locations of the two coexisting classical stable fixed points.
Interestingly, these two peaks have a rather different character:
The one corresponding to high occupation of mode 1 (and
low occupation of mode 2) is much more diffuse than the
one corresponding to high occupation of mode 2 (and low
occupation of mode 1). Nevertheless, the overall message is
clear: The mode competition has no overall winner in the
quantum regime. Instead, both of the classical solutions are
represented within the quantum steady state.

C. Mode correlations

Finally, we examine the correlations that develop between
the two modes that ensue as the quantum system combines the
two very different outcomes apparent in the bistability of the
fixed points. We will look at amplitude correlations within and
between the modes and then quantify the entanglement that is
generated.
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FIG. 4. Second-order correlation functions, g(2)
i j (0). Full lines are

from numerical calculations, dashed lines are low-EJ/h̄γ estimates
for g(2)

11(22)(0) discussed in the text.

The bimodal number state distributions that emerge at
larger EJ values indicate that the photon populations have
become anticorrelated [39]. The detection of a photon from
one mode means that it is less likely that one will be found in
the other. Such effects can be quantified using second-order
correlation function [3,16,20],

g(2)
i j (0) = 〈â†

i â†
j âiâ j〉

〈n̂i〉〈n̂ j〉 . (15)

The autocorrelations for each mode (i = j = 1, 2) and the
cross-correlations (i, j = 1, 2) are shown in Fig. 4. The auto-
correlations are what one would expect for uncoupled modes
at low EJ/h̄γ , with more complex behavior emerging at
larger drive strengths. For mode 1, photons are always pro-
duced in pairs (ωJ = 2ω1) and assuming rare (uncorrelated)
pair creation events implies [20,40] g(2)

11 (0) ∼ 1/(2〈n〉), which
matches the low EJ behavior very well. For mode 2, photons
are produced one at a time (ωJ = ω2) and a modest anti-
bunching of the photons is expected at low EJ/h̄γ , taking into
account the nonlinearity [20] g(2)

22 (0) ∼ (1 − �2
2/2)2. In fact,

g(2)
22 (0) remains slightly higher than this estimate (at low EJ)

and drifts higher still with increasing EJ. This is a result of
coupling to the other mode which opens up the possibility
of a range of higher-order processes that tend to promote
bunching, e.g., one in which inelastic Cooper pair tunneling
generates two photons in mode 2 while simultaneously anni-
hilating two photons from mode 1.

The cross-correlation, g(2)
12 (0), remains less than unity

throughout, indicating the expected anticorrelations. No clear
connection to the behavior of the classical fixed points is
apparent here, though there is a minimum in g(2)

12 (0) within the
bistable region. Furthermore, the anticorrelation means that

the Cauchy-Schwartz inequality
√

g(2)
11 (0)g(2)

22 (0) � g(2)
12 (0) is

never violated here. This is in contrast to a single resonance
where photons are created in pairs with one in each of two
modes [12,16,19], thereby generating positive correlations.

The effective interactions generated by the competing reso-
nances do not just generate anticorrelations in the two modes,
they are also able to entangle them even though they are

FIG. 5. Log-negativity in steady state as a function of EJ. In each
case, �2 = �1/

√
2.

purely nonlinear, involving only terms that are third order or
higher in the creation/annihilation operators [see Eq. (14)].
To demonstrate this, we use the log-negativity as a convenient
measure of entanglement [6,29], defined as

EN (ρ) = log2 [1 + 2N (ρ)], (16)

where the negativity, N , is the absolute value of the sum of
the negative eigenvalues of the partial transpose of the density
operator [41,42]. A logarithmic negativity exceeding zero is
sufficient (though not a necessary condition) to identify a state
as entangled.

The behavior of EN (ρ) as a function of the drive is shown
in Fig. 5. We find that the logarithmic negativity initially
grows smoothly with the drive strength, later going through
a maximum (before the threshold is reached) and then a min-
imum, but remaining nonzero throughout. The values of the
logarithmic negativity achieved are not especially small given
the higher-order nature of the processes that give rise to the
correlations [see Eq. (14)]. The peak in Fig. 5 is only about a
factor of two less than ln 2, which is the upper bound achiev-
able in the two-mode squeezed state produced by a coherent
parametric amplifier interaction [43], which is bilinear in the
operators.

VI. CONCLUSIONS

We have explored the quantum dynamics of systems in
which inelastic tunneling of Cooper pairs across a voltage-
biased JJ excites a series of microwave oscillators via two
or more competing resonant processes. The competing reso-
nances arise when the mode frequencies and the Josephson
frequency (set by the bias voltage) are commensurate. The
competition between the resonances can be described by a
simplified time-independent Hamiltonian using a RWA, fol-
lowing the approach used for cases with a single resonance.
However, the resulting Hamiltonians are rather complicated
and unwieldy, even for systems with just two modes. The
very strong nonlinearity of the system, together with com-
mensurable mode frequencies, means that a large number of
processes that couple the modes together need to be accounted
for. We introduce a compact and efficient technique for ana-
lyzing such RWA Hamiltonians using normal ordering and a
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generalized special function. We illustrate the utility of this
approach by showing how it can readily be applied to obtain
simplified (classical) equations of motion for the amplitudes
of the modes.

We also explored in detail a simple example in which two
resonances compete in a two-mode system. Two stable clas-
sical fixed points of the system emerge, each one associated
with a different one of the two competing resonances clearly
“winning.” The quantum dynamics reveal a more complex
situation in which bistability emerges naturally with contribu-
tions from both resonances evident in the steady-state density
matrix. Furthermore, although the effective interactions be-
tween the modes in the presence of competing resonances are
purely nonlinear, they are sufficient to generate a significant
amount of entanglement.

It would be interesting to investigate how competing reso-
nances evolve in cases involving more than two modes in the
future. Unfortunately, straightforward numerical solutions of
the quantum dynamics become less and less tractable as the
state space grows with the number of modes. However, the
compact formulations of the multimode RWA Hamiltonians
developed here should prove a useful starting point for devel-
oping analytic approximations.
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APPENDIX: Z FUNCTIONS

The generating function for the Z functions is given by
Eq. (8). This is very similar to the generating function for
multidimensional generalizations of the Bessel functions [27];
consequently, Z functions are closely related to Bessel func-
tions [Jp(x)]:

Z (1)
p (x̂) = Zp(x̂) = :

∞∑
m=0

(−1)m(x̂†x̂)mx̂p

m! �(m + p + 1) 22m+p
:,

Zp(x̂) = :

(
x̂√
x̂†x̂

)p

Jp(
√

x̂†x̂) : . (A1)

with � the Gamma function. Note that we will suppress the
single superscript for 1D Z functions for brevity.

Equation (A1) indicates that the Z functions have an am-
plitude set by a Bessel function, but with a different phase,
something which becomes immediately apparent if one eval-
uates the expectation value with a coherent state. Another
consequence is that p denotes the overall surplus of powers
of x̂ over powers of x̂† in the expression, with negative p
naturally indicating a surplus of x̂† over x̂ instead.

The similarity to Bessel functions continues into higher di-
mensions with 2D Z functions close to the 2D generalizations
of Bessel functions given in [27]. Specifically, 2D Z functions

can be defined as a series expansion over 1D functions:

Zq1,q2
p (x̂1, x̂2) =

∑
m∈S

Zm1 (x̂1)Zm2 (x̂2). (A2)

More generally, Z functions of any dimensionality can be
expressed as an infinite sum over a product of Z functions of
one fewer dimension with 1D functions:

Zq1,...qN
p (x̂1, ... x̂N ) =

∞∑
l=−∞

Zq1,...qN−1

p−qN l (x̂1, ... x̂N−1)Zl (x̂N ).

(A3)
Alternatively, this can be expressed as

Z {q}
p (x̂) =

∑
m∈S

Zm1 (x̂1)Zm2 (x̂2)...ZmN (x̂N )

=
∑
m∈S

N∏
l=1

Zml (x̂l ), (A4)

with the sum including all m satisfying the resonance condi-
tion, q · m = p. This expression enables an alternative route
to deriving Eq. (10) starting from the power series defined
in Eq. (3). This route clarifies that single-resonance Hamil-
tonians include a product of 1D Z functions, one per mode
involved, while multiresonance ones have a sum over terms of
this form.

As discussed in the main text, the generating function can
be used to give representations of these functions as integrals,
Eq. (9). Using this integral representation partial derivatives
of the Z functions with respect to any argument are found just
to shift the index and bring down a factor 1/2:

∂

∂ x̂ j
Z {q}

p (x̂) = 1

2
Z {q}

p−q j
(x̂)

∂

∂ x̂†
j

Z {q}
p (x̂) = −1

2
Z {q}

p+q j
(x̂). (A5)

These expressions are useful in deriving Eq. (11) and very
useful in differentiating that expression with respect to
each argument to determine the elements of the stability
matrix.

Directly from the generating function, Eq. (8), one finds
that reversing the sign of one of the superscript indices q j

is equivalent to replacing the corresponding argument x̂ j by
−x̂†

j :

Z
q1,...,−q j ,...
p (x̂) = Z {q}

p (x̂1, . . . ,−x̂†
j , . . .). (A6)

Two more useful expressions can be derived from the inte-
gral form in Eq. (9) by manipulating the integration variable.
First, by shifting the limits of the integral over t and exploiting
the periodicity one finds:

Z {q}
p (x̂) = e−ipθZ {q}

p (x̂1eiq1θ , ..., x̂N eiqN θ ). (A7)

Second the periodicity can be used to see that multiplying all
indices (both head and foot ones) by a single integer, j, leaves
the expression unchanged:

Z jq1, jq2,..., jqN
j p (x̂) = Zq1,q2,...,qN

p (x̂). (A8)
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