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We analyze the conductance of a one-dimensional topological superconductor periodically driven to host
Floquet Majorana zero modes for different configurations of coupling to external leads. We compare the
conductance of constantly coupled leads, as in standard transport experiments, with the stroboscopic conductance
of pulsed coupling to leads used to identify a scattering matrix topological index for periodically driven systems.
We find that the sum of the DC conductance at voltages corresponding to integer multiples of the driving
frequency is quantitatively close to the stroboscopic conductance at all voltage biases. This is consistent with
previous work which indicated that the summed conductance at zero/π resonances is quantized. We quantify the
difference between the two in terms of the widths of their respective resonances and analyze that difference for
two different stroboscopic driving protocols of the Kitaev chain. While the quantitative differences are protocol
dependent, we find that generically the discrepancy is larger when the zero-mode weight at the end of the chain
depends strongly on the offset time between the driving cycle and the pulsed coupling period.
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I. INTRODUCTION

Driven nonequilibrium quantum systems can host a variety
of distinct phases with no counterparts in equilibrium systems
[1–8]. Unlike time-independent systems whose properties are
intrinsic to the setup and hard to change in situ, the nature
of phases in driven systems can be controlled by the more
versatile external drive. Of particular interest are topological
systems known to host conducting states at the edges of an in-
sulating bulk, which are robust to local disorder and protected
by the symmetries of the given system [9,10]. Subjecting such
systems to a source of periodic driving results in the emer-
gence of additional topological phases [2,11–17]. One such
example is that of a one-dimensional p-wave superconductor
(Kitaev chain) subject to a periodic driving of period T , which
has been shown to possess, in addition to Majorana zero
modes at zero energy [18], protected modes at energy π/T
(Majorana π modes) [19–25]. These driven states of matter
hold promise for a wider range of applications [26–28]. In
particular, the driven Kitaev wire has been stipulated as a po-
tential candidate for demonstrating a topologically protected,
non-Abelian Majorana braiding operation within a single wire
[17,29]. Such braiding operations are a necessity for topolog-
ical quantum computing and hence the exploration of diverse
alternatives for their realizations is a highly desirable goal.

The gapless surface states found in topological systems
influence the scattering of electrons incident from the leads
in an open geometry setup [30–34]. Scattering matrices pro-
vide topological indices for a full classification of topological
phases as well as an understanding of the periodicity of the
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10-fold way [35–38]. Additionally, expressing the topological
indices in terms of a scattering matrix allows one to relate
the topology to measurable transport properties. Unlike their
static counterparts, the invariants of DC scattering matrices
of periodically driven systems are not directly related to the
presence of topologically protected states at their surface.

Instead it is possible to relate the topological properties
of Floquet systems to a gedanken scattering experiment, in
which the leads are coupled to the system only at discrete
times separated by the driving period [16]. While the appli-
cation of these results to realistic measurable DC conductance
in electronic systems remains unclear [39–42], Floquet topo-
logical systems have been shown to exhibit a quantized sum
of conductances at bias multiples of the driving frequency
[20–22], indicating that a modified relation between the two
seemingly different physical processes might still exist.

In this paper we explore the relationship between topo-
logical invariants and the average DC conductance properties
of a driven noninteracting electronic system. By analyzing
the conductance associated with pulsed coupling to the leads,
which defines the scattering matrix topological invariant, we
show that it generically differs from its counterpart in the
constantly coupled leads setup, i.e., the conductance summed
over all Floquet sideband energies, which is accessible in
experiments. Interestingly, however, we show that, in the limit
of small coupling to the leads, the difference between the
two is generically small and can be quantified in terms of
the difference of the respective resonance widths. We analyze
these features for a one-dimensional topological superconduc-
tor with two different stroboscopic drivings characterized by
sudden switches between two Hamiltonians, H0 and H1, and
explore the dependence of the difference between the two
conductances on the different regions of the phase diagram.
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FIG. 1. (a) Schematic of an electronic system connected to two
external leads (terminals) via tunneling rates �L, �R and driven via
periodic control of its parameters X1, X2, the time dependence of
which is sketched in (b). Each terminal (L, R) includes ingoing and
outgoing (←, →) electron (e) and hole (h) scattering states. (c) Two
scattering scenarios are depicted, corresponding to either a contin-
uous coupling to the leads (dashed lines) or time-pulsed couplings
with periodicity T (solid lines).

II. CONDUCTANCE AND SCATTERING MATRIX FOR
DIFFERENT SYSTEM-LEAD COUPLINGS

We consider a general setup in which a one-dimensional,
noninteracting, periodically driven electronic system is in con-
tact with external leads. The latter are electron reservoirs, with
a constant density of states, tunnel coupled to the system of
interest. The system is schematically presented in Fig. 1 and
is described by the Hamiltonian

H = Hsys(t ) + HT + Hlead, (1)

where Hsys(t ) = ∑N
j,k=1 c†

j h j,k (t )ck is the Hamiltonian of the
system of interest, which is assumed to be a generic non-
interacting system of local fermionic degrees of freedom
annihilated by the operator c j . The Hamiltonian is explic-
itly dependent on time in a periodic way, Hsys(t + T ) =
Hsys(t ), so that T = 2π/ω is the period of the external
driving. The tunneling to the leads is described by HT =∑

α,k[
√

�αa†
α,kKαc jα + H.c.], where Kα is the contact matrix

between the system and the lead α, with �α characterizing the
coupling strength, and c jα annihilates a particle in the mode
jα [43]. Finally, the leads are generic free particle reservoirs
with a constant density of states and linear dispersion, Hα =
vαk

∑
k[a†

α,kaα,k − b†
α,kbα,k], where aα,k and bα,k annihilate

ingoing and outgoing particles with momentum k in the reser-
voir α = L, R. The creation/annihilation operators for energy
eigenstates in each lead can be identified with the momentum
creation operators, e.g., bL(E ) ≡ bL,k and aL(E ) = aL,k via
E = ±vLk, respectively.

The transfer of particles between the leads and the system
is described by the scattering of ingoing particles to the outgo-
ing modes of the leads due to the system. The current in lead

α is given by the net flux of particles through a section of the
lead at a given position. As long as the energies involved in the
transport and driving are much lower than the Fermi energy of
the terminals, the current is expressed in terms of creation and
annihilation operators of the scattering states by [44]

Iα (t ) = e

h
〈b†

α (t )bα (t )〉 − 〈a†
α (t )aα (t )〉, (2)

where aα (t ) = (1/2π )
∫

dt eiEt aα (E ), bα (t ) = (1/2π )∫
dt eiEt bα (E ), the spatial dependence is immaterial, i.e.,

bα (t ) ≡ bα (x, t ), and the operators are explicitly time
dependent due to the time dependence of the system. Note
that, consequently, the current is explicitly time dependent.
It can be expressed in term of the scattering matrix of the
system via

bα (t ) =
∫

dt ′Sα,β (t, t ′)aβ (t ′). (3)

The form of the scattering matrix, and hence the current,
depends on the system Hamiltonian and on the coupling to
the leads.

Rewriting the above relation in the energy domain, we
obtain

bα (E ) =
∑
n,β

Sαβ (E , En)aβ (En), (4)

where En ≡ E + nω and we have used the periodicity of the
system to constrain the Fourier expression of the scattering
matrix to take the form [39]

S(t, t ′) =
∑

n

∫
dEe−iE (t−t ′ )+inωt ′

S(E , En). (5)

The two-energy scattering matrix, S(E , En), is known as the
Floquet scattering matrix and describes scattering processes
in which an outgoing particle of energy E emerges after
absorbing/releasing energy in quanta of ω in the scattering
process and encodes all the information on the time-dependent
scattering process [45–47].

Using the Floquet scattering matrix, one can express the
current averaged over the driving period Iα = 1

T

∫
dtIα (t ) in

the form

Iα = e

h

∫ ∞

−∞
dE

∑
β 
=α

∑
n

[|Sαβ (En, E )|2 fβ (E )

− |Sβ,α (En, E )|2 fα (E )], (6)

where fα (E ) = 〈a†
α (E )aα (E )〉 is the distribution function of

particles entering the scatterer through channel α. The dif-
ferential conductance is then found via the derivative of the
current with respect to the voltage bias, Gα = dIα/dVα .

The formulation can be kept general for noninteracting
systems to include superconductors. This requires accounting
for both particle and hole degrees of freedom [48]. In this way,
the expression for current in Eq. (6) remains unchanged, with
the index β now running over both particle and hole degrees
of freedom in each external lead.

For simplicity we consider two external leads with a sym-
metric voltage bias with respect to the superconductor Fermi
level, so that the corresponding Fermi distribution functions
for both electrons and holes are then given by fLe = f (E −
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eV ), fLh = f (E + eV ), fRe = f (E + eV ), and fRh = f (E −
eV ). In the zero-temperature limit, the derivatives of the Fermi
distribution functions are simply step functions and hence,
after integrating over the energy, the contribution to the con-
ductance from each element of the scattering matrix can be
expressed as

Gαβ (V ) = e2

h

∑
n

|Sαβ (Vn,V )|2, (7)

and the total conductance, in the left lead, for example, reads

GL(V ) = GLeLh (−V ) + GLeRe (−V )

− GLeRh (V ) +
∑
β 
=α

GβLe (V ). (8)

Equation (8) is a general expression for periodically driven
electronic systems. In the following, we specialize to two
cases in which either (i) we keep constant coupling to the
leads as is typical in transport measurements setups or (ii)
the system-leads coupling is δ-like pulsed, a configuration
of interest in determining the scattering matrix topological
invariants of the system.

A. Conductance with constant couplings

We start by deriving the expression for the conductance
for the case in which the coupling to the leads is kept con-
stant and the time-dependent driving is applied to the bulk
system in order to induce a topological phase. This is the
most straightforward setup to be used in transport experiments
[20]. In order to evaluate the Floquet scattering matrix for
a given scattering system it is useful to first consider the
Floquet operator, which is the evolution over a full period
F = U (T, 0), where the evolution is dictated by an effec-
tive (non-Hermitain) Hamiltonian Hsys(t ) − i�, where � =
1
2

∑
δ �δKδ†Kδ is a self-energy accounting for the coupling

between the system of interest and the external leads.
The Floquet operator can be decomposed in terms of the

left and right eigenstates:

F |ψα〉 = e−i(εα−iγα )T |ψα〉,
〈ψ̃α|F = e−i(εα−iγα )T 〈ψ̃α|. (9)

Here εα give the so-called quasienergies of the periodically
driven system and are defined modulo the driving frequency
ω. The eigenstates of the Floquet operator can be used to
define the periodic Floquet eigenstates of the effective Hamil-
tonian,

|�α (t )〉 = ei(εα−iγα )T U (t, 0)|ψα〉,
〈�̃α (t )| = e−i(εα−iγα )T 〈ψ̃α|U (0, t ), (10)

with harmonics given by the Fourier transform

∣∣� (p)
α

〉 = 1

T

∫ T

0
dteipωt |�α (t )〉,

〈
�̃ (p)

α

∣∣ = 1

T

∫ T

0
dte−ipωt 〈�̃α (t )|. (11)

The harmonics of the Floquet states can be subsequently used
to find the Floquet-Green function G p(E ) [49]:

G p(E ) =
∑
r,α

∣∣� (p+r)
α

〉〈
�̃ (r)

α

∣∣
E − [εα + rω − iγα]

. (12)

From this Floquet-Green function the scattering matrix ele-
ments required to find the conductance across the scattering
center can be found via the relation [50]

Sα,β (Em, En) = δα,βδm−n,0 − i
√

�α�βGm−n
jα, jβ

(En), (13)

where �α,β denotes the coupling strength between the system
and the corresponding scattering channel and jα,β labels the
mode of the system which is tunnel coupled to lead α.

In this setup with constant couplings to leads, it has been
shown [20] that in the presence of a Majorana zero/π mode,
the conductance in Eq. (8) at resonance is subject to the
quantization condition∑

m

GL(ε0/π + mω) = 2e2

h
, (14)

where ε0 = 0 and επ = π
T = ω/2. We rederive this result in

the following after comparing it with a different setup in
which the coupling to the leads is controlled in periodic time
pulses.

B. Stroboscopic scattering configuration

Unlike the static case, in which the conductance quan-
tization is a direct consequence of the topological index
associated with the scattering matrix of the system, there
is no direct relation between the Floquet scattering matrix
in Eq. (13) and the topological indices of the driven sys-
tem. Instead, an alternative formulation of the topological
index in Floquet systems has been put forward in terms of a
gedanken scattering configuration, not immediately related to
measurable quantities [16]. For a system driven periodically
with period T , the gedanken scattering configuration consists
of instantaneously emitting and absorbing particles from the
leads into the system at intervals of period T . Between two
subsequent instantaneous couplings to the external leads at
times t and t + T , the uncoupled system evolves according
to its governing Hermitian Hamiltonian Hsys(t ), from which
we can define a corresponding unitary Floquet operator Ft .
Since the Floquet operator Ft determines the unitary evolution
of the decoupled system over a period, the corresponding
stroboscopic scattering matrix is expressed as [16,51]

Sstrob
t (E ) =

√
I − WW †

− W
1

I − eiET Ft

√
I − W †W

eiET FtW
†, (15)

where matrix W encodes the coupling to the leads and, using
the notation from Eq. (1), takes the form W = ∑

δ

√
T �δKδ.

Physically, the scattering matrix in Eq. (15) describes the
situation in which particles scatter into the absorbing termi-
nals stroboscopically, only at the beginning and end of each
time period [51,52]. Specifically, once an arbitrary starting
point t = 0 has been set for the periodic driving, we assume
that couplings to the terminals are performed by omitting and
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collecting particles at times that are separated by full periods
at a time offset of t with respect to the driving period. If
we define the Floquet operator F ≡ U (T, 0), the stroboscopic
scattering matrix is obtained using

Ft = U (t, 0)FU †(t, 0), (16)

corresponding to the Floquet evolution operator, which explic-
itly depends on the offset time t . Note that, while the spectrum
of the Floquet operator Ft , which discriminates the existence
of Floquet edge states, is of course independent of the offset
time t , the stroboscopic scattering matrix depends in principle
on t . In fact, physically, the scattering between time t and time
t + T depends on the specifics of the evolution between the
two times and, hence, on t itself.

This stroboscopic scattering matrix can be used to define
a corresponding conductance that is averaged over the offset
time t , Istrob

α = 1
T

∫ T
0 dtIstrob

t,α , where

Istrob
t,α = e

h

∫ ∞

−∞
dE

∑
β

[∣∣Sstrob
t,αβ (E )

∣∣2 fβ (E )

− ∣∣Sstrob
t,βα (E )

∣∣2 fα (E )
]
. (17)

The corresponding contribution to the stroboscopic conduc-
tance from each element of the scattering matrix at zero
temperature is then given by

Gstrob
αβ (V ) = e2

h

1

T

∫ T

0
dt
∣∣Sstrob

t,αβ (V )
∣∣2, (18)

and the total conductance reads

Gstrob
L (V ) = Gstrob

LeLh (−V ) + Gstrob
LeRe (−V )

− Gstrob
LeRh (V ) +

∑
β 
=α

Gstrob
βLe (V ). (19)

The voltage profile of this stroboscopic conductance will re-
flect the existence of topological indices of the periodically
driven system, which can be formulated in terms of the cor-
responding stroboscopic scattering matrix [Eq. (15)]. Namely,
the presence of topologically protected edge states will result
in quantized conductance peaks. While there is a similarity
between the conductance sum-rule quantization in Eq. (14)
and the quantization of the pulsed conductance in Eq. (19), in
that both result in quantized conductance peaks at bias volt-
ages corresponding to topological edge states, the relationship
between these two quantities remains to be explored.

Unlike the physical conductance for a system continuously
coupled to the external leads [Eq. (8)], Eq. (15) shows that the
stroboscopic scattering matrix and consequently the strobo-
scopic current are both periodic in energy. This is consistent
with the fact that the quantization condition for the physical
conductance is expressed as a sum rule, Eq. (14). This relation
is further highlighted by considering an intermediate scenario
in which the system is continuously coupled to the external
leads but outgoing scattered particles are only measured at
discrete times separated by the driving period and starting at
the delay time t .

In this intermediate scenario, the relation between the stro-
boscopic scattering matrix with continuous coupling to the
leads, denoted S̃t (E ), and S(E , En) can now be obtained by

explicitly considering that the scattering operators are relevant
only at discrete times, hence they can be expanded in a Fourier
series,

a(lT + t ) =
∫

dEã(E )e−iE (lT +t ), (20)

where ã(E ) = ∑
l a(lT + t )eiE (lT +t ) and 〈ã†

α (E ′)ãα (E )〉 =
f̃α (E )δ(E − E ′). Using the Fourier expansion of the scattering
matrix in Eq. (2), (the details of the computation are presented
in Appendix A), we find that

Iα (lT + t ) = e

h

∫
dE

∑
β

[|S̃t,αβ (E )|2 f̃β (E )] − f̃α (E ), (21)

and S̃t (E ) can be expressed in terms of the Floquet scattering
matrix via

S̃t (E ) =
∑
n,k

S(En, En+k )eikωt . (22)

Although S̃t (E ) fails to include scattered particles in
between the stroboscopic detection times and is hence a
nonunitary construction, this relationship to the Floquet scat-
tering matrix highlights the need to sum scattering events over
all Floquet sideband energies, En = E + nω, in order to make
a meaningful comparison. We therefore define a summed con-
ductance,

G̃α (V ) =
∑

n

Gα (V + nω), (23)

which reproduces the expression in Eq. (14) and provides us
with the natural quantity to be compared with the quantized
conductance at zero bias in Eq. (19).

C. Weak-coupling limit

Since both G̃α (V ) and Gstrob
α (V ) are expected to display

a peak at V = ε0/π with the same quantized maximum, we
can analyze their behavior in the vicinity of the resonance
|eV − ε0/π | � ω and at small coupling (which is expected to
set the width of the peak) to appreciate the difference between
the two. In the case in which the system-lead coupling can be
considered weak with respect to the other energy scales as-
sociated with the system Hamiltonian Hsys(t ), the self-energy
contribution � can be treated as a perturbation. In particular,
the Floquet states appearing in the definition of the Floquet-
Green’s function can be approximated by the solutions to the
uncoupled Floquet equation,(

Hsys(t ) − i
d

dt

)
|φα (t )〉 = εα|φα (t )〉. (24)

The first-order corrections to the quasienergies due to the
perturbation are found to be

γ̃α = 1

T

∫ T

0
dt〈�〉φα (t ), (25)

with the self-energy term again defined as � = 1
2

∑
δ �δK†

δ Kδ .
The elements of the Floquet scattering matrix that contribute
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to the current in Eq. (6) can then be approximated as

|Sαβ (En, E )|2 = �α�β

∑
i jrr′

〈α|Kα

∣∣φ(n+r)
i

〉〈
φ

(r)
i

∣∣K†
β |β〉〈β|Kβ

∣∣φ(n+r′ )
j

〉〈
φ

(r′ )
j

∣∣K†
α |α〉

[E − (εi + rω − iγ̃i )][E − (ε j + r′ω + iγ̃ j )]
, (26)

where 〈φ j |Kα|α〉 is the tunnel matrix element between the
mode φ j of the system and the scattering mode α, and α runs
over both particle and hole scattering modes in each external
lead.

In the limit of weak coupling, the elements of scattering
matrix take the form of sharp Lorentzian peaks at energies
εi + rω and ε j + r′ω. Consequently, the sums are dominated
by contributions for which these energies coincide and hence
i = j and r = r′ or for which the quasienergies εi are degen-
erate. Hence, in this limit, the scattering matrix components
read

|Sαβ (En, E )|2 ≈ �α�β

∑
ir

∣∣∑
k 〈α|Kα

∣∣φ(n+r)
ik

〉〈
φ

(r)
ik

∣∣Kβ |β〉∣∣2
γ̃ 2

i + (E − εi + rω)2
,

(27)

where |φik 〉 represent the eigenstates corresponding to the
degenerate eigenvalue εi. As Majorana bound states are lo-
calized at one end of the chain, they only couple to one of the
external leads. Consequently, their contribution to the conduc-
tance will arise from the Andreev reflection components of the
scattering matrix. This localization of the degenerate Floquet
eigenstates allows us to henceforward drop the sum over de-
generate states k in expressions for the scattering matrices.

The contribution to the summed conductance G̃(V ) at zero
temperature from each term of the scattering matrix reads

G̃α,β (V ) = e2

h
�α�β

∑
irnm

∣∣〈α|Kα

∣∣φ(n)
i

〉〈
φ

(r)
i

∣∣Kβ |β〉∣∣2
γ̃ 2

i + (V − εi + mω)2

= e2

h

�α�β

T 2

∑
im

∫ T

0
dtdt ′ |〈α|Kα|φi(t )〉〈φi(t ′)|Kβ |β〉|2

γ̃ 2
i + (V − εi + mω)2

.

(28)

Close to the resonant quasienergies, V ≈ εi/e, the conduc-
tance contributions take the form of a Lorentzian distribution,

G̃α,β (V ) ≈ e2

h

γ̃
(α)

i γ̃
(β )

i

γ̃ 2
i

L
(eV − εi

γ̃i

)
, (29)

where L(x) = (1 + x2)−1 is the Lorentzian function and

γ̃
(α)

i = 1

T

∫ T

0
�α|〈α|Kα|φi(t )〉|2,

so that γ̃i =
∑

δ

γ̃
(δ)

i . (30)

Since the Majorana bound states are localized at one end of the
system, they contribute to the conductance through Andreev
reflection only. The particle-hole symmetry of the system also
dictates that for Majorana states we have that γ̃

(Le )
0,π = γ̃

(Lh )
0,π .

Consequently, for V ≈ ε0/π/e,

G̃(V ) = 2G̃Le,Lh (V ) ≈ 2e2

h
L
(eV − ε0/π

γ̃0/π

)
. (31)

Next we derive the expression for the stroboscopic conduc-
tance in the vicinity of the resonances. In order to compare
these two quantities, it is instructive to express the strobo-
scopic conductance in terms of the Floquet eigenstates of the
unperturbed driving Hamiltonian Hsys(t ). We would like to use
perturbation theory to perform an expansion in the coupling
strength, �, of the operator appearing as a fraction in Eq. (15).
We can first rewrite this expression as a geometric series:

1

I − eiET Ft

√
I − W †W

=
∑

k

(eiET Ft

√
I − W †W )k

≈
∑

k

(
eiET

(
Ft︸︷︷︸
A0

− 1

2
FtW

†W︸ ︷︷ ︸
�A1

))k

.

(32)

We can write the operator A = A0 + �A1 in terms of its eigen-
states, defined as A|xi〉 = xi|xi〉:

1

I − eiET Ft

√
I − W †W

=
∑

k

(
eiET

∑
i

xi|xi〉〈xi|
)k

=
∑

i

1

1 − eiET xi
|xi〉〈xi|. (33)

The Floquet operator of the decoupled system calculated at
a particular offset time t can be expanded in terms of its
eigenstates as

Ft =
∑

i

e−iεiT |φi(t )〉〈φi(t )|. (34)

The eigenstates and eigenvalues of A0 are hence given by
|φi(t )〉 and eiεiT , respectively. We can then use perturbation
theory to calculate the first-order correction to the eigenvalues
due to the perturbed operator A:

xi(t ) = e−iεiT + 1

2

〈φi(t )|FtW †W |φi(t )〉
〈φi(t )||φi(t )〉

= e−iεiT

⎛
⎝1 + T 〈φi(t )|�|φi(t )〉︸ ︷︷ ︸

γi (t )

⎞
⎠. (35)

The stroboscopic scattering matrix now takes the form

Sstrob
t (E ) =

√
I − W †W

− W
∑

i

ei(E−εi )T

1 − eiET xi(t )
|φi(t )〉〈φi(t )|W †. (36)

Contributions to the stroboscopic conductance defined in
Eq. (18) then read

Gstrob
αβ (V )= e2

h
T �α�β

∫ T

0
dt
∑

i

∣∣〈α|Kα|φi(t )〉〈φi(t )|K†
β
|β〉∣∣2

|1 − ei(V −εi )T (1 + T γi(t ))|2 .

(37)
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Here we have again used the fact that, in the limit of weak
coupling, the conductance profile will consist of sharp peaks
at quasienergies εi. In order to directly compare the strobo-
scopic and Floquet conductances in the weak-coupling limit,
it is instructive to rearrange the expression for the conductance
summed over Floquet sidebands [Eq. (28)] into a similar form,

G̃α,β (V )

= e2

h
�α�β

∑
i

∫ T

0
dtdt ′ |〈α|Kα|φi(t )〉〈φi(t ′)|Kβ |β〉|2

|1 − ei(V −εi )T (1 + T γ̃i )|2
,

(38)

where we have used the relation∑
p

eipωz

A − pω
= TieiAz

eiAT − 1
. (39)

Equations (38) and (28) show similarities between the con-
ductances obtained for constant and stroboscopic coupling to
the leads in the sense that they are both dominated by reso-
nances in the weak-coupling limit. Even in the weak-coupling
limit, the two expressions might remain generically different
since the width of the respective resonances is controlled by
different parameters.

In order to identify this difference, we can compare the
expressions close to a resonance in the weak-coupling limit.
Approaching the resonant quasienergies εi (V ≈ εi/e), the
contributions to the stroboscopic conductance from each scat-
tering matrix element can be further simplified as

Gstrob
αβ (V )

= e2

h

1

T

∫ T

0

∣∣〈α|Kα|φi(t )〉〈φi(t )|K†
β
|β〉∣∣2

γ 2
i (t )

L
(

eV − εi

γi(t )

)

= e2

h

1

T

∫ T

0

γ
(α)

i (t )γ (β )
i (t )

γ 2
i (t )

L
(

eV − εi

γi(t )

)
, (40)

where

γ
(δ)

i (t ) = �δ|〈δ|Kδ|φi(t )〉|2,
so that γi(t ) =

∑
δ

γ
(δ)

i (t ). (41)

Again, the localized nature of the Majorana states along with
the particle-hole symmetry of the system means that the con-
ductance at these energies (i.e., V ≈ ε0/π/e) can be expressed
as

Gstrob(V ) = 2e2

h

1

T

∫ T

0
dtL

(eV − ε0/π

γ0/π (t )

)
. (42)

Equations (31) and (42) are the main findings of this sec-
tion. Their comparison shows that the discrepancy between
the two can be quantified by the time dependence of the
function γi(t ) defined in Eq. (35) and that the two quantities
agree in the case where this function is time independent. The
time dependence of γi(t ) is captured by the quantity

Vα = 〈(γα (t ) − 〈γα (t )〉)2〉. (43)

As a further figure of merit that quantifies the discrepancy
between the two conductance setups at each resonance, we

can introduce the quantity

Di = 1

�

∫ εi+�

εi−�

dE

[
L
(E − εi

γ̃i

)
− 1

T

∫ T

0
dtL

(E − εi

γi(t )

)]
.

(44)

To explore these features we analyze below the constant cou-
pling conductance and the pulsed coupling conductance of
the periodically driven Kitaev chain subject to two different
driving protocols.

III. TRANSPORT SIGNATURES OF A PERIODICALLY
DRIVEN KITAEV CHAIN

We demonstrate the difference between the two expres-
sions for the conductance using the driven Kitaev chain, which
is a simple model that displays multiple topological phases of
driven systems. The Hamiltonian for these systems is given by

H (w,�,μ) =
∑

i

[
−w

2
c†

i ci+1 + �

2
c†

i c†
i+1 + H.c.

]

−μ
∑

i

c†
i ci. (45)

We consider two different steplike driving protocols in
which the parameters of the Hamiltonian are switched instan-
taneously between two different sets of values.

A. Sudden switching between Hamiltonians in different
topological phases

In the first protocol, following Ref. [17] we consider the
two-part driving protocol, which switches between a topo-
logically trivial and a topologically nontrivial Hamiltonian,
expressed by the Floquet operator,

F = e−iH1T/2e−iH0T/2, (46)

where

H0 = H (2πλ0/T, 2πλ0/T, 0), (47)

H1 = H (0, 0, 2πλ1/T ) (48)

correspond to the static Hamiltonian of the topological phase
and the trivial phase of the Kitaev chain, respectively. H0

describes the sweet spot of the topological phase, which is
characterized by Majorana zero modes, with zero correlation
length.

The phase diagram of the driven system is plotted in Fig. 2
in the parameter regime 0 < λi < 1. The system exhibits four
distinct topological phases distinguished by the presence or
absence of Majorana zero modes and Majorana π modes. The
phases can be identified via the topological index expressed in
terms of the scattering matrix [16] via

ν0/π = 1

iπ
log det RL(ε0/π ), (49)

where RL is the part of the entire stroboscopic scattering ma-
trix that describes reflection in the lead L. A clear insight can
be obtained by analyzing the stroboscopic scattering matrix at
the sweet spots, which are characterized by Majorana modes
localized at the left- and rightmost sites, and for perfectly
transparent leads W = ∑

δ

√
T �δKδ = ∑

δ Kδ . In this limit
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(a) (b) (e) (f)

(g) (h)(c) (d)

FIG. 2. Phase-space diagram illustrating how the topological phase of the Floquet Kitaev wire depends upon the Hamiltonian parameters
λ0 and λ1 [see Eqs. (47) and (48)]. Numerical results for the zero-temperature differential conductance summed over the energy sidebands, G̃,
and the stroboscopic conductance, Gstrob, plotted as a function of the total voltage bias between the left and the right external leads V = VL − VR.
The plot colors correspond to those in the phase diagram. The conductance is evaluated at both the four sweet spots, marked by black crosses
and plotted in the darker shade, and the points marked by the white crosses for each phase: (a, b) Trivial, (c, d) MZM, (e, f) MPM, and (g, h)
MZM/MPM. The results were obtained using a chain of 20 sites and with tunneling rates to the external leads given by �L/R/ω = 0.016.

there is no transmission and the scattering matrix decouples
into S(ε) = RL(ε) ⊕ RR(ε), which are both 2 × 2 reflection
matrices at the two leads. The details of the following calcu-
lations are outlined in Appendix B.

From Eq. (15), we have the following.
(i) For the trivial phase sweet spot at λ1 = 1/2 and λ0 =

0 we have RL(ε) = RR(ε) = −ieiεT σz, and the topological
index is

ν0/π = 0. (50)

(ii) The MZM phase, where the sweet spot is λ0 = 1/2
and λ1 = 0, results in RL(ε) = eiεT /2[(1 − eiεT )1 − (1 +
eiεT )σx] and RR(ε) = eiεT /2[(1 − eiεT )1 + (1 + eiεT )σx],
and the topological index is

ν0 = 1, νπ = 0. (51)

(iii) The sweet spot of the MPM phase is at λ0 =
1/2 and λ1 = 1 with RL(ε) = eiεT /2[(−1 − eiεT )1 + (1 −
eiεT )σx] and RR(ε) = eiεT /2[(−1 − eiεT )1 − (1 − eiεT )σx],
and the topological index is

ν0 = 0, νπ = 1. (52)

(iv) Finally, the sweet spot of the MZM/MPM phase at
λ0 = 1 and λ1 = 1/2 gives RL(ε) = −RR(ε) = eiεT σy, with

ν0 = 1, νπ = 1. (53)

These results are directly reflected in the quantized values of
Gstrob(V = ε0/π ). Figure 2 shows the zero-temperature con-
ductance profiles as a function of the bias voltage obtained
for the driving protocol in Eq. (46) for each of the four
topological phases at the sweet spots (black crosses) and

away from the sweet spots (white crosses). Results were ob-
tained numerically using a chain of 20 fermionic sites. This
chain is sufficiently long that, for the parameters studied,
any interaction between Majorana modes at either end of
the superconductor, and hence any splitting of the Majorana
conductance peaks, is negligible. The solid line corresponds to
the physical conductance of the system, summed over Floquet
harmonics, calculated from Eqs. (8) and (23) and the dashed
line corresponds to the stroboscopic conductance calculated
from the fictitious pulsed scattering problem in Eq. (17). The
three topological nontrivial phases are characterized by the
existence of conductance peaks of height 2e2/h at eV = 0
and/or eV = π/T , corresponding to the existence of Majo-
rana zero and π modes, respectively. These peaks arise due
to resonant Andreev reflection events via the Majorana modes
and the values of the voltage bias at which they occur can be
deduced via the maxima of the off-diagonal elements of the
corresponding reflection matrices.

As discussed in Sec. II, the DC conductance and averaged
stroboscopic conductance correspond to different scattering
setups with constant vs pulsed coupling to the leads and,
consequently, different broadenings of levels. As a result, the
respective conductance traces are expected to differ in the
width of the resonant conductance peaks. For weak coupling
to the leads we find that the conductance traces show a very
good agreement, even away from the eV = 0 and eV = π/T
peaks [53].

In order to quantify the discrepancy between the two con-
ductances, we plot the difference function D0/π [Eq. (44)]
around the eV = 0 and eV = π/T resonances throughout the
parameter space spanned by λ0 and λ1 in Figs. 3(a) and 3(c),
respectively. The difference is maximal in the MZM/MPM
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FIG. 3. (a, c) Density plots illustrating the value of the difference function for both the zero-mode resonance D0 and the π -mode resonance
Dπ , respectively, throughout the parameter space (λ0, λ1) with coupling strength �L/R/ω = 0.0016. (b, d) Corresponding plots of the time
variance of the function γα (t ) controlling the resonance widths. (e–h) Comparison between the conductance summed over the energy sidebands
G̃ and the stroboscopic conductance Gstrob for selected points, again with coupling strength �L/R/ω = 0.0016. (i) Comparison of G̃ (solid
lines) and Gstrob (dashed lines) for increased strength coupling to the external leads � close to the MZM resonance. (j) Density plot illustrating
the difference between the stroboscopic and the summed conductances integrated over the entire spectrum throughout the parameter space,
calculated using a coupling strength of �L/R/ω = 0.016. All data were obtained using a chain of n = 20 fermionic sites.

phase at points where the offset time variance Vα [Eq. (43)] of
the function controlling the resonance width γα (t ) is greatest,
as captured in Figs. 3(b) and 3(d). Figures 3(e) and 3(h) show
the stroboscopic and DC conductance traces taken at values of
λ0 and λ1 where the difference function D0/π is maximal. This
difference, although small, is persistent in the limit � → 0.
Figure 3(j) shows the energy-integrated difference between
the stroboscopic and the DC conductance. Notably, this is
quantitatively well captured by the figures of merit D0 and
Dπ obtained from the discrepancy between conductances at
the resonances. Upon increasing the coupling to the external
leads, the agreement between the conductance resonances in
the two coupling configurations breaks down and the stro-
boscopic and DC conductances are increasingly different [cf.
Fig. 3(i)].

B. Sudden switching between Hamiltonians within the trivial
topological phase

As the second example we consider a different driving
protocol that consists of instantaneously switching between

two topologically trivial Hamiltonians, which differ by the
value of the chemical potential μ(t ) [20],

H0 = H (w,�,μ0), (54)

H1 = H (w,�,μ1), (55)

such that μ0,1 > w/2. Here the phase diagram is spanned by
changing the driving frequency ω; see Fig. 4(a).

In Figs. 4(d)–4(f) we compare the conductance traces for
selected driving frequencies summed over sidebands with the
stroboscopic conductance. As in the previous case, we find
that the conductance calculated using the sum rule shows good
agreement with the stroboscopic fictitious conductance. In
Figs. 4(b) and 4(c) we see that, once again, the time variance
of the function γi(t ) captures the behavior of both differences
between the conductances at the zero and π Majorana peaks
as a function of the driving frequency.

While the difference between the stroboscopic and the DC
conductance appears to be small across the whole voltage
range and is well captured by the difference between the width
of the resonant peaks, some aspects of the differences between
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(d)

(e)

(f)

(a)

(b)

(c)

FIG. 4. (a) Variation of the bulk quasienergy gaps around ε = 0 and ε = π over a range of driving frequencies ω. The possible phases over
this range are denoted: Tr, trivial; MZM, zero modes only; MPM, π modes only; and MZM/MPM, both zero and π modes. (b) Behavior of
the difference functions for the zero-mode (D0) and π -mode (Dπ ) resonances over this range of frequencies; (c) the corresponding behavior
of the time variance of γi(t ) dictating this difference. (d–f) Conductance profiles for selected driving frequencies comparing the measured
conductance summed over sidebands with the stroboscopic construction. All data were obtained using a chain length of n = 70 and coupling
strength �L/R/ω = 0.04

the two conductances are protocol dependent. The maximum
difference in the second protocol is roughly two orders of
magnitude smaller than in areas of maximum difference of
the first protocol. This is due to the time dependence of the
function γ (t ), which is dictated by how the structure of the
eigenstates of the Floquet operator depends upon the offset
time between the stroboscopic coupling and the start of the
driving cycle. In particular, it depends upon the contribution
to the eigenstates at the fermionic sites at the ends of the
chain, which are coupled to the external leads. At the points of
maximum difference in the first protocol, the eigenstates are
highly localized at the final site when t = 0 but as the offset
time increases this localization is shifted almost entirely to the
second site and then back to the first at t = 0.5T . This leads
to a significant time dependence of γ (t ) and consequently
a difference between the two conductance quantities. In the
second protocol, the eigenstates are more evenly distributed
throughout the entire chain and the contribution at the end
sites seems to depend little on the variation of the offset time

t . By exploring the factors which contribute to the discrep-
ancy between the two conductance quantities being small,
we can determine the regimes in which transport experiments
measuring conductance can provide a good approximation of
the topological invariant for Floquet systems arising from the
associated stroboscopic scattering matrix.

IV. CONCLUSIONS

In conclusion, we have established a connection between
the experimentally accessible Floquet scattering matrix for
driven topological systems and a related scattering matrix
for the case of pulsed coupling to external leads [16]. The
comparison between the two provides a platform from which
to explore signatures of Floquet topological phases in trans-
port properties such as the differential conductance, building
upon the relationships between scattering matrix invariants
and topological phase classification established for nondriven
systems.
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We have compared the transport properties of the two
coupling configurations by analyzing the DC conductance
summed over the Floquet sidebands and the period-averaged
stroboscopic conductance of pulsed coupling to the leads,
both showing conductance peaks quantized at a height of
2e2/h. We have shown that in general the difference between
the two is captured by the different widths of the resonant
peaks in the limit of small coupling to the external leads.

We have demonstrated this relation in the specific exam-
ple of a periodically driven Kitaev chain, considering two
different driving protocols: a driving protocol which instanta-
neously switches between Hamiltonians at the sweet spots of
the trivial and topological phases and a driving protocol which
instantaneously switches between two Hamiltonians within
the same topologically trivial phases.

Both protocols show the emergence of four distinct topo-
logical phases which can be accessed via tuning of the
Hamiltonian parameters. Each of the three nontrivial phases is
characterized by the existence of Majorana zero or π modes.
These topological phases can be characterized by scattering
matrix invariants formulated in terms of a gedanken pulsed
scattering experiment [16]. The three nontrivial phases are
also characterized by DC conductance signatures which, when
summed over Floquet sidebands, result in conductance peaks
quantized at a height of 2e2/h, at values of external bias corre-
sponding to the energy of the Majorana modes characteristic
of the given phase. We have shown that the difference between
the DC experimentally accessible conductance and the con-

ductance obtained from the gedanken pulsed measurement is
reflected in the width of the zero and π conductance peaks.
We have studied the dependence of the difference function on
the physical parameter space in the two protocols and found
that generically the discrepancy is larger when the zero-mode
weight at the end of the chain depends strongly on the offset
time between the driving cycle and the pulsed coupling period.

Although we have focused here upon the example of a
driven Kitaev chain, our methodology could be applied to
any open, periodic system to explore the connection between
experimentally accessible transport features and Floquet topo-
logical phases.

All relevant data present in this publication can be accessed
at Ref. [54].
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APPENDIX A: COMPUTATION OF THE CURRENT IN
TERMS OF St (E )

We derive here Eqs. (21). Our starting point is Eq. (2).
We use the time periodicity in the Fourier expansion of the

scattering state operators,

a(lT + t ) =
∫

dEaF (E )e−iE (lT +t ), (A1)

where aF (E ) = ∑
l a(lT + t )eiE (lT +t ) and 〈aF

α

†(E ′)aF
α (E )〉 = f F

α (E )δ(E − E ′), to get

Iα (lT + t ) =
∫

dE

{∑
β

∑
m′,m′′

S∗
α,β (t + lT, t + m′T )Sα,β (t + lT, t + m′′T ) f F

β (E )eiE (m′T −m′′T ) − f F
α (E )

}
.

This expression is simplified by plugging in the Fourier expansion of the scattering matrix and using einωT = 1 and∑
m′ ei(ET )m′ = 2π

T δ(E ) to arrive at

Iα (lT + t ) =
∫

dE

{∑
β

∑
n′,n′′

S∗
α,β (E , En′ )Sα,β (E , En′′ ) f F

β (E )ei(n′′−n′ )ωt − f F
α (E )

}
. (A2)

Finally, the current is expressed in terms of a stroboscopic scattering matrix,

Iα (lT + t ) =
∫

dE
∑

β

[∣∣SF
α,β,(t )(E )

∣∣2 f F
β (E )

] − f F
α (E ), (A3)

where ∑
n

Sα,β (E , En)einωt = SF
t (E ). (A4)

Once we have identified the relation between the scattering matrix of the full time-dependent problem and the stroboscopic
scattering matrix of the fictitious problem, we can express the actual current in terms of St (E ). For this we manipulate Eq. (A3)
along the lines in Ref. [39]:

Iα = e

h

∫ ∞

0

∑
β 
=α

∑
n

{|Sαβ (En, E )|2 fβ (E ) − |Sβα (En, E )|2 fα (E )
}
. (A5)

We also note that ∑
n

Sα,β (E , En)einωt =
∑

n

Sα,β (E−n, E )einωt =
∑

m

Sα,β (Em, E )e−imωt = SF
t (E ), (A6)
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where in the first equality we have redefined our energy to be E → E + nω and in the second we have changed the sum to be
over m = −n. We can also use the fact that Eq. (A7) defines a discrete Fourier transform such that:

Sα,β (En, E ) = 2π

T

∫ T

0
SF

t (E )einωt . (A7)

Using this expression we can write

Iα = e

h

∫ ∞

0
dE

(
2π

T

)2 ∫ T

0
dtdt ′ ∑

β 
=α

∑
n

{
SF∗

αβ,(t )(E )SF
αβ,(t ′ )(E ) fβ (E ) − SF∗

βα,(t )(E )SF
βα,(t ′ )(E ) fα (E )

}
einω(t ′−t ). (A8)

We perform the sum over n, which results in the final expression [cf. Eq. (21)]

Iα = e

h

∫ ∞

0
dE

∑
β 
=α

(∫ T

0

2πdt

T

∣∣SF
αβ,(t )(E )

∣∣2) fβ (E ) −
(∫ T

0

2πdt

T

∣∣SF
βα,(t )(E )

∣∣2) fα (E ). (A9)

APPENDIX B: CALCULATING THE SCATTERING
MATRIX TOPOLOGICAL INDEX

Here we outline how we obtain the values of the scattering
matrix topological index at the sweet spots of the four distinct
phases of the driven Kitaev chain discussed in Sec. III A.
Following the work of Fulga and Maksymenko [16], one can
define the topological index associated with a particular phase
in a periodically driven system in terms of the stroboscopic
scattering matrix [Eq. (15)] as

ν0/π = 1

iπ
log det RL(ε0/π ). (B1)

Here RL denotes the part of the stroboscopic scattering matrix
describing reflection processes in the left lead and we con-
sider the case where the offset time between the stroboscopic
coupling to the leads and the driving period is set to zero,
Sstrob

0 (E ).
In order to gain insight into the value of this index in

each of the four topologically distinct phases in our model,
we chose to evaluate ν0/π at the sweet spot in each phase,
which are characterized by the complete localization of the
Majorana modes at the end sites of our Kitaev chain. For
simplicity we also consider the situation in which the cou-
pling to the external leads is perfectly transparent so that
W = ∑

δ

√
T �δKδ = ∑

δ Kδ . Here we detail the calculation
of the topological index for each sweet sport in turn:

(1) The sweet spot of the trivial phase corresponds to λ1 =
1/2 and λ0 = 0. In this case the Floquet operator with zero
offset time is given by

F = e−iH1T/2 (B2)

and can be written as F = ⊕N
n=1Fn where Fn = iσy acts in

the subspace spanned by Majoranas an and bn from the same
fermionic site. Using the expression of the stroboscopic scat-
tering matrix given in Eq. (15), we find that the transmission
coefficients between different leads vanish and the matrix
decouples as S(ε) = RL(ε) ⊕ RR(ε). The reflection matrices
take the form

RL(ε) = ieiεT

(−1 0

0 1

)
= RR(ε) (B3)

⇒ RL(ε0) =
(−i 0

0 i

)
, RL(επ ) =

(
i 0
0 −i

)
. (B4)

Using Eq. (B1), we find that the topological index vanishes at
both Majorana energies, ν0/π = 0.

(2) In the phase hosting Majorana zero modes only, the
sweet spot is located at λ0 = 1/2 and λ1 = 0. The Floquet
evolution at this point is described by

F = e−iH0T/2 (B5)

and can be written as F = FN,1 ⊕N−1
n=1 Fn,n+1, where Fn,n+1 =

iσy operates in the basis bn, an+1 and F1,N = I2 operates in the
basis a1, bN . The reflection matrix is then

RL(ε) = eiεT

2

(
eiεT − 1 1 + eiεT

1 + eiεT eiεT − 1

)
,

RR(ε) = eiεT

2

(
eiεT − 1 −1 − eiεT

−1 − eiεT eiεT − 1

)
, (B6)

⇒ RL(ε0) =
(

0 1

1 0

)
, RL(επ ) =

(
1 0

0 1

)
. (B7)

This results in the topological index values of ν0 = 1 and
νπ = 0.

(3) The sweet spot of the phase hosting only Majorana π

modes is at λ0 = 1/2 and λ1 = 1. Here the Floquet operator
can be written as F = FN,1 ⊕N−1

n=1 Fn,n+1, where Fn,n+1 = −iσy

again operates in the basis bn, an+1 and F1,N = −I2. The
reflection matrix is

RL(ε) = eiεT

2

(
eiεT + 1 eiεT − 1

eiεT − 1 eiεT + 1

)
,

RR(ε) = eiεT

2

(
1 + eiεT 1 − eiεT

1 − eiεT 1 + eiεT

)
(B8)

⇒ RL(ε0) =
(

1 0

0 1

)
, RL(επ ) =

(
0 1

1 0

)
. (B9)

The topological indices corresponding to this phase are hence
given by ν0 = 0 and νπ = 1.

(4) The sweet spot of the phase hosting both zero and
π Majorana modes is found at λ0 = 1 and λ1 = 1/2. Here
the Floquet operator can be written as F = ⊕N

n=1Fn, where
Fn = −iσy for n = 2, . . . , N − 1, F1 = −σx, and FN = σx, all
operating in the basis an, bn. The corresponding reflection

155422-11



SIMONS, ROMITO, AND MEIDAN PHYSICAL REVIEW B 104, 155422 (2021)

matrix can be expressed as

RL(ε) = eiεT

(
0 i

−i 0

)
= −RR(ε) (B10)

⇒ RL(ε0) =
(

0 i

−i 0

)
, RL(επ ) =

(
0 −i

i 0

)
. (B11)

Hence the topological indices in this phase take the form
ν0/π = 1. From these results it is clear how the values of the
stroboscopic scattering matrix topological index can be used
to distinguish each distinct phase.
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