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We use an exact analytical technique [Phys. Rev. B 101, 115405 (2020), Phys. Rev. B 102, 165117 (2020)] to
recover the surface Green’s functions for Bernal (ABA) and rhombohedral (ABC) graphite. For rhombohedral
graphite we recover the predicted surface flat bands. For Bernal graphite we find that the surface state spectral
function is similar to the bilayer one, but the trigonal warping effects are enhanced, and the surface quasiparticles
have a much shorter lifetime. We subsequently use the T -matrix formalism to study the quasiparticle interference
patterns generated on the surface of semi-infinite ABA and ABC graphite in the presence of impurity scattering.
We compare our predictions to experimental STM data of impurity-localized states on the surface of Bernal
graphite which appear to be in a good agreement with our calculations.
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I. INTRODUCTION

Despite graphite having been known to theorists for
decades [1], it was not until after the experimental discovery
of graphene in 2004 [2,3] that graphene-based systems started
to attract a lot of attention, both in experimental and theoreti-
cal groups in condensed matter physics. While a lot of interest
is devoted to few-layer systems since these are cleaner and
possibly more interesting for nanoelectronics applications,
here we focus rather on three-dimensional (3D) graphite, in
particular on the relationship between the electronic proper-
ties of its surface states, accessible via ARPES or STM, and
the properties of few-layer systems. We consider two types of
stacking: The Bernal stacking (also known as ABA) and the
rhombohedral stacking (also known as ABC). Both are shown
in Fig. 1. To describe the surface states we use the technique
presented in Refs. [4,5], in which the surface Green’s func-
tions are obtained by introducing an infinite-strength planelike
impurity, which effectively cuts the system in two, and by
solving exactly the problem using the T -matrix formalism.

Thus, for semi-infinite ABC graphite we recover the ex-
istence of the surface state flat bands previously predicted to
appear in multilayered ABC graphene [6–8] and observed in
Ref. [9], and we determine their extent in a fully semi-infinite
system. For the ABA graphite the surface states are similar
to those of bilayer graphene in that they have a parabolic
dispersion close to the Dirac point. However, the effects of
the trigonal warping are more pronounced for graphite sur-
face states than for a bilayer system. Moreover, we find that
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the quasiparticle lifetimes and coherence lengths are greatly
reduced for the surface states, making these states less sharp
in momentum space.

We subsequently consider the quasiparticle interference
(QPI) patterns arising on the surface of graphite from
impurity-scattering processes. These features have been stud-
ied before in connection to various aspects of graphene
physics [11–30]. We demonstrate that the oscillations in the
local density of states associated with the impurity scattering
decay much faster on the surface of graphite, be it ABA or
ABC, than in bilayer graphene (BLG) and trilayer graphene
(TLG). Furthermore, we show that trigonal warping gives
rise to a threefold symmetry reflected both in the spectral
functions and the quasiparticle interference patterns; this ef-
fect is enhanced on the surface of graphite compared to the
BLG and gives rise to impurity states with a striking three-
fold symmetry. Our theoretical results on graphite reproduce
well experimental STM data obtained on graphite and thick
graphene films.

The paper is organized as follows: In Sec. II we present the
tight-binding models used to describe graphene and graphite.
In Sec. III we compute the band structure for multilayer
graphene systems using numerical tight-binding calculations;
the latter can be used as a reference point for the analytical
semi-infinite-system calculations in Sec. IV. Furthermore, in
Sec. IV we calculate the surface spectral function for both
ABA and ABC graphite. In Sec. V we compute the QPI
patterns (both in real space and in momentum space) for
ABA and ABC graphite, BLG and TLG. In Sec. VI we
present experimental STM results obtained on freshly exfo-
liated graphite crystals, as well as on a multilayer graphene
film (∼10 layers thick) supported by hexagonal boron nitride
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FIG. 1. Lattice structure for A: Single-layer graphene, B: Bi-
layer graphene with AB stacking, C: Bernal-stacked graphite, D:
Rhombohedral-stacked graphite. Modified from Ref. [10].

(hBN), and we show that both the short localization length and
the trigonal warping features agree well with our theoretical
results. In Sec. VII we describe the evolution of the QPI main
features with the number of layers by comparing the results
for semi-infinite graphite with those for two, three, four, and
eight layers. We leave the conclusions to Sec. VIII, while in
the Appendixes we present the models used in Sec. VII for
multilayer systems.

II. TIGHT-BINDING MODELS FOR BILAYER
AND TRILAYER GRAPHENE, AS WELL

AS FOR ABA AND ABC GRAPHITE

To model BLG and TLG, as well as graphite, we con-
sider three types of hopping: The intralayer nearest-neighbor
hopping γ0, the interlayer nearest-neighbor hopping γ1, i.e.,
between two sites which have the same coordinates in
the (x, y) plane and belong to adjacent layers, and finally,
the interlayer hopping denoted γ3 responsible for trigonal
warping [31–33]. In what follows we will take γ0 =
3.3 eV, γ1 = 0.42 eV, and for γ3 we will consider either
γ3 = 0 or γ3 = −0.3 eV. If not mentioned all units will be
considered to be given in eV.

For bilayer graphene the k-space Hamiltonian written in
the basis {ψA1

k , ψB1
k , ψA2

k , ψB2
k }, where A, B and 1, 2 refer to

sublattices and layers, respectively, is given by

HBLG(k) =

⎛
⎜⎝

0 h0(k) 0 h3(k)
h∗

0(k) 0 γ1 0
0 γ1 0 h0(k)

h∗
3(k) 0 h∗

0(k) 0

⎞
⎟⎠, (1)

where we defined

h0(k) = −γ0

[
1 + 2e−i 3

2 a0kx cos

(√
3

2
a0ky

)]
, (2)

h3(k) = −γ3ε, (3)

and

ε ≡ 2e−i 3
2 a0kx cos

(√
3

2
a0ky

)
+ e−i3a0kx . (4)

The trilayer graphene that we will consider in our
calculations is the ABC (rhombohedral stacking), with
the corresponding Hamiltonian written in the basis
{ψA1

k , ψB1
k , ψA2

k , ψB2
k , ψA3

k , ψB3
k }:

HTLG(k)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 h0(k) 0 h3(k) 0 0

h∗
0(k) 0 γ1 0 0 0

0 γ1 0 h0(k) 0 h3(k)

h∗
3(k) 0 h∗

0(k) 0 γ1 0

0 0 0 γ1 0 h0(k)

0 0 h∗
3(k) 0 h∗

0(k) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Bernal-stacked (ABA) graphite (see Fig. 1) is the most
common as well as the most stable form of graphite [34]. The
Hamiltonian is given by

HABA(k) =
∑

l

h0(k)c†
k,l,Ack,l,B

×
[

1 + 2e−i 3
2 a0kx cos

(√
3

2
a0ky

)]

+ γ1

∑
l even

c†
k,l,Bck,l+1,A + γ1

∑
l odd

c†
k,l,Ack,l+1,B

+
∑
l even

h3(k)c†
k,l,Ack,l+1,B

+
∑
l odd

h∗
3(k)c†

k,l,Bck,l+1,A + H.c., (5)

where l labels the layer. We define a two-layer unit cell, so
that the Hamiltonian in Eq. (5) can be rewritten as

HABA(k) =
∑

l=l−,l+

h0(k)c†
k,l,Ack,l,B

×
[

1 + 2e−i 3
2 a0kx cos

(√
3

2
a0ky

)]

+ γ1c†
k,l−,Bck,l+,A(1 + e−2id0kz )

+ h3(k)c†
k,l−,Ack,l+,B(1 + e−2id0kz ) + H.c., (6)

where k = (kx, ky, kz ), l− (l+) corresponds to the lower (up-
per) layer of the unit cell, d0 is the distance between two
neighboring layers, and ε is defined in Eq. (4). We take a0 =
1.42 Å, and d0 = 3.35 Å.
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The tight-binding Hamiltonian for rhombohedral graphite
is given by

HABC(k) =
∑

l

h0(k)c†
k,l,Ack,l,B

×
[

1 + 2e−i 3
2 a0kx cos

(√
3

2
a0ky

)]

+ γ1c†
k,l,Bck,l+1,A + h3(k)c†

k,l,Ack,l+1,B + H.c.

(7)

This can be rewritten as

HABC(k) =
∑

l=l−,l0,l+

h0(k)c†
k,l,Ack,l,B

×
[

1 + 2e−i 3
2 a0kx cos

(√
3

2
a0ky

)]

+ γ1c†
k,l−,Bck,l0,A + γ1c†

k,l0,B
ck,l+,A

+ γ1c†
k,l+,Bck,l−,Ae3ia0kx e3id0kz

+ h3(k)c†
k,l−,Ack,l0,B + h3(k)c†

k,l0,A
ck,l+,B

+ h3(k)c†
k,l+,Ack,l−,Be3ia0kx e3id0kz + H.c.,

where l−, l0, l+ correspond to the lower, middle, and upper
layers of the unit cell, respectively. The unit cell is thus com-
posed of six sites: There is an A-sublattice and a B-sublattice
site for each of the three layers.

Using these Hamiltonians, we can define the unperturbed
Matsubara Green’s function:

G0(k, iωn) = [iωnI − H(k)]−1. (8)

To simplify notations hereinafter we will assume that a0 is
set to unity, and hence d0 = 2.36 and all momenta are given
in units of 1/a0.

III. BAND STRUCTURE FOR A FINITE GRAPHITE SLAB

We now use numerical tight-binding calculations in order
to obtain the energy spectrum for a finite slab of graphite. We
first plot in Fig. 2 the spectrum around the K point for a 100-
layer ABA graphite slab with no trigonal warping (γ3 = 0).
As expected, in full accordance with Ref. [1], the spectrum
shows multiple bands with parabolic dispersion.

We then calculate the spectrum of ABC graphite in the
absence of trigonal warping. This is plotted in Fig. 3 for
different numbers of layers. As we can see, the surface states
in this case form a flat band at zero energy, which extends
further away from the K point when increasing the number
of layers. It seems that when the number of layers tends to
infinity, the extension of the flat band reaches a limit value in
k space.

These tight-binding calculations will serve as a reference
for comparison with the analytical calculations for semi-
infinite graphite in the next section. Direct and indirect
experimental evidences of the existence of the above men-
tioned surface states can be found in Refs. [35,36].

FIG. 2. Spectrum for Bernal-stacked graphite around the K point
for 100 layers, with γ3 = 0.

IV. SPECTRAL FUNCTION FOR SEMI-INFINITE
GRAPHITE

Numerical tight binding is valid for a finite-width graphite
slab, however it cannot be applied to semi-infinite systems.
To calculate the surface states for a semi-infinite system we
use the technique described in Ref. [4]. In order to emulate
a surface we add a planelike impurity to the bulk system, as
depicted in black in Fig. 4, such that the plane is perpendicular
to the z axis. We assume that the impurity is described by V =
Uδ(z)I, where the identity matrix I has the same dimensions
as H. The impurity generates impurity-bound states on either
side of it (i.e., on the surfaces highlighted in red in Fig. 4).
For large values of the impurity potential amplitude U , these
impurity-induced states become the surface states of graphite.
Throughout this work we will thus be using U = 100 000.

Mathematically, this can be translated into a calculation of
the system Green’s function in the presence of the impurity,
which can be done exactly via T matrix [17,37–41]:

G(k1, k2, iωn) = 2πG0(k1, iωn)δ(k1 − k2)

+ G0(k1, iωn)T (k1, k2, iωn)G0(k2, iωn),
(9)

FIG. 3. Spectrum for ABC graphite around the K point for 10,
50, and 100 layers (from left to right), and γ3 = 0.
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FIG. 4. A planelike impurity (in black) separating a 3D infinite
system into two semi-infinite parts, each with a surface (in red)
parallel to the impurity plane. The impurity and the red surfaces
are separated by a unit-cell spacing, which in this case is equal to
2d0 for Bernal-stacked graphite and to 3d0 for rhombohedral-stacked
graphite.

where the T -matrix T (k1, k2, iωn) embodies the effect of all-
order impurity-scattering processes, and is given by

T (k1x, k1y, k2x, k2y, iωn)

= δk1x,k2x δk1y,k2y

[
I − U

∫
dkz

Lz
G0(k1x, k1y, kz, iωn)

]−1

U .

(10)

Here Lz is the length of the Brillouin zone in the kz direction—
the direction perpendicular to the impurity plane [42]. The
zero-temperature retarded Green’s function G(k1, k2, E ) is
obtained by an analytic continuation iωn → E + iδ with
δ → 0+.

In what follows we assume that there is always some
nonzero broadening of the energy δ accounting for inelastic
scattering processes due to random ubiquitous disorder in the
system and/or nonzero temperature. This allows us to make
a qualitative comparison with the experiments where some
nonzero widening of the energy is always observed. A qual-
itative comparison of the broadening parameter in graphite
versus that of its two-dimensional surface can be found in
Appendix B.

The surface Green’s functions for a semi-infinite system
correspond in this configuration to the Green’s function on
the planes shown in red in Fig. 4. These can be obtained by
performing a Fourier transform of G in the z direction, and
fixing z at the appropriate value z = ±z0, with z0 = 2d0 for
ABA graphite and z0 = 3d0 for ABC graphite:

Gs(kx, ky, z = ±z0, E )

=
∫ ∫

dk1z

Lz

dk2z

Lz
G(kx, kx; ky, ky; k1z, k2z; E )eik1zze−ik2zz.

(11)

The corresponding surface spectral function is given by

As(kx, ky, E )|z=±z0 = − 1

π
ImtrGs(kx, ky, z = ±z0, E ). (12)

In Fig. 5 we consider Bernal-stacked graphite and plot As

for z = 2d0 over the same range of energies and momenta as
in Fig. 2. We recover a parabolic-shape band, as expected from
previous knowledge about graphite. This is consistent with

FIG. 5. Surface spectral function of Bernal-stacked graphite
around the K point, at z = 2d0. We have taken γ3 = 0 and δ = 0.005.

the tight-binding spectrum presented in Fig. 2 which contains
both the surface and the bulk bands for a finite graphite slab.

In Fig. 6 we plot the surface spectral functions at a given
energy E = 0.05 as a function of kx and ky, both for bilayer
graphene and Bernal-stacked graphite (left and right columns
of Fig. 6, correspondingly). To provide better understanding,
we compute the surface spectral functions with and without
trigonal warping (top and bottom rows of Fig. 6, respectively).

FIG. 6. Surface spectral functions of bilayer graphene (left col-
umn) and Bernal-stacked graphite (right column), around the K point
calculated at E = 0.05, without (top row, γ3 = 0) and with trigonal
warping (bottom row, γ3 = −0.3). We have taken δ = 0.005.

155418-4



SURFACE STATES AND QUASIPARTICLE INTERFERENCE … PHYSICAL REVIEW B 104, 155418 (2021)

FIG. 7. Surface spectral function of rhombohedral-stacked
graphite around the K point, at z = 3d0. We have taken γ3 = 0 and
δ = 0.005.

In the absence of the warping term the surface spectral func-
tion taken at a fixed energy seems to be rotationally symmetric
in the (kx, ky) plane, both for graphite and bilayer graphene.
Once the trigonal warping term is introduced into the model,
the results acquire a threefold symmetry. The effect of this
trigonal warping seems to be more pronounced for the surface
states of graphite than for the BLG. This can be understood
as follows: The warping is a result of interlayer coupling
terms, and hence the more layers the material contains the
more pronounced the warping is expected to be. Moreover,
we note that the surface spectral function of graphite is much
less sharp, with equal energy lines much wider and less well
defined than for BLG, as well as with a large residual in-
tensity in the background. This suggests that quasiparticles
have shorter lifetimes on the surface of graphite than in BLG,
and thus a decrease in the coherence length for the surface
states.

We have performed a similar analysis for rhombohedral
graphite: The dependence of the surface spectral function
on the energy and momentum is depicted in Fig. 7. We
observe once more the formation of flat bands, consistent
with the results of the tight-binding analysis of the finite-
size graphite slabs (Fig. 3). The extension of the flat band
observed here for the semi-infinite graphite seems close to
the one observed in the tight-binding calculations for 100
layers (the right panel in Fig. 3), confirming that it is con-
verging to a finite value when the width of the slab is going to
infinity.

Furthermore, in Fig. 8 we plot the surface spectral function
in the (kx, ky) plane, with and without trigonal warping. For
comparison, in the left column we plot the spectral function
of the ABC trilayer graphene. In this case, we can see that
a very weak threefold symmetry is present for graphite even
when considering γ3 = 0. A much stronger one is observed
on the other hand when adding the trigonal warping terms.

FIG. 8. Spectral function of trilayer ABC graphene (left column)
and surface spectral function for ABC graphite (right column), with-
out trigonal warping γ3 = 0 (top row) and with trigonal warping
γ3 = −0.3 (bottom two rows) around the K point at E = 0 (top two
rows) and E = 0.05 (bottom row). We have taken δ = 0.005.

V. MODIFICATION OF THE LOCAL DENSITY OF STATES
IN THE PRESENCE OF AN IMPURITY

In what follows, we calculate the modification of the LDOS
for the systems described above in the presence of a localized
impurity. For the surface of ABA and ABC graphite we start
from the surface Green’s functions described in Eq. (11) and
we apply the T -matrix formalism, which yields for the Fourier
transform of the impurity-induced modifications of the den-
sity of states:

δρ(k, E ) = i

2π

∫
dq

(2π )2
tr12[g(q, k, E )], (13)

where dq ≡ dqxdqz,

g(q, k, E ) ≡Gs(q, E )T (E )Gs(q − k, E )

− G∗
s (q − k, E )T ∗(E )G∗

s (q, E ), (14)
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FIG. 9. Quasiparticle interference patterns for bilayer graphene
(left panel) and Bernal-stacked graphite (right panel) around the K
point calculated at E = 0.05. We consider a trigonal warping value
γ3 = −0.3, and we take V = −10, γ0 = −3.3.

and the T matrix can be found via

T (E ) =
[
I − V

∫
dq

(2π )2
Gs(q, E )

]−1

V. (15)

The impurity matrix V has the same dimensions as the Green’s
function matrix (4 × 4 for BLG and ABA graphite, and 6 × 6
for TLG and ABC graphite), and is a diagonal matrix with
a nonzero element at the position corresponding to the layer-
sublattice combination at which the impurity is localized (e.g.,
V11/V22 �= 0 for an atom in the top layer on the A/B sublattice,
and so on). Note that we take the trace tr12 in Eq. (13) only
over the first two components of the matrix corresponding to
the two top-layer atoms, since this is the contribution to the
density of states that is usually measured experimentally.

For bilayer graphene and trilayer graphene the same for-
malism applies, but with Gs in Eqs. (14) and (15) replaced
by the unperturbed Green’s function calculated via Eq. (8)
starting from the unperturbed BLG and TLG Hamiltonians in
Eqs. (1) and (5).

We focus on the modification of the LDOS both in mo-
mentum space and in real space. The modulation of the LDOS
due to the impurity in the T -matrix formalism in real space is
given by

δρ(r, E ) = − 1

π
Imtr12[Gs(r, E )T (E )Gs(−r, E )], (16)

where Gs(r, E ) = ∫ dq
(2π )2 Gs(q, E )eiqr is the Green’s function

in real space calculated via a Fourier transform.

A. Fourier transform of the LDOS

The results for the quasiparticle interference patterns for
ABA graphite and BLG are presented in Fig. 9. For BLG
we observe a high-intensity hexagonal contour in agreement
with the recent high-resolution experimental results [43] and
in contrast to the circular contour observed in BLG without
trigonal warping [15]. For ABA graphite a hexagonal fea-
ture is also observed. The structure of these features may
be inferred from the corresponding surface spectral function
shown in Fig. 6. While the surface spectral function for bilayer
graphene consists of a sharp uniform triangle, the spectral
function for the surface of ABA graphite consists of a blurred
deformed triangle with well-pronounced maxima on the sides.

FIG. 10. Quasiparticle interference features for ABC graphene
(left) and rhombohedral-stacked graphite (right) around the K point
at E = 0 (top row), and E = 0.05 (bottom row). We take δ = 0.005,
γ3 = −0.3, and V = −33.

The curvature of the triangle sides, and the intensity higher on
the sides than in the corners, imply an enhancement of the
scattering inside a single side, consistent with a high-intensity
feature at the center of the QPI hexagon. This feature is absent
from the QPI BLG pictures. Moreover, the blurring of the
spectral function feature implies a wider distribution of the
allowed scattering states and thus a wider and more blurred
QPI feature.

We also compute the quasiparticle interference features for
ABC graphite and ABC trilayer graphene. The results are
shown in Fig. 10. As expected from the surface spectral func-
tion calculated at E = 0, the graphite QPI features are blurred
due to the fact that many states with equal spectral weight
exist at the surface, both at zero energy, inside the flat band,
as well as at higher energy, as we can see in Fig. 8. The sixfold
symmetry arising due to the trigonal warping effects is harder
to see in the QPI features for ABC graphite, though it is still
visible in real space, as we will show in the next section. Note
that in the absence of trigonal warping our findings are con-
sistent with the analytical calculations of Fourier-transformed
local density of states in rhombohedral N-layer graphene from
Ref. [29].

We note that all the QPI features above simulate an av-
erage response of impurities being localized not on one of
the sublattices, but equally distributed on all the sublattices.
In order to generate the QPI results for such a configu-
ration, we have used an impurity matrix described as an
identity matrix in the full matrix sublattice space, which is
equivalent to having equal impurity contributions from all
sublattices.

155418-6



SURFACE STATES AND QUASIPARTICLE INTERFERENCE … PHYSICAL REVIEW B 104, 155418 (2021)

B. Real-space profile of impurity states

We now focus on the fluctuations of the LDOS in real
space in the vicinity of different types of impurities. Thus, in
Fig. 11 we plot the correction to the local density of states
both for bilayer graphene and Bernal-stacked graphite. We
consider four different types of impurities localized on the
A/B atoms of the top/bottom layer of the unit cell. First of
all, we observe that the LDOS profile of the impurity states
depends strongly on which sites the impurity is located. As
also noted in Ref. [43] certain impurities give rise to almost
rotationally symmetric patterns which do not reflect the pres-
ence of trigonal warping, while other impurities clearly reflect
the threefold symmetry originating from trigonal warping
terms. The most important observation is that the localization
length of the impurity-induced states is much smaller for
graphite than for bilayer graphene. This is consistent with the
reduction of the quasiparticle lifetime, which corresponds to
the blurring of the spectral function of the surface states, and
can be intuitively understood as being the result of the three-
dimensional character of graphene for which quasiparticles
have an extra spatial dimension to be scattered in. In contrast,
in bilayer graphene the oscillations in the local density of
states stay very well pronounced much further away from the
impurity. Such a difference in localization length seems to be
in general governed by the dimension of the problem: The
localization length is shorter in higher dimensions, as it was
observed for instance for Yu-Shiba-Rusinov states in three-
versus two-dimensional superconductors [45–47]. The evolu-
tion from two layers to a large number of layers is explored in
more details in Sec. VII.

Note that the threefold character of the observed features
is much more pronounced when the impurity is located in the
bottom layer. We believe that this stems from the fact that we
only plot the intensity of the LDOS in the top layer. Thus,
when an impurity is located in the top layer we expect the fea-
tures generated in the same layer to be roughly similar to those
generated in monolayer graphene, i.e., circularly symmetric
at long distances, with the trigonal warping not manifesting
strongly since the main visible effects are the intralayer ones.
On the other hand, when the impurity is in the bottom layer,
the effects visible in the top layer will be mostly due to the
interlayer hopping terms among which the trigonal warping
term plays an important role, and thus the symmetry of the
impurity feature should show a strong enhanced threefold
character.

For ABC graphite, in Fig. 12 we compute the impurity-
induced corrections to the local density of states for six
different types of impurities, localized on the A/B sublattices
and in one of the three layers of the ABC graphite unit cell.
Same as for the ABA graphite we see that some of the features
are fully circular, while others reflect, as expected, the three-
fold symmetry originating from trigonal warping. Also, same
as for ABA graphite, the oscillations decay very fast with the
distance from the impurity.

VI. EXPERIMENTAL DATA

We performed STM measurements on graphite and multi-
layer graphene (∼10 layers) to verify our theoretical findings.

FIG. 11. Impurity-induced corrections to the local density of
states in bilayer graphene (left column row) and Bernal-stacked
graphite (right column) calculated at E = 0.05. We set V = −33 and
γ3 = −0.3. The four rows correspond to impurities located on sites
A1/B1/A2/B2. The LDOS corrections are given in units of the value
of the unperturbed background. The results for bilayer graphene are
in a good agreement with the analytical calculations presented in
Ref. [44].
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FIG. 12. Impurity-induced corrections to the local density of
states in ABC graphite at E = 0, γ3 = −0.3, V = −33, and
δ = 0.005. The panels correspond to impurities located on sites
A1/B1/A2/B2/A3/B3. The LDOS corrections are given in units of
the value of the unperturbed background.

We first describe the experimental details. The STM mea-
surements were conducted in ultrahigh vacuum with pressures
better than 1 × 10−10 mbar at 4.8 K in a Createc LT-STM. The
bias is applied to the sample with respect to the tip. The tips
were electrochemically etched tungsten tips, which were cal-
ibrated against the Shockley surface state of Au(111) prior to
measurements. The graphite (Flaggy Flakes and Graphenium
Flakes from NGS Naturgraphit) sample was exfoliated in situ
and introduced in the STM head within seconds after the exfo-
liation. The graphene multilayer heterostructures were stacked
on hBN using a standard polymer-based transfer method [48].
A graphene flake exfoliated on a methyl methacrylate (MMA)
substrate was mechanically placed on top of a ∼50 nm thick
hBN flake that rests on a SiO2/Si++ substrate where the
oxide is 285 nm thick. Subsequent solvent baths dissolve

FIG. 13. Experimental measurements of the real-space and
Fourier-space quasiparticle interference patterns for impurities in
graphite and many-layer graphene. (a) and (b) dI/dVS maps ob-
tained on, respectively, graphite and ten-layer-thick graphene film
supported by hexagonal boron nitride. (c) and (d) Zoom-ins around
the origin of the respective fast Fourier transforms. The dI/dV maps
were measured at a tip-sample bias VS = +5 mV, while applying
a VAC = 3.5 mV excitation with a lock-in amplifier, and scanning
at a constant current I = 0.5 nA and I = 0.25 nA for (a) and (b),
respectively.

the MMA scaffold. After the graphene/hBN heterostructure
is assembled, an electrical contact to graphene is made by
thermally evaporating 7 nm of Cr and 200 nm of Au using
a metallic stencil mask. The single-terminal device is then
annealed in forming gas (Ar/H2) for 6 h at 400 ◦C to reduce
the amount of residual polymer left after the graphene transfer.
To further clean the surface of the sample, the heterostructure
is mechanically cleaned using an AFM [49,50]. Finally, the
heterostructure is annealed under UHV at 400 ◦C for 7 h
before being introduced into the STM chamber.

We show in Figs. 13(a) and 13(b) typical dI/dVS spatial
maps of graphite and ∼10-layer graphene film, respectively.
These maps were acquired at low tip-sample bias (around
5 mV), so that they are essentially proportional to the LDOS
at the Fermi level. As for the simulations presented above
(Fig. 11), one can see the real-space scattering patterns around
defects are localized around the scattering centers, contrary
to what was observed for bilayer graphene at high charge
carriers concentration [43], where much longer localization
lengths were observed. Also, the scattering pattern around the
defect displays a salient threefold symmetry, originating from
the trigonal warping, as discussed above. The FFT signatures
for dI/dVS spatial maps in Figs. 13(a) and 13(b) are presented
in Figs. 13(c) and 13(d), correspondingly. The latter also agree
well with the calculations presented above (the right panel
in Fig. 9), with high intensity at the center of the scattering
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pattern, corresponding to the short localization length visible
in the real space images.

VII. DEPENDENCE ON THE NUMBER
OF LAYERS AND ENERGY

To understand the experimental observations, which show
a majority of features with a strong triangular symmetry, we
first point out that, as noted also in Ref. [43], impurities
fully localized on the topmost layer give rise to circularly
symmetric features. On the other hand, experimentally most
of the features observed in graphite are trigonally warped. We
believe that one origin of this discrepancy is, as also explained
in Ref. [43], the fact that the impurities are not exactly fully
localized in the top layer, but also have some component in
the bottom layer. This component gives rise to a very strongly
warped component to the LDOS in the top layer, and thus
may explain the majority of the trigonally warped features in
graphite.

Moreover, we present here two more arguments which
show that impurities in graphite are susceptible to show a
very pronounced trigonal warping: (1) the closest we are to
the Dirac point, and (2) the larger the number of the layers in
the sample, the more pronounced the trigonal warping of the
features.

For this, we study the dependence of the real-space patterns
on the number of layers and on energy. Thus we consider sys-
tems with two, three, four, and eight layers, as well as a range
of energies from 0 to 250 meV. For all these different cases,
we consider an ABA stacking and an impurity located on the

FIG. 14. Impurity-induced corrections to the local density of
states in bilayer graphene at four different energies, E = 0.25 (top
left), 0.05 (top right), 0.02 (bottom left), and 0 (bottom right). We
take γ3 = −0.3, δ = 0.005, and V = −33. The LDOS corrections
are given in units of the value of the unperturbed background.

FIG. 15. Impurity-induced corrections to the local density of
states in bilayer graphene (top right) and in a three-layer (top
left), four-layer (bottom left), and eight-layer (bottom right) systems
at E = 0.05. We take γ3 = −0.3, δ = 0.005, and V = −33. The
LDOS corrections are given in units of the value of the unperturbed
background.

B2 site. We note that for low energy, close to the Dirac point,
the effects of the triangular warping are most pronounced, and
the asymmetry of the triangular features becomes less visible
when increasing the energy (see Fig. 14).

A similar observation can be made about changing the
number of layers: The thicker samples show the strongest
triangular features (see Fig. 15). The details of the technique
used to obtained the real-space impurity features in multilayer
systems are presented in Appendix A. Note that our results
on multilayer graphene confirm the validity of the technique
used in the previous sections to study semi-infinite systems,
the results for the eight-layer system in Fig. 15 are basically
identical to those corresponding to the semi-infinite system
(lower right panel of Fig. 11).

The last observation is that, when increasing the number
of layers, the oscillations decay faster and faster, and indeed
for the semi-infinite system results presented in the previous
sections, the impurity features are strongly localized close to
the impurity. We observe that something similar happens also
when decreasing the energy. Thus the highest energy features
are the most long lived, as well as the most circular. This
is consistent with the measurements presented in Fig. 2 of
Ref. [43], which reveal that at low gate voltages the oscil-
lations are harder to see, decaying very fast, and showing a
mostly triangular character, while at higher gates they decay
much slower and become rather circular. Thus, by taking
a very wide system such as the eight-layer graphene at zero
energy (see Fig. 16) we recover indeed the strongest triangular
asymmetry.
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FIG. 16. Impurity-induced corrections to the local density of
states in an eight-layer system at E = 0. We take γ3 = −0.3, δ =
0.005, and V = −33. The LDOS corrections are given in units of the
value of the unperturbed background.

These findings indicate that, consistent with the experimen-
tal observations, strongly trigonally warped features should be
dominant in graphite at energies close to the Dirac point. Also,
as also pointed out in Ref. [43], it appears that very localized
impurities with a dominant component on a single atom in
the top layer are not very common, since these would yield
rather circular features: It seems that most of the impurities
observed experimentally in graphene show some impurity
potential component in the second layer, which introduces a
strong triangular warping of the impurity features.

VIII. CONCLUSIONS

Using the technique developed in Refs. [4,5], we have
studied the surface spectral function, as well as the impurity-
induced oscillations on the surface of Bernal-stacked and

rhombohedral-stacked graphite, and compare the results to
those obtained in bilayer and trilayer graphene. We have
shown that this analytical technique is very well suited to the
study of the surface physics of graphite; for example it allows
us to recover the flat-band surface states of rhombohedral-
stacked graphite. Our first main observation was that the
spectral function for graphite surfaces shows a decrease in
coherence and quasiparticle lifetime compared to that of bi-
layer graphene, as well as stronger features associated with
the trigonal warping. Second, we have demonstrated that, in-
dependent of the type of stacking—Bernal or rhombohedral—
surface impurity-induced oscillations decay much faster in
graphite than in two- and three-layer graphene. Furthermore,
these oscillations strongly reflect the presence of trigonal
warping. Most importantly, we have shown that our analytical
results are in good agreement with the experimental data.
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APPENDIX A: OBTAINING THE LDOS CORRECTION
FOR MULTILAYER GRAPHENE

The process of obtaining the correction to the LDOS for
three, four, or eight multilayer graphene systems is the same
as the one for bilayer graphene described in the main text,
with the starting Hamiltonian H(k) being replaced by the
multilayer Hamiltonian. If N is the number of layers, then the
Hamiltonian is a matrix of size 2N × 2N , corresponding to the
number of layers and the two sublattices A and B. If we define

h0(k) = −γ0

[
1 + 2e−i 3

2 a0kx cos

(√
3

2
a0ky

)]
, (A1)

h3(k) = −γ3ε, (A2)

the eight-layer Hamiltonian can be written as

H(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 h0(k) 0 h3(k) 0 0 0 0 0 0 0 0 0 0 0 0
h∗

0(k) 0 γ1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 γ1 0 h0(k) 0 γ1 0 0 0 0 0 0 0 0 0 0

h∗
3(k) 0 h∗

0(k) 0 h∗
3(k) 0 0 0 0 0 0 0 0 0 0 0

0 0 0 h3(k) 0 h0(k) 0 h3(k) 0 0 0 0 0 0 0 0
0 0 γ1 0 h∗

0(k) 0 γ1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 γ1 0 h0(k) 0 γ1 0 0 0 0 0 0
0 0 0 0 h∗

3(k) 0 h∗
0(k) 0 h∗

3(k) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 h3(k) 0 h0(k) 0 h3(k) 0 0 0 0
0 0 0 0 0 0 γ1 0 h∗

0(k) 0 γ1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 γ1 0 h0(k) 0 γ1 0 0
0 0 0 0 0 0 0 0 h∗

3(k) 0 h∗
0(k) 0 h∗

3(k) 0 0 0
0 0 0 0 0 0 0 0 0 0 0 h3(k) 0 h0(k) 0 h3(k)
0 0 0 0 0 0 0 0 0 0 γ1 0 h∗

0(k) 0 γ1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 γ1 0 h0(k)
0 0 0 0 0 0 0 0 0 0 0 0 h∗

3(k) 0 h∗
0(k) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ∗ denotes the complex conjugate. The Hamiltonians for three and four layers are obtained by taking only the first eight
and ten rows and columns, respectively.
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FIG. 17. Left: Equal-energy contours of bilayer graphene electronic bands plotted for lower and higher energies (red and blue contours,
respectively). Right: Bands of bilayer graphene. We take a0 = 2.46 Å, γ0 = 3.3 eV, γ1 = 0.42 eV, γ3 = −0.3 eV. The lower-energy contours
are calculated at E = 0.0007, 0.0014, and 0.002 eV, while the higher-energy contours are at E = 0.01, 0.02, and 0.03 eV.

APPENDIX B: QUALITATIVE ESTIMATE
OF THE BROADENING PARAMETER δ

Assuming, for example, that the broadening originates
from random disorder, we could use a simple approach to
scattering and use the Born approximation:

δ ∼ DOS × V,

where DOS is the density of states calculated for the surface of
graphite or for the bulk, and V denotes the impurity potential
amplitude. The bulk of graphite is three dimensional and the
electrons are approximately linearly dispersed, and hence the
density of states is given by

DOSbulk = E2

2π2h̄3v3
,

where v is the velocity of the linearly dispersed electrons
and E is the energy at which we compute the DOS. At the
surface, as pointed out in the main text, we have parabolically
dispersed surface bands, and in two dimensions one has

DOSsurf = m

π h̄2 .

Hence we have at E = 0.01 eV:

δbulk

δsurf
∼ 1

2π h̄

E2

mv3

Vbulk

Vsurf
∼ 1

π

E2E0

h̄3v3k2
0

× 100d0 ≈ 10,

where we took E0 = 0.05 eV, k0 = 0.03 Å−1, d0 = 3.35 Å−1,
and v = 1015 Å/s. Above we assumed that we are dealing
with a 100-layer graphite, and k0, E0 were taken from Fig. 2
to make an estimate for the effective mass m of the parabolic
surface bands.

APPENDIX C: BAND STRUCTURE
OF BILAYER GRAPHENE

In Fig. 17 we plot equal-energy contours and bands for
bilayer graphene calculated from the Hamiltonian in Eq. (1).
The red contours correspond to energies closer to the Dirac
point split by the trigonal warping into four Dirac points. It is
clear that the trigonal warping is better pronounced at lower
energies.
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