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Orbital mixing in few-layer graphene and non-Abelian Berry phase
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In a magnetic field, few-layer graphene supports, at the lowest Landau level, a multiplet of zero-mode levels
nearly degenerate in orbitals as well as in spins and valleys. Those pseudo-zero-mode (PZM) levels are generally
sensitive to interactions and external perturbations and have a crossing among themselves or with other higher
Landau levels when an external field is swept over a certain range. A close study is made of how such PZM
levels evolve when they are gradually brought from empty to filled levels under many-body interactions. It is
pointed out that the level spectra generally avoid a crossing via orbital level mixing and that orbital mixing is
governed by a non-Abelian Berry phase that derives from an approximate degeneracy and interactions. A look is
also taken into evolution/crossing of many-body ground states with increasing external bias in bilayer graphene.
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I. INTRODUCTION

Graphene hosts massless Dirac electrons as charge carriers
that display fascinating electronic properties. Recently consid-
erable attention centers on graphene bilayers and few-layers
[1–5], where the added layer degrees of freedom open a new
realm of physics and applications with, e.g., a tunable band
gap [2,3] in bilayer graphene.

In a magnetic field, few-layer graphene supports, at the
lowest Landau level (LLL), a multiplet of zero-energy levels
degenerate in Landau orbitals as well as in spins and valleys.
Bilayer graphene supports an octet [3] (2spin × 2valley × 2) of
such levels with a twofold degeneracy in Landau orbitals n =
{0, 1}. Trilayers acquire a threefold degeneracy in orbitals.
This orbital degeneracy has a topological origin in the index
of (the leading part of) the one-body Dirac Hamiltonian. In the
presence of spin and band anisotropies and many-body inter-
actions, these zero-mode levels evolve into pseudo-zero-mode
(PZM) levels, or into a variety of broken-symmetry quantum
Hall states, as discussed theoretically [6–17] and explored
experimentally [18–26]. It was noted, in particular, that the
orbital degeneracy is also lifted by Coulomb interactions alone
[13], with the zero-energy modes orbitally Lamb shifted due
to quantum fluctuations of the filled valence band. The orbital
degeneracy and its lifting by the orbital Lamb shift are new
features specific to the LLL in few-layer graphene.

Those PZM levels are generally sensitive to external per-
turbations and have a chance of crossing among themselves
or with other higher Landau levels when an external field is
swept over a certain range. Many-body interactions signifi-
cantly affect such level-crossing phenomena. To see this, let
us suppose that two empty levels, that differ only in orbitals n
and m (n > m � 0), have a crossing when an external field u
is varied across a critical value ucr, as depicted in Fig. 1(a), and
ask what happens when one fills them with electrons. If there
is no electron-electron interaction, the level spectra remain un-
changed and the filled levels continue to have a crossing at ucr.

In the presence of interaction, the level spectra are lowered
by the amount of exchange energies, and the filled levels
lose a crossing at u ∼ ucr, or the crossing point gets shifted,
ucr → ucr

+ , as illustrated in the figure. (Note that the exchange
energy εx

n < 0 generally decreases with increasing orbital in-
dex n; |εx

n | < |εx
m| for n > m � 0.) The two levels, as they are

gradually filled, thus appear to cross for u ∈ (ucr
+, ucr ) while

no crossing is expected for u > ucr.
Experimentally a similar many-body phenomenon of

spin exchange energy origin has been known [27]: In a
GaAs/AlGaAs quantum well with doubly occupied subbands,
crossings of two Landau levels of different subbands lead to
ringlike structures in the phase diagram that suggest transi-
tions due to spin exchange energy.

The purpose of the present paper is to examine how those
nearly degenerate PZM levels behave when they are gradually

FIG. 1. Orbital level crossing. (a) Two empty levels (dotted lines)
of different orbitals m and n undergo a crossing with increasing ex-
ternal bias u. When they are filled up (solid lines), the crossing point
gets shifted (ucr → ucr

+ ) due to orbit-dependent Coulombic exchange
energies, causing a level inversion for u ∈ (ucr

+, ucr ). (b) Renormal-
ized PZM level spectra (ε̂0, ε̂1) in bilayer graphene, plotted as a
function of external bias u. A level inversion takes place for 0 � u <

ucr in valley K and for −ucr < u � 0 in valley K ′.

2469-9950/2021/104(15)/155417(11) 155417-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.155417&domain=pdf&date_stamp=2021-10-12
https://doi.org/10.1103/PhysRevB.104.155417


K. SHIZUYA PHYSICAL REVIEW B 104, 155417 (2021)

brought from empty to filled levels under many-body interac-
tions. It is pointed out that the level spectra generally avoid
a crossing via orbital level mixing and that orbital mixing is
governed by a non-Abelian Berry phase [28,29] that derives
from an approximate degeneracy and interactions. This non-
Abelian phase clarifies the algebraic features underlying the
phenomena of Landau-level crossing and mixing. We also ex-
amine, as a typical case of crossing of many-body states, how
the neutral (ν = 0) ground state in bilayer graphene evolves
with increasing interlayer bias u.

In Sec. II we briefly review some basic features of the PZM
levels in bilayer graphene. In Secs. III and IV, we examine the
level-mixing phenomenon and its algebraic character in the
light of a non-Abelian Berry phase. In Sec. V we look into
trilayer graphene and show that the Berry phase encodes and
distinguishes possible patterns of orbital mixing in different
types of trilayers. In Sec. VI we examine evolution of the ν =
0 ground state in bilayer graphene with bias u. Section VII is
devoted to a summary and discussion.

II. THE LOWEST LANDAU LEVEL IN BILAYER
GRAPHENE

In a magnetic field Bz = B one-body states |n, y0; a, α〉
of a Dirac electron in graphene are labeled by integers n =
0,±1,±2, . . . and momentum px (or the center coordinate
y0 ≡ �2 px with the magnetic length � ≡ 1/

√
eB), as well as

valleys a ∈ (K, K ′) and spins α ∈ (↑,↓). The associated one-
body Hamiltonian is generally written as

H1b =
∫

dy0

∑
n,a,α

ψn,a
α

†(y0) εa;α
n ψn,a

α (y0), (1)

where ψn,a
α (y0) denotes the electron field with the spec-

trum εa;α
n ; ψn,a

α (y0) ≡ ∫
d2x 〈n, y0; a, α|x〉�x in terms of the

field �x in the coordinate space. The charge density ρ−p =∫
d2x eip·x �†

x�x is thereby written as

ρ−p = γp

∞∑
m,n=−∞

∑
a,α

gmn;a
p Rmn;aa

αα;−p,

Rmn;ab
αβ;−p ≡

∫
dy0 ψm,a

α
†(y0) eip·r ψn,b

β (y0), (2)

with γp ≡ e−�2p2/4; r = (i�2∂/∂y0, y0) stands for the cen-
ter coordinate with uncertainty [rx, ry] = i�2. The projected
charges Rmn;ab

αβ;p obey the W∞ algebra [30]. The coefficient
functions gmn;a

p have the structure

gnm;a
p ∝ p|m|−|n| × (polynomials of �2p2) for |m| � |n|, (3)

and gmn;a
p = (gnm;a

−p )†, with p ≡ px + ipy.
For bilayer graphene the one-body spectra {εa;α

n } take an
electron-hole (e-h) symmetric pattern when only the leading
intralayer and interlayer couplings γ0 ≡ γAB ∼ 3 eV (related
to the Fermi velocity v ∼ 106 m/s in monolayer graphene)
and γ1 ≡ γA′B ∼ 0.4 eV are kept. For simplicity, nonleading
couplings (�, γ4, . . .) that lead to weak e-h breaking [31,32]
are suppressed in what follows; spin splitting is to be restored
in Sec. VI.

The Coulomb interaction is written as V C =
1
2

∑
p vp :ρ−p ρp :, with potential vp = 2παe/(εb|p|),

αe ≡ e2/(4πε0) and the substrate dielectric constant εb;∑
p ≡ ∫

d2p/(2π )2 and :: denotes normal ordering. For
simplicity, we ignore a tiny interlayer separation d → 0. It
is advantageous to cast V C in the form of manifest exchange
interaction,

V C = −1

2

∑
k

ṽ
jk;mn;ab
k : Rmk;ba

βα;−kR jn;ab
αβ;k :, (4)

with the dual potential

ṽ
jk;mn;ab
k = 1

ρ̄

∑
p

vpγ
2
p gjk;a

p gmn;b
−p ei�2p×k, (5)

where ρ̄ = 1/(2π�2) and p × k = pxky − pykx. (For clarity,
summation � over repeated labels will be suppressed from
now on.) This direct-exchange duality of the Coulomb inter-
action is made manifest on the operator level [33] for planar
electrons in a magnetic field, where interaction becomes short
ranged with a cutoff ∼�.

In bilayer graphene an octet of PZM levels, nearly degen-
erate in spins, valleys, and orbitals n = {0, 1}, forms the LLL
isolated from other Landau levels. A key feature is a band
gap which is tunable [2,3] by an applied interlayer bias u.
Actually, bias u splits valleys (K, K ′) and the bare spectra have
the following valley structure,

εK
−n = −εK

n |−u, εK ′
n = εK

n |−u, (6)

where O|−u signifies setting u → −u in O. Here each n =
±2,±3, . . . refers to a pair of electron and hole levels. In
contrast, the PZM levels n = {0, 1} stand alone (per spin and
valley) and are e-h self-conjugate, with ±n → n in Eq. (6).
Their spectra read [17]

εK
0 = −u/2, εK

1 = −z1 u/2, (7)

z1 = 1 − 2/(g2 + 1) + O
(
u2/g6ω2

c

)
< 1, (8)

where g ≡ γ1/ωc and

ωc ≡
√

2 v/� ≈ 36.3 × v[106m/s]
√

B[T ] meV (9)

is the characteristic cyclotron energy of graphene. Note that
ε1 has a slightly smaller gradient (z1 < 1) in bias u than ε0.
As for band parameters [34], we adopt v = 0.845 × 106 m/s
and γ1 = 361 meV so that ωc ≈ 137 meV, g ≈ 2.63, and z1 ≈
0.75 at B = 20 T.

Interlayer bias u shifts the PZM levels n = {0, 1} oppo-
sitely (∝∓u/2) in the two valleys. We take, without loss of
generality, u � 0 for valley K ; u < 0 then refers to K ′. The
valley gap ∼u increases with bias u while (ε0, ε1) remain
nearly degenerate in each valley.

For the PZM levels, form factors gm,n;a
p take particularly

simple form

g00
p = 1, g11

p = 1 − c2
1

1
2�2p2,

(10)
g01

p = c1� p/
√

2, g10
p = −c1� p†/

√
2,

with c1|K ′ = c1|K−u; in e-h symmetric setting,

c1 ≈ 1/
√

1 + (1/g2)
B=20 T∼ 0.93 (11)

scarcely depends on bias u and valleys.
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Electrons in each Landau level are subject to Coulombic
quantum fluctuations of the filled valence band. The exchange
interaction gives rise to O(V C ) self-energy corrections to level
spectra εa;α

n of the form

δεa;α
n = −

∑
p

vpγ
2
p

∑
m

νa;α
m

∣∣gnm;a
p

∣∣2
, (12)

where 0 � νa;α
m � 1 stands for the filling fraction of the

(m, a, α) level. The direct interaction leads to corrections
∝vp→0, which, as usual, are removed when the neutralizing
background is assumed. The exchange energy acts separately
for each (valley, spin) channel. We thus suppress those labels
below and mainly refer to valley K . We use 0 � Nf � 2 to
specify the filling fraction of the PZM sector n = {0, 1} (per
spin and valley), with Nf = 0 for the empty sector and Nf = 2
for the filled one.

Let us now consider an empty PZM sector with levels
below it all filled, i.e., νa;α

n = 1 for n � −2. Infinitely many
filled levels in the valence band make self-energies δεa;α

n ul-
traviolet divergent, and one has to go through renormalization
of band parameters v and γ1. See Ref. [17] for details of the
renormalization procedure. The empty PZM levels in valley
K , e.g., acquire the following renormalized spectra

ε̂0|Nf=0 = − 1
2 u + �0 + 1

2

(
1 + 1

2 c2
1

)
Ṽc,

ε̂1|Nf=0 = − 1
2 z1u + �1 + 1

2

(
1 + 1

2 c2
1 − 1

4C
)
Ṽc, (13)

with C = (4 − 3c2
1 ) c2

1
B=20 T∼ 1.20 and

Ṽc ≡
∑

p

vpγ
2
p = αe

εb �

√
π

2
≈ 70.3

εb

√
B[T] meV; (14)

ε̂n|K ′ = ε̂n|K−u. Here {�n}, with the property �−n = −�n|−u,
stand for corrections coming from filled levels deep in the
valence band. For the PZM levels they are practically linear

in u, with (�0,�1)
B=20 T≈ (−0.646,−0.612)(Ṽc/ωc) u/2 in

the present e-h symmetric setting; for other levels {�n} are
appreciable in magnitude even for u → 0.

Note that interaction lifts the orbital degeneracy at zero bias
u = 0, with ε̂1 getting lower than ε̂0 by

(ε̂0 − ε̂1)|u=0 = 1
8 C Ṽc ≡ εLs, (15)

i.e., the PZM levels get orbitally Lamb shifted [13]. Nu-

merically, (ε̂0, ε̂1, εLs)|u=0
B=20 T≈ (0.72, 0.57, 0.15)Ṽc. Let us

write, for u �= 0, the full (0,1) shift as

δε = ε̂0 − ε̂1 ≡ (1 − ξ ) εLs, (16)

with ξ ≡ {(1 − z1)u/2 + �1 − �0}/εLs ≈ u/(g2 + 1)εLs. The
spectra (ε̂0, ε̂1) have a crossing at ξ = u/ucr = 1 or across the
critical bias

ucr ≈ (g2 + 1) εLs
B=20 T∼ 1.2 Ṽc. (17)

Numerically, (εLs, ucr )
B=20 T≈ (8.3, 62) meV for the choice

Ṽc/ωc = 0.4 or εb ≈ 5.7.
When the PZM levels are filled with electrons, the spectra

get lower by the amount of exchange energy acting within the
sector [see Eq. (12)],

(ε̂0, ε̂1)|Nf=2 = (ε̂0 − G00 − G01, ε̂1 − G10 − G11), (18)

where

Gmn =
∑

p

vpγ
2
p |gmn

p |2, Gmm;nn =
∑

p

vpγ
2
p gmm

p gnn
−p; (19)

Gmn = Gnm. (Here Gmm;nn are defined for later use.) Substitut-
ing the explicit values,

{G00, G01, G11, G00;11} = {
1, 1

2 c2
1, 1 − 1

4C, 1 − 1
2 c2

1

}
Ṽc (20)

yields the spectra of the filled levels,

ε̂0|Nf=2 = − 1
2 u + �0 − 1

2

(
1 + 1

2 c2
1

)
Ṽc,

ε̂1|Nf=2 = − 1
2 z1u + �1 − 1

2

(
1 + 1

2 c2
1 − 1

4C
)
Ṽc. (21)

Here the orbital Lamb shift is enhanced and reversed in sign,
(ε̂0 − ε̂1)|Nf=2 = −(1 + ξ ) εLs < 0 for 0 < ξ < 1. Actually,
the filled and empty spectra are related via e-h conjugation
[in Eq. (6)],

(ε̂0, ε̂1)|Nf=2 = (−ε̂0,−ε̂1)|Nf=0
−u . (22)

The renormalized PZM sector, when either empty or filled, be-
comes a unique eigenstate to O(V C ) of the total Hamiltonian
H1b + V C .

Figure 1(b) depicts a typical pattern of PZM spectra
(ε̂0, ε̂1)|K+K ′

(with ε̂K ′
n = ε̂K

n |−u) per spin, with a crossing
at u = ucr for empty levels in valley K and at u = −ucr

for filled ones in valley K ′. The orbital Lamb shift, upon
level filling, induces a level inversion (ε̂0 > ε̂1)|empty → (ε̂1 >

ε̂0)|filled for bias u ∈ (−ucr, ucr ). [Actually, when e-h break-
ing due to (�, γ4, . . . ) is taken into account, ucr becomes
smaller (∼30 meV at B = 20 T) in valley K and far larger
(∼−100 meV) in K ′ [17]. Accordingly, we focus, in what fol-
lows, on quantum phenomena related to a crossing of empty
levels in valley K .] Such a level inversion signals a level
crossing or instability with filling, which actually is avoided
via mixing of n = {0, 1} levels, as noted earlier [13].

III. LEVEL MIXING

In this section we refine an earlier analysis of orbital level
mixing from a new angle. We first note that the empty PZM
sector n = {0, 1} (per valley and spin) to O(V C ) is described
by the one-body Hamiltonian H1b of Eq. (1) with (ε0, ε1)
replaced by the renormalized (Nf = 0) spectra (ε̂0, ε̂1) in
Eq. (13); we denote it as Hpzm and the associated fields as
ψ̂ = (ψ0, ψ1)t. We write the Coulomb exchange interaction
acting within the PZM sector as VX and take Hpzm + VX ≡
H eff as an effective Hamiltonian that governs the sector for
0 � Nf � 2.

Let us now suppose filling the PZM levels with electrons
gradually and examine how level mixing proceeds via the
Coulomb interaction. To this end we rotate ψ̂ = (ψ0, ψ1)t to
� = (�0,�1)t by an SU(2) matrix,

ψ̂ = U� =
(

cθ −e−iφsθ

eiφsθ cθ

)(
�0

�1

)
, (23)

where cθ ≡ cos(θ/2) and sθ ≡ sin(θ/2); (θ, φ) are real an-
gles. We fix U so that the PZM spectra become diagonal
for � = (�0,�1)t and refer to the associated levels as
n = (0θ , 1θ ) and their filling fractions as Nn = (N0, N1) (with
0 � Nn � 1). We handle the exchange interaction VX in the
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Hartree-Fock (HF) approximation and cast it in the one-body
form

V HF
X = −

∑
p

vpγ
2
p Mmk;a

p Rmk;aa
0 , (24)

Mmk;a
p = gmn;a

−p (UNU †)n j gjk;a
p , (25)

where m, n, j, k run over (0,1); N = diag(N0, N1).
We thus write H eff = Hpzm + V HF

X as

H eff =
∫

dy0 ψ̂†Ĥ eff ψ̂ =
∫

dy0 �†H�, (26)

Ĥ eff =
(

a f †

f b

)
, H = U †Ĥ effU, (27)

where

a = ε̂0 − (N1 G01 + N0 G00) c2
θ − (N0 G01 + N1 G00) s2

θ ,

b = ε̂1 − (N1 G11 + N0 G01) c2
θ − (N0 G11 + N1 G01) s2

θ ,

f = eiφ (N1 − N0) G00;11 sθ cθ + c1
e�√

2
(Ey + iEx ), (28)

with Gmn, etc., defined in Eq. (19); (ε̂0, ε̂1) stand for the
Nf = 0 spectra. Here we have introduced coupling to a weak
uniform in-plane electric field [35] E = (Ex, Ey) to O(E) to
detect an electric dipole moment induced by orbital mixing
(and for another reason to be clear soon). Clearly, Eq. (28)
suggests setting φ = arctan(Ex/Ey); φ thus controls the direc-
tion of E. For simplicity, we choose φ = 0 and specifically
use field Ey and measure current jx.

Let us first take a look at the case of no rotation θ → 0 (and
Ey → 0). (i) When ε̂1 > ε̂0, one first fills the n = 0 level. The
level gap b − a increases with N0 and then decreases with N1

but never closes because G00 > G11 > G01 > 0 holds. Filling
the two levels in this way thus realizes a stable configuration.
(ii) When ε̂0 > ε̂1, the n = 1 level is first filled. The level
spectra (a, b) then cross before Nf = 2 is reached. This means
that a variation in θ is inevitable to reach the lowest-energy
configuration.

Let us therefore suppose ε̂0 > ε̂1 and try to diagonalize
H = U †Ĥ effU . Diagonalization of H is achieved for

H10 = eiφ
{
F

(
c2
θ − s2

θ

) − (a − b) sθcθ

} → 0, (29)

where F ≡ G00;11 (N1 − N0) sθ cθ + XE and XE ≡
c1e� Ey/

√
2. In direct calculations it is helpful to isolate

the difference between n = {0, 1} modes by setting

δε̂ = ε̂0 − ε̂1, δG = G00 − G11.

� = δε̂ − (
N1c2

θ + N0s2
θ

)
δG,

D = −(G01 − G00 + G00;11). (30)

Equation (29), cast in the form

sin θ {� + (N1 − N0) D cos θ} = 2XE cos θ, (31)

fixes angle θ as a function of filling factor Nf = N1 + N0.
Minimization [with respect to (θ, φ)] of the HF ground state
energy also leads to the same equation.

Actually, for bilayer graphene, the combination D vanishes
identically, D → 0, since |g10

p |2 − 1 + g11
p = 0 holds, as seen

from Eq. (10). Here we keep D for a later generalization and

refer to the case of bilayer graphene by showing the D → 0
limit. For bilayer graphene we set

δε̂ → (1 − ξ ) εLs, δG → 2 εLs and D → 0. (32)

Note first that, for Ey �= 0, sin θ = 0 is not a solution to
Eq. (31). This means that, as Nf is increased from 0 to 2, θ lies
in either domain 0 < θ < π or −π < θ < 0. In particular, for
Nf → 0, Eq. (31) yields

θ ≡ δθE
− = 2XE/δε̂ (mod π ), (33)

while, for Nf → 2, one finds

θ ≡ −δθE
+ = −2XE/(δG − δε̂) (mod π ); (34)

δθE
∓

D→0→ 2(XE/εLs)/(1 ∓ ξ ). With δε̂ > 0 and |ξ | < 1, this
implies the following: θ takes the same sign as Ey, and |θ |
rises from |δθE

−| to π − |δθE
+| as Nf is varied from 0 to 2. One

can thus select the sign of θ by turning on a weak Hall field
Ey or letting a current jx flow. [Incidentally, for ε̂1 > ε̂0, one
finds the solution θ = O(XE/δε), with the spectra given by
(a, b)|θ→0, apart from negligible corrections of O(E2)].

Actually, the θ > 0 and θ < 0 solutions for U are re-
lated by a unitary transformation, U |−θ = YUY −1 with Y =
eiπ σ3/2 = iσ3. This fact reflects the invariance of the sys-
tem under a rotation by angle π of coordinates [or x =
(x, y) → −x], as seen from the associated change of Ĥ eff in
Eq. (26), Y Ĥ effY −1 = Ĥ eff |− f = Ĥ eff |−θ,−E. U is thus natu-
rally defined for −π � θ � π . In view of the antiperiodicity
U |θ+2π = −U |θ in θ , one can even extend U over the full line
−∞ < θ < ∞.

For a given angle θ , the level spectra (H00,H11) ≡
(ε̂0θ

, ε̂1θ
) are cast in the following two equivalent forms

ε̂0θ
= ε̂0 − N1G01 − N0G00 − � s2

θ + (sθ /cθ ) XE ,
(35)

ε̂1θ
= ε̂1 − N1G11 − N0G01 − � s2

θ − (sθ /cθ ) XE ,

and

ε̂0θ
= ε̂1 − N1G01 − N0G11 + � c2

θ + (cθ /sθ ) XE ,
(36)

ε̂1θ
= ε̂0 − N1G00 − N0G01 + � c2

θ − (cθ /sθ ) XE ,

where

� = (N1 − N0) D
D→0→ 0,

� = (N1 − N0)(δG − D)
D→0→ 2 (N1 − N0) εLs. (37)

See Appendix A for a derivation of these spectra.
Equation (35) shows how the spectra (ε̂0θ

, ε̂1θ
) deviate from

the θ = 0 spectra (of no rotation) as θ grows from zero. In
contrast, Eq. (36) shows how they approach, as θ → ±π or
cθ → 0, the θ = ±π spectra, which, as Nf → 2, attain the
filled-level spectra in Eq. (18),

(ε̂0θ
, ε̂1θ

)|θ→±π → (ε̂1|Nf=2, ε̂0|Nf=2). (38)

Thus the empty n = (0, 1) levels, when filled, turn into the
n = (1, 0) levels.

Figure 2(a) depicts, for bilayer graphene at B = 20 T, how
(sθ )2 = sin2(θ/2) grows as a function of filling factor Nf for
certain values of bias u; there Eq. (31) is numerically solved
for θ , with the choice XE/εLs = 0.01 and Ṽc/ωc = 0.4. θ starts
to rise around Nf ∼ 1

2 (1 − u/ucr ). Figure 2(b) illustrates how
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FIG. 2. Orbital mixing in bilayer graphene. (a) Evolution of s2
θ =

sin2(θ/2) with filling Nf = 0 → 2 at bias u = (−0.5, 0, 0.5, 0.8) ucr ,
with XE/εLs = 0.01; dotted curves refer to the Ey → 0 limit. θ starts
to grow around Nf ∼ N−

1 = 1
2 (1 − ξ ). (b) Evolution of PZM spectra

(ε̂0θ
, ε̂1θ

) with filling at u = 0. Dashed lines refer to the case of no
mixing θ = 0. (c) Electric dipole moment per electron induced by
orbital mixing. (d) Evolution of PZM spectra with bias u for the
empty, half-filled, and filled sector (Nf = 0, 1, 2). Dotted lines refer
to empty levels. In orbital mixing, both levels {0θ , 1θ } get shifted with
filling Nf , in contrast to the case of spin splitting, depicted in (e).

PZM spectra (ε̂0θ
, ε̂1θ

) avoid a crossing via orbital mixing as
they evolve with increasing Nf . A sizable gap arises at half
filling Nf = 1, with (ε̂0θ

, ε̂1θ
)|Nf=1 = (ε̂0 − G01, ε̂0 − G00) for

XE → 0. Also depicted in Fig. 2(c) is the profile of electric
dipole moment induced by orbital mixing, calculated by nu-
merically differentiating the spectra with respect to Ey.

Figure 2(d) shows how the PZM spectra evolve with bias
u for the empty, half-filled, and filled sector (Nf = 0, 1, 2),
respectively. Dotted lines refer to empty levels. In orbital mix-
ing, both levels {0θ , 1θ } get shifted with filling Nf = 0 → 2.
This is in sharp contrast to the case of Coulomb-enhanced spin
splitting, depicted in Fig. 2(e).

It is seen from Eqs. (35) and (36) that the level spectra at
angle θ and at π − θ have reciprocity of the form

(
ε̂0θ

, ε̂1θ

)∣∣
θ→π−θ

= (
ε̂1θ

, ε̂0θ

)∣∣θ
N0↔N1,−XE

. (39)

This reciprocity derives from the invariance of the basic
Hamiltonian Ĥ eff [in Eq. (27)],

Ĥ eff |θ→π−θ,N0↔N1,−E = Ĥ eff , (40)

under simultaneous replacement θ → π − θ (i.e., sθ ↔ cθ ),
N0 ↔ N1, and XE → −XE .

Equation (39) implies, in particular, that the θ = π spectra
(ε̂0θ

, ε̂1θ
)|θ→π [in Eq. (38)] are equal to the θ = 0 spectra

(ε̂1θ
, ε̂0θ

)|θ→0 of Eq. (35) with N1 ↔ N0 and Ey → −Ey. In-

terchanging N1 and N0 is to adopt, for a given Nf = N1 + N0,
the filling sequence of the u > ucr case (of δε̂ < 0 and no rota-
tion). From this follows an important observation: The θ = π

spectra with u → ucr upward are equal to the θ = 0 spectra
with u → ucr downward. The PZM spectra, when regarded
as a function of Nf and bias u, are thus smoothly connected
across u = ucr; we will see an example later.

To see how θ depends on filling Nf explicitly (apart from
its sign) one can simply set Ey → 0 in Eq. (31). One then finds
either sin θ = 0 or, if sin θ �= 0,

� + (N1 − N0) D cos θ = 0, (41)

which yields

s2
θ = N1δG − δε̂ − (N1 − N0)D

(N1 − N0)(δG − 2D)
. (42)

Note that s2
θ = 0 for N1 = N−

1 and s2
θ = 1 (i.e., θ = ±π ) for

N0 = N+
0 , with

N−
1 ≡ (δε̂ − N0D)/(δG − D)

D→0→ 1
2 (1 − ξ ),

N+
0 ≡ (δε̂ − N1D)/(δG − D)

D→0→ 1
2 (1 − ξ ). (43)

In terms of these, Eq. (42) is neatly expressed as

s2
θ = N1 − N−

1

N1 − N0
fD, c2

θ = N+
0 − N0

N1 − N0
fD, (44)

where fD ≡ (δG − D)/(δG − 2D)
D→0→ 1.

With δε̂ > 0, filling of the empty PZM sector starts with
the 1θ level. The angle θ shows different behavior in the
following three domains:

(i) 0 � Nf � N−
1 , [θ = 0; N0 = 0],

(ii) N−
1 � Nf � 1 + N+

0 ,
[
s2
θ = 0 → 1

]
,

(iii) 1 + N+
0 < Nf � 2, [|θ | = π ; N1 = 1]. (45)

θ remains 0 as the 1θ level is filled over domain (i) and rises
to π (or −π ) through domain (ii), retaining sθ = 1 thereafter
over (iii). As seen from Fig. 2(a), the effect of XE ∝ Ey is
noticeable [36] only near the boundaries of domain (ii).

Empty PZM levels n = {0, 1} have a crossing when one
sweeps bias u across ucr. It is enlightening to see how they
avoid a crossing when one of them is partially filled. Let
us take Nf = N1 < 0.5 and try to solve Eq. (31) for θ ,
with XE/εLs = 0.01 chosen. As seen from Fig. 3, θ starts
to rise around u/ucr ∼ 1 − 2Nf and reaches π for u � ucr,
with a rapid rise near u ∼ ucr for Nf � 1. The associated
spectra (ε̂0θ

, ε̂1θ
) always stay apart, and the u � ucr spectra

(ε̂0, ε̂1)|N1=Nf are smoothly connected to the u � ucr spectra
(ε̂1, ε̂0)|N0=Nf across u = ucr. In this way, a level gap generally
develops with filling via interaction. In practice, however, for
small filling Nf � 1 an emerging small gap will be readily
washed away by disorder and finite temperature. One will
then observe a collapse of the quantized conductance around
u ∼ ucr, noticing as if a level crossing had taken place.

We have so far handled mixing of PZM levels in bilayer
graphene. It will be clear now that an inversion of spectra,
such as (ε̂m > ε̂n)|empty → (ε̂m < ε̂n)|filled, is induced by a
difference in orbital exchange energy that generally has the
property Gmm > Gnn > Gmn > 0 for n > m � 0 [37]. The
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FIG. 3. Evolution of PZM spectra (ε̂0θ
, ε̂1θ

) with bias u at small
filling Nf < 1. (a) θ rapidly rises to π as u → ucr upward. (b) The
spectra generally avoid a crossing via level mixing even for Nf � 1.
Dashed lines refer to the θ = 0 case.

present analysis is equally applicable to such a general case
of orbital mixing by simply replacing orbital labels (0, 1) →
(m, n) with m < n.

IV. NON-ABELIAN BERRY PHASE

In this section we wish to clarify algebraic features of
orbital-mixing phenomena. Let us first note that, once H =
U †Ĥ effU is diagonalized, U and H are fixed as a function
of filling factor Nf = N1 + N0. Suppose now that we start
filling the empty PZM sector by increasing Nf gradually
in time, i.e., we set Nf → Nf (t ), and ask how the sector
evolves. The eigenmodes of Ĥ eff = Ĥ eff |Nf→Nf (t ) in each in-
stant are thereby written as ψ̂ (n)(t ) = U |Nf (t )�

(n) ≡ U (t )�(n)

with �(0) = (1, 0)t and �(1) = (0, 1)t and have nondegenerate
spectra (H00,H11) = (ε̂0θ

, ε̂1θ
)|Nf (t ).

The time evolution of the PZM levels is best clarified by
referring to the Lagrangian (or action)

L =
∫

dtdy0 ψ̂†(i∂t − Ĥ eff )ψ̂. (46)

Rewriting L in terms of � = U †ψ̂ yields

L =
∫

dtdy0 �†{i∂t − H + i(U †∂tU )}�, (47)

which describes how the field � = (�0,�1)t, expanded in
instantaneous eigenmodes {�(0),�(1)}, evolves in time. It tells
us that the field � and associated (0θ , 1θ ) levels have excita-
tion spectra (ε̂0θ

, ε̂1θ
)|Nf (t ) over the instantaneous ground state

that evolves along a nontrivial path of mixing [specified by
U (t )] in the (ψ0, ψ1) space.

Here we notice a non-Abelian Berry phase [29] A =
−i(U †∂tU ) = i(∂tU †)U or the SU(2) connection

A dt = −i(U †∂tU )dt = Aθdθ + Aφdφ, (48)

Aκ = −iU †∂κU (κ = θ, φ). (49)

In terms of Pauli matrices σa, Aκ = ∑3
a=1 Aa

κσa/2, with

Aa
θ = (sin φ,− cos φ, 0),

Aa
φ = (cos φ sin θ, sin φ sin θ, 1 − cos θ ). (50)

Formally the rotation U † = U †(t ) is written as a time-ordered
(or path-ordered P) integral of A,

U †(t ) = P exp

[
− i

∫ t

0
dt A

]
U †(0). (51)

For φ = 0, in particular, Aa
θ → (0,−1, 0) and

U † φ=0= eiθσ2/2 = cθ1 + isθσ2 (52)

is fixed by a net adiabatic change of θ = θ |Nf (t ) alone. The
SU(2) gauge field Aκ , associated with filling of the PZM
levels, derives from interaction V C and resides in the space
of parameters (θ, φ), through which one can adiabatically
change the filling factor Nf (t ) = N1(t ) + N0(t ), interlayer bias
u(t ), electric field E(t ), etc.

Let us now recall how θ behaves in domains (i)–(iii) of
Eq. (45) and reexamine the evolution of the PZM sector (for
δε̂ > 0 and u < ucr). To choose the sign of θ we start filling
the empty sector by gradually turning on a weak field Ey > 0
in domain (i) and turn it off later before the sector is filled.
The angle θ then rises from 0 to π as Nf = 0 → 2 over time
interval T , so that

U †|t=0 = 1 → U †|t=T = eiπσ2/2 =
(

0 1
−1 0

)
= iσ2.

(53)

The instantaneous eigenmodes � = (�0,�1)t = U †ψ̂

thereby evolve as mixtures of (ψ0, ψ1) without a crossing,

�|empty
θ=0 = (ψ0, ψ1)t → �|filled

θ=π = (ψ1,−ψ0)t, (54)

bringing the empty n = (0, 1) levels to filled n = (1, 0) levels
eventually.

Let us here note that physically the same consequence
of orbital mixing is also reached by the θ < 0 solu-
tion U |−θ = σ3U |θσ3, with the evolution (ψ0, ψ1)|empty →
−(ψ1,−ψ0)|filled. In view of this arbitrariness in global
phases of (ψ0, ψ1), one can adopt

tr[U ] = tr[U †] = 2 cθ = 2 cos(θ/2) (55)

as a measure to characterize the presence or absence of orbital
mixing. For the present θ = ±π rotation one has tr[U ] = 0
while tr[U ] = 2 for no mixing (θ = 0).

We have reached the filled PZM sector. Let us next con-
sider returning to the empty sector by further adiabatic change
Nf = 2 → 0. There are a number of ways to do so, that display
the basic character, the path dependence, of the Berry phase
(factor) U . See Fig. 4.

Case [I]: Pass through domain (ii) with weak field Ey >

0 turned on as before. One then comes back to the original
empty sector with a net variation 0 in θ , i.e., U = 1, tr[U ] = 2
and (ψ0, ψ1)|empty

t=0 → (ψ0, ψ1)|empty
t=T +T ′ .

Case [II]: Turn on a weak field (reversed in sign) Ey < 0
gradually in coming down through domain (iii). Then θ in-
creases across π , as seen from Eq. (34) and continues to
rise as Nf is further reduced. Turning Ey off later in domain
(i) takes one to the empty sector with a net variation 2π in
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FIG. 4. Evolution of PZM spectra (ε̂0θ
, ε̂1θ

) with an adiabatic
change in (Nf , u, Ey ) and the associated path dependence of the Berry
phase.

θ and

U †|θ=2π = e2π iσ2/2 = −1, tr[U ] = −2. (56)

ψ̂ = (ψ0, ψ1)t thus flips sign, �|empty
θ=0 = ψ̂ → �|empty

θ=2π =
−ψ̂ , simply because ψ̂ has made a 2π rotation relative to �

in the spinor space.
Case [III]: (i) At Nf = 2 and θ = π , increase first bias

u to a value somewhat above the critical bias, u → u′ >

ucr. (ii) Then reduce Nf to zero gradually. Filled lev-
els {0θ , 1θ }|θ=π = {1, 0}|u thereby evolve into empty levels
{1, 0}|u′ without a mixing and crossing, and the associated

spectra (ε̂0θ
, ε̂1θ

)|θ=π = (ε̂1, ε̂0) change as (ε̂1, ε̂0)|Nf=2
u

(i)→
(ε̂1, ε̂0)|Nf=2

u′
(ii)→ (ε̂1, ε̂0)|Nf=0

u′ . Note here that, with Ey → 0, θ

does not change with bias u for the empty or filled sector
(Nf = 0, 2) and also for u > ucr.

(iii) Finally bring bias u′ back to the original value u < ucr.
The spectra thereby cross, (ε̂1 > ε̂0)|Nf=0

u′ → (ε̂1 < ε̂0)|Nf=0
u ,

across ucr while θ stays at π . Here we see a crossing of empty
levels and no level mixing. In this way, via the Nf = 0 → 2 →
0 cyclic path ≡ C one returns to the empty sector, with a net
variation π in θ and

U †|Cθ=π = eiπσ2/2 = iσ2, tr[U ] = 0. (57)

The initial and final configurations are physically the same
although they differ in assignment of ψ̂ to �,

�|empty
θ=0 = (ψ0, ψ1)t → �|empty

θ=π = (ψ1,−ψ0)t. (58)

The presence of active (i.e., interaction-induced) orbital level
mixing is characterized by θ = π and tr[U ] = 0.

V. TRILAYERS

Trilayer graphene supports 4 × 3 = 12 PZM levels with
a threefold orbital degeneracy. As discussed theoreti-
cally [4,5,38–41] and observed experimentally [42–45], the
Landau-level spectra and electronic properties of trilayers
strongly depend on the stacking order, such as ABA and
ABC stackings. The orbital degeneracy is again lifted by the
Coulomb interaction and the orbital Lamb shift leads to orbital
mixing, as noted earlier [41]. In this section we summarize
and refine the result in light of the present framework of level
mixing.

FIG. 5. Orbital mixing in ABC trilayer graphene at B = 10 T
and u = 0. (a) Rotation U = ei� n·t. (b) Evolution of PZM spectra
(ε̂0�

, ε̂1�
, ε̂2�

) with filling Nf = 0 → 3. Dashed curves refer to the
spectra of no mixing � = 0.

The ABC-stacked trilayer is a chiral generalization [4] of
bilayer graphene and the zero-energy modes residing primar-
ily in outer layers show a degeneracy in orbitals n = (0, 1, 2)
per spin and valley. The one-body spectra {ε0, ε1, ε2} devi-
ate from zero energy by a symmetric interlayer bias u, with
slightly different gradients, and the two valleys are related,
e.g, as εn|K ′ = εn|K−u per spin. The orbital Lamb-shift correc-
tions read [41], e.g.,

(
εLs

0 , εLs
1 , εLs

2

) B=10T≈ (0.888, 0.777, 0.641) Ṽc (59)

numerically, with only the leading band parameter g =
γ1/ωc ≈ 3.41 kept at B = 10 T. The PZM spectra ε̂n = εn +
εLs

n are ordered as ε̂0 > ε̂1 > ε̂2 > 0 for empty levels at zero
bias u = 0 while they change sign for filled levels so that 0 >

ε̂2 > ε̂1 > ε̂0 at Nf = 3. This signals the presence of orbital
mixing upon level filling.

To study level mixing, let us rotate, as in the bilayer case,
the PZM sector ψ̂ = (ψ0, ψ1, ψ2)t to � = (�0,�1,�2)t by
an SO(3) matrix U , ψ̂ = U�, and try to diagonalize the
HF effective Hamiltonian Ĥ eff (taken to be a real symmetric
matrix). Previously we wrote U as a product of three rotations
and fixed it numerically as a function of filling factor Nf at
zero bias u = 0. It is illuminating to cast the result in the polar
form

U = eiχa ta = ei� n·t, (60)

where t = (t0, t1, t2) stand for the spin-1 generators (ta)bc ≡
iεbac with the totally antisymmetric tensor εabc and ε012 = 1;
real angles �χ = (χ0, χ1, χ2) = � n are decomposed into the
magnitude � ≡ | �χ | and a unit vector n = (n0, n1, n2); n · t =
nata. Note that χ0 mixes n = (1, 2), χ1 mixes (0,2), etc. Some
useful formulas are

ei� n·t = 1 + (cos � − 1) P + i(n·t) sin �,
(61)

tr[ei� n·t] = 1 + 2 cos �,

where P ≡ (n·t)2 is a projection operator, P2 = P, and
(n·t)P = (n·t); Pab = δab − nanb.

Figure 5 illustrates how the angle � and direction n change
with filling factor Nf . � rises from zero to π over the interval
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0.51 � Nf � 2.51 and n lies around n|�=π = (1, 0, 1)/
√

2. It
is essential that the three levels cooperate, with the associated
SO(3) Berry phase A� ≈ n · t. At Nf = 3 and � = π ,

U = eiπt·n|�=π =
⎛
⎝ 1

−1
1

⎞
⎠ and tr(U ) = −1. (62)

Upon filling, the eigenmodes (�0,�1,�2) thus evolve from
(ψ0, ψ1, ψ2)|empty

Nf=0 to (ψ2,−ψ1, ψ0)|filled
Nf=3 without a crossing,

as seen from Fig. 5(b).
There is another solution that differs from one shown in the

figure by signs, (n0, n1, n2) → (−n0, n1,−n2). It is related to
U by a unitary transformation, U |−n0,n1,−n2 = Y UY−1 with
Y = eiπt1 = diag[−1, 1,−1], and reflects again the invariance
of the system under a spatial π rotation, x → −x. It is enlight-
ening to interpret U |−n0,n1,−n2 as a rotation by negative angle
� < 0 about the axis n′ = (n0,−n1, n2). Then U = ei� n·t,
as a function of Nf , is naturally defined for −π � � � π ,
and even for the full line −∞ < � < ∞ if one notes that U
has period 2π in �. One can also control the sign of � by
use of a weak in-plane field Ey [41]. It is clear now that U
acts as a path-dependent non-Abelian phase factor when one
controls (�, n) via adiabatic changes of external parameters
(Nf , E, u, . . .), as in Fig. 4 of the bilayer case.

Previously U |�=π was obtained as a product of three π/2
rotations, U = e−i(π/2)t2 e−i(π/2)t1 e−i(π/2)t0 . A single � = π/2
rotation, e.g, ei(π/2)t0 = 1 ⊕ iσ2, consists of a θ = π rotation
of (ψ1, ψ2), with ψ0 left intact. Such a |�| = π/2 rotation
has been encountered in a study [41] of ABA-stacked trilayer
graphene. The ABA trilayer accommodates [4,5] monolayer-
like and bilayerlike subbands and has the PZM levels specified
by orbital labels such as n = (0, 1±) in one valley and n =
(0±, 1) in another valley. It turns out that Coulomb exchange
interactions mainly act between (0, 1−), leaving 1+ rather
isolated; analogously for (1, 0−) and 0+. This explains why
� = π/2 rotations are responsible for mixing of PZM levels
in the ABA trilayer. In this way, indices tr[U |�=π ] = −1 and
tr[U |�=π/2] = 1 clearly distinguish ABC and ABA trilayers in
their character of orbital mixing.

VI. EVOLUTION AND CROSSING OF MANY-BODY
STATES

Bilayer graphene has four renormalized PZM sectors of
valley (K, K ′) × spin (↑,↓). Each sector, when empty or
filled, becomes an eigenstate to O(V C ) of the total Hamil-
tonian H1b + V C , as we have noted. Such empty and filled
sectors do not mix by exchange interaction to O(V C ), unless
there is a degeneracy (i.e., unless they cross). In light of this
picture, we discuss in this section what the ν = 0 ground state
is like when orbital splitting εLs and spin splitting (with Zee-
man energy μZ ≡ g∗μeB ∼ 0.12 B[T]) are taken into account.
We start with the four empty PZM sectors that constitute the
unique ground state at total filling factor ν = −4 and consider
filling them with electrons gradually.

Whenever nonzero bias u > 0 induces a sizable valley gap
∼u, the ν = 0 ground state is certainly realized as a valley-
polarized one with (1K

↓ , 0K
↓ ) + (1K

↑ , 0K
↑ ) filled (in obvious

FIG. 6. The ν = 0 ground state in bilayer graphene. The empty
LLL at small bias u ∼ 0 [in (a)], upon half filling, grows into a spin-
polarized ν = 0 state [in (b)] while, at higher bias u > uX, it evolves
into a valley-polarized state [in (c)]. (d),(e) The spin-polarized ν = 0
ground state, with increasing bias u, evolves into the valley-polarized
one in two steps at (ucr

0 , ucr
1 ).

notation) and of total energy (per electron)

ε (v) = 2 (ε̂0 + ε̂1)|Nf=2, (63)

which gets lower with increasing bias u.
For small bias u ∼ 0, spin splitting will become important.

See Fig. 6. Figure 6(a) depicts the empty level spectra of the
ν = −4 ground state for εLs � μZ, as is normally the case.
At u ∼ 0, (1K

↓ , 1K ′
↓ ) are lower than others (for both εLs � μZ

and εLs < μZ). Accordingly, for u ∼ 0, the ν = −4 state [in
Fig. 6(a)], upon filling (1K

↓ , 0K
↓ ) and (1K ′

↓ , 0K ′
↓ ) in sequence or

in some other order, will evolve into a spin-polarized ν = 0
ground state [in Fig. 6(b)] of total energy

ε (s) = (ε̂0 + ε̂1)|Nf=2 + (ε̂0 + ε̂1)|Nf=2
−u − 2μZ, (64)

which barely depends on u.
Of these two ν = 0 candidates the spin-polarized state is

generally favored for u ∼ 0, as seen from

ε (v) − ε (s) = 2 (μZ − κ[u]) ≈ 2 (μZ − λ u), (65)

where κ[u] = (1 + z1) u/2 − �K
0 − �K

1 ≈ λ u and λ = O(1).
The ν = 0 ground state, if formed as a spin-polarized one
[in Fig. 6(b)] at u ∼ 0, will eventually evolve into a valley-
polarized state [in Fig. 6(c)] as u is increased. Let us consider
how this transition takes place. Figure 6(d) depicts the filled
spectra of the spin-polarized state with those of the other
superposed. Figure 6(e) shows similar spectra for the case
μZ > εLs in high field B. Let us first take a look at the latter.
There, as u is increased, the valley-polarized virtual state
comes down in energy and, at first, filled 1K ′

↓ meets 0K
↑ . At

this point of degeneracy, 1K ′
↓ has a chance to turn into filled

0K
↑ , but this is not possible because filled 1K ′

↓ has to first mix
with empty 0K

↑ which lies far above in the spectra.
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Next, filled 0K ′
↓ meets 0K

↑ in the figure. At this degeneracy,

filled 0K ′
↓ can readily turn into filled 0K

↑ via a global rotation

in the valley×spin space. Note that g00;K ′
p = g00;K

p = 1 so that,
within the n = 0 sector, the Coulomb interaction is invariant
under rotations in valleys and spins. Thus there is no extra

cost of energy in making a rotation (0K
↑ |empty, 0K ′

↓ |filled )
U→

(0K ′
↓ |empty, 0K

↑ |filled ), with a non-Abelian Berry phase U of
θ = π and tr[U ] = 0. Such a rotation takes place across the
critical bias

ucr
0 = μZ/λ0, (66)

with λ0 = 1 − 2 �0/u
B=20 T∼ 1 + 0.65 Ṽc/ωc. See Appendix B

for details. Similarly, filled 1K ′
↓ turns into filled 1K

↑ with little
cost of energy across the second critical bias

ucr
1 = μZ/λ1 > ucr

0 , (67)

with λ1 = z1 − 2 �1/u
B=20 T∼ z1 + 0.61 Ṽc/ωc < λ0. [Actu-

ally, (λ0 + λ1)/2 = λ, and ucr
1 coincides with uX in Fig. 6(a).]

The valley-polarized ν = 0 ground state is thus reached in the
following sequence

(
1K

↓ , 0K
↓
) ⊕ {(

1K ′
↓ , 0K ′

↓
) ucr

0→ (
1K ′

↓ , 0K
↑
) ucr

1→ (
1K

↑ , 0K
↑
)}

(68)

and continues for u > ucr
1 . For u ∈ (ucr

0 , ucr
1 ) the ground state

is polarized in both valley and spin; this intermediate state
differs in structure from one discussed earlier in Refs. [15,16].
It is clear from Fig. 6(d) that the transition follows the same
steps for the case εLs � μZ as well. Inclusion of weak e-h
breaking (�, γ4, . . . ) also leaves this two-step picture qual-
itatively intact.

An observable signature of such transitions is the follow-
ing: With increasing bias u, the quantum Hall effect will
survive as long as the ground state and competing virtual state
retain an appreciable energy gap. Incompressibility will be
lost and conductance σxx will rise from zero only when bias
u lies around these critical values ucr

0 and ucr
1 . It is clear, on

interchanging valleys K ↔ K ′, that negative bias u < 0 also
leads to the same sequence of transition.

Actually, early transport experiments [20,22] observed a
collapse of the ν = 0 quantum Hall state at two distinct
(positive/negative) values of electric field ∝u, and later ca-
pacitance measurements [25,26] in higher magnetic field
B detected it at four such values of u. The transition se-
quence in Eq. (68) appears consistent with one inferred
from layer-sensitive capacitance measurements of Hunt et al.
[26].

VII. SUMMARY AND DISCUSSION

Characteristic to few-layer Dirac electron systems in a
magnetic field is a multiplet, at the LLL, of PZM levels nearly
degenerate in orbitals, valleys, and spins. Their spectra are
sensitive to interactions and external perturbations, and, in
particular, the orbital Lamb shift inevitably induces a level in-
version between the empty and filled levels in a way governed
by e-h symmetry.

In the present paper we have examined how those PZM
levels evolve with increasing filling and external bias u under
many-body interactions and have seen that they generally

avoid a crossing via level mixing which is governed by a
non-Abelian Berry phase (factor) U . This Berry phase derives
from interactions, and encodes, in the form of trace tr(U ),
how a nearly degenerate system responds to adiabatic external
changes, such as the filling factor, electric and magnetic fields.
Its path dependence, in particular, reveals algebraic features
underlying general Landau-level crossing/mixing phenom-
ena. Our basic picture of level mixing is also applicable to
evolution of many-body ground states with sweeping external
perturbations, as examined in Sec. VI for the ν = 0 ground
state in bilayer graphene.

Landau-level crossing/mixing phenomena deserve serious
attention as a platform to explore, both theoretically and ex-
perimentally, many-body physics. Our focus has so far been
on mixing of PZM levels themselves. Crossings of PZM levels
with other higher levels, as observed in ABA trilayer graphene
[43], deserve equal attention, we remark, although a close
look into their many-body features is left here for future
study.

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid for
Scientific Research from the Ministry of Education, Science,
Sports and Culture of Japan (Grant No. 21K03534).

APPENDIX A: ROTATED LEVEL SPECTRA

In this Appendix we outline the derivation of the level
spectra in Eqs. (35) and (36). The diagonal elements of H =
U †Ĥ effU in Eq. (27) are written as

H00 = a c2
θ + b s2

θ + 2Fsθcθ ,
(A1)

H11 = a s2
θ + b c2

θ − 2Fsθcθ ,

with F ≡ (N1 − N0) G00;11sθ cθ + XE and XE = c1e�Ey/
√

2.
Note parametrization in Eq. (30) for direct calculations. The
spectra are thereby rewritten as

H00 = ε̂0 − N1G01 − N0G00 − X 0,
(A2)

H11 = ε̂0 − N1G00 − N0G01 − X 1,

with

X 0 = � s2
θ + 2sθcθ (sθcθ� − XE ),

(A3)
X 1 = � c2

θ − 2sθcθ (sθcθ� − XE ),

where � = (N1 − N0) D.
On the other hand, H10 = 0 [Eq. (29)] implies the re-

lation � = (c2
θ − s2

θ )(−� + XE/sθcθ ). Substituting this into
Eq. (A3) yields

X 0 = � s2
θ − (sθ /cθ )XE ,

X 1 = −� c2
θ + (cθ /sθ )XE . (A4)

Note that X 0 + X 1 = �, which then reads

δε̂ ≡ ε̂0 − ε̂1 = (
N1c2

θ + N0s2
θ

)
δG + X 0 + X 1. (A5)
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On replacing ε̂0 → ε̂1 + δε̂ in Eq. (A2), the spectra are cast in
two equivalent forms in Eqs. (35) and (36).

APPENDIX B: GLOBAL MIXING AMONG PZM LEVELS

In this Appendix we examine how global rotations 0K ′
↓ →

0K
↑ and 1K ′

↓ → 1K
↑ , posed in Sec. VI, proceed via exchange

interaction. Let us start with the n = 0 orbital modes and try to
rotate a pair of (empty, filled) fields (ψ0;K

↑ , ψ0;K ′
↓ )t to (�0

e,�
0
f )t

by a unitary matrix U (θ ), as in Eq. (23). As verified readily,
the associated HF interaction V HF

X takes a simple form

V HF
X = −G00(N f Rff;0 + Ne Ree;0) (B1)

in terms of (�0
e,�

0
f ) with filling fractions (Ne, N f ) and charge

operators Rff;0 = ∫
dy0�

0†
f �0

f , etc. Setting (Ne, N f ) →
(0, 1) shows that global valley×spin rotations of the filled
n = 0 level (∼�0

f ) require no extra cost of Coulombic
energy.

The one-body terms with spectra ε̂K
0↑ = ε̂K

0 + μZ/2 and

ε̂K ′
0↓ = ε̂K ′

0 − μZ/2 are combined with V HF
X to yield the effec-

tive Hamiltonian for the rotated field,

H eff = {εf (θ ) − G00}Rff;0 + εe(θ )Ree;0

−sθcθ

(
ε̂K

0↑ − ε̂K ′
0↓

)
(Ref;0 + Rfe;0), (B2)

where εf (θ ) = s2
θ ε̂K

0↑ + c2
θ ε̂K ′

0↓ and εe(θ ) = c2
θ ε̂K

0↑ + s2
θ ε̂K ′

0↓.
Diagonalization is therefore achieved for θ ≡ 0 (mod π ) or,
if sθcθ �= 0, for

ε̂K
0↑ − ε̂K ′

0↓ = μZ − u + �0 − �0|−u = μZ − λ0u → 0,

(B3)

with λ0 = 1 − 2 �0/u. It is now clear that filled 0K ′
↓ turns into

filled 0K
↑ across u ∼ ucr

0 = μZ/λ0 via a global rotation of angle
θ = π .

Let us next note that g11;K
p = 1 − 1

2 c2
1�

2p2 and g11;K ′
p =

g11;K
p |−u barely differ for small u ∼ O(μZ). The Coulomb in-

teraction, acting within the n = 1 sector, thus remains almost
invariant under global valley and spin rotations, and H eff in
Eq. (B2) applies to the transition filled 1K ′

↓ → filled 1K
↑ as

well, with obvious replacement G00 → G11, ε̂K ′
0↓ → ε̂K ′

1↓, etc.
The result is summarized in Eq. (67).
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